Quantum-Enhanced Attention Neural Networks for PM2.5 Concentration Prediction

As industrialization and economic growth accelerate, PM2.5 pollution has become a critical environmental concern. Predicting PM2.5 concentration is challenging due to its nonlinear and complex temporal dynamics, limiting the accuracy and robustness of traditional machine learning models. To enhance...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Modelling Ročník 6; číslo 3; s. 69
Hlavní autoři: Huang, Tichen, Jiang, Yuyan, Gan, Rumeijiang, Wang, Fuyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 21.07.2025
Témata:
ISSN:2673-3951, 2673-3951
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As industrialization and economic growth accelerate, PM2.5 pollution has become a critical environmental concern. Predicting PM2.5 concentration is challenging due to its nonlinear and complex temporal dynamics, limiting the accuracy and robustness of traditional machine learning models. To enhance prediction accuracy, this study focuses on Ma’anshan City, China and proposes a novel hybrid model (QMEWOA-QCAM-BiTCN-BiLSTM) based on an “optimization first, prediction later” approach. Feature selection using Pearson correlation and RFECV reduces model complexity, while the Whale Optimization Algorithm (WOA) optimizes model parameters. To address the local optima and premature convergence issues of WOA, we introduce a quantum-enhanced multi-strategy improved WOA (QMEWOA) for global optimization. A Quantum Causal Attention Mechanism (QCAM) is incorporated, leveraging Quantum State Mapping (QSM) for higher-order feature extraction. The experimental results show that our model achieves a MedAE of 1.997, MAE of 3.173, MAPE of 10.56%, and RMSE of 5.218, outperforming comparison models. Furthermore, generalization experiments confirm its superior performance across diverse datasets, demonstrating its robustness and effectiveness in PM2.5 concentration prediction.
AbstractList As industrialization and economic growth accelerate, PM2.5 pollution has become a critical environmental concern. Predicting PM2.5 concentration is challenging due to its nonlinear and complex temporal dynamics, limiting the accuracy and robustness of traditional machine learning models. To enhance prediction accuracy, this study focuses on Ma’anshan City, China and proposes a novel hybrid model (QMEWOA-QCAM-BiTCN-BiLSTM) based on an “optimization first, prediction later” approach. Feature selection using Pearson correlation and RFECV reduces model complexity, while the Whale Optimization Algorithm (WOA) optimizes model parameters. To address the local optima and premature convergence issues of WOA, we introduce a quantum-enhanced multi-strategy improved WOA (QMEWOA) for global optimization. A Quantum Causal Attention Mechanism (QCAM) is incorporated, leveraging Quantum State Mapping (QSM) for higher-order feature extraction. The experimental results show that our model achieves a MedAE of 1.997, MAE of 3.173, MAPE of 10.56%, and RMSE of 5.218, outperforming comparison models. Furthermore, generalization experiments confirm its superior performance across diverse datasets, demonstrating its robustness and effectiveness in PM2.5 concentration prediction.
Author Gan, Rumeijiang
Wang, Fuyu
Huang, Tichen
Jiang, Yuyan
Author_xml – sequence: 1
  givenname: Tichen
  surname: Huang
  fullname: Huang, Tichen
– sequence: 2
  givenname: Yuyan
  surname: Jiang
  fullname: Jiang, Yuyan
– sequence: 3
  givenname: Rumeijiang
  surname: Gan
  fullname: Gan, Rumeijiang
– sequence: 4
  givenname: Fuyu
  surname: Wang
  fullname: Wang, Fuyu
BookMark eNpdUU1LAzEQDaKgVu8eFzyvZvPV5ijFL2i1gp7DbHZSt24TzWYR_71pKyLCwDyGx5s3b47Jvg8eCTmr6AXnml6uQ4Nd1_qlopxSpffIEVNjXnItq_0_-JCc9v2KUsrGWshJdUTmTwP4NKzLa_8K3mJTXKWEPrXBFw84ROhyS58hvvWFC7FYzNmFLKYhU32KsOUtIjat3cATcuCg6_H0p4_Iy8318_SunD3e3k-vZqXlXKQSkWsEpyorpKokr4DXFrM_mY-pLaMNwNhZCnbimLJYcxRQSWc11FRMgI_I_U63CbAy77FdQ_wyAVqzHYS4NBBTazs0UkntXC7mtGik0DkfxhqrRA3AkWet853WewwfA_bJrMIQfbZvOJNC0Rweyyy6Y9kY-j6i-91aUbP5gfn_A_4N7G590w
Cites_doi 10.1016/j.apr.2019.05.007
10.3390/atmos14050903
10.1016/j.atmosenv.2009.09.023
10.1016/j.envsoft.2019.104600
10.1016/j.uclim.2024.101916
10.1016/j.scs.2020.102237
10.1016/j.neucom.2024.127284
10.3390/math13121979
10.1016/j.atmosenv.2011.11.023
10.3390/modelling6010009
10.1007/s10098-017-1379-0
10.3390/app15042224
10.1016/j.cageo.2021.104869
10.1016/j.buildenv.2024.112167
10.1016/j.atmosenv.2015.02.022
10.1103/PhysRevE.49.4677
10.3390/su16020832
10.1109/IJCNN54540.2023.10191662
10.1016/j.energy.2025.136183
10.1016/j.apr.2019.11.019
10.1016/j.uclim.2022.101202
10.1016/j.asoc.2022.109688
10.1016/j.atmosenv.2009.05.016
10.1007/s10462-023-10570-9
10.3390/math12101549
10.1016/j.apr.2023.101832
10.1016/j.measurement.2019.02.071
10.3390/atmos14081294
10.1016/j.matcom.2021.10.003
10.1016/j.snb.2022.133010
10.1016/j.jenvman.2016.12.011
10.1016/j.atmosenv.2013.10.001
10.1038/s41598-024-57912-3
10.1007/978-981-99-8435-0_9
10.1016/j.atmosenv.2019.116885
10.1016/j.apr.2017.04.002
10.1038/s41598-023-44770-8
10.1016/j.apacoust.2022.109084
10.1016/j.apr.2023.101761
10.1016/j.apr.2023.101703
10.1016/j.jenvman.2017.03.046
10.1016/j.bspc.2024.107142
10.3390/atmos14050869
10.1016/j.apr.2024.102256
10.1016/j.apr.2024.102152
10.7717/peerj.17811
10.1016/j.aej.2021.10.021
10.1016/j.compchemeng.2023.108264
10.1016/j.atmosenv.2016.10.016
10.1007/s44408-025-00007-z
10.1016/j.advengsoft.2016.01.008
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/modelling6030069
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2673-3951
ExternalDocumentID oai_doaj_org_article_5659ff9ff2f94d54900622dc64baa3e3
10_3390_modelling6030069
GeographicLocations United States--US
China
Anhui China
Yangtze River
GeographicLocations_xml – name: Yangtze River
– name: China
– name: Anhui China
– name: United States--US
GroupedDBID AAYXX
ABJCF
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
M7S
MODMG
M~E
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c334t-ee39eaf61c4561531a3bce9515390bc20daa7fc0ac8f26ceb3e4a15fc9ab048a3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001581593000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2673-3951
IngestDate Fri Oct 03 12:42:11 EDT 2025
Mon Nov 17 16:20:49 EST 2025
Sat Nov 29 07:16:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-ee39eaf61c4561531a3bce9515390bc20daa7fc0ac8f26ceb3e4a15fc9ab048a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/5659ff9ff2f94d54900622dc64baa3e3
PQID 3254606732
PQPubID 5046876
ParticipantIDs doaj_primary_oai_doaj_org_article_5659ff9ff2f94d54900622dc64baa3e3
proquest_journals_3254606732
crossref_primary_10_3390_modelling6030069
PublicationCentury 2000
PublicationDate 2025-07-21
PublicationDateYYYYMMDD 2025-07-21
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-21
  day: 21
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Modelling
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Yafouz (ref_16) 2022; 61
Xia (ref_24) 2025; 267
Nopmongcol (ref_12) 2012; 53
Kumar (ref_8) 2017; 19
Liu (ref_14) 2019; 10
Righi (ref_7) 2009; 43
Mantegna (ref_42) 1994; 49
ref_51
Ma (ref_23) 2019; 214
ref_18
Ni (ref_35) 2023; 376
Woody (ref_4) 2016; 147
Jiang (ref_13) 2017; 196
ref_17
Mirjalili (ref_39) 2016; 95
Ren (ref_30) 2023; 14
Xue (ref_45) 2022; 130
Zhang (ref_25) 2021; 155
ref_22
Liu (ref_20) 2020; 11
MacIntosh (ref_6) 2010; 44
Bai (ref_29) 2024; 12
Yu (ref_2) 2024; 15
Soni (ref_9) 2022; 44
Fan (ref_46) 2022; 201
Li (ref_52) 2025; 326
He (ref_26) 2023; 14
ref_36
ref_33
ref_32
Lyu (ref_44) 2019; 139
ref_31
Zhang (ref_15) 2020; 124
Zeng (ref_1) 2024; 15
Chemel (ref_11) 2014; 82
Mao (ref_5) 2017; 8
Ma (ref_27) 2020; 60
Yang (ref_34) 2024; 55
Kaur (ref_3) 2023; 56
Song (ref_38) 2024; 574
Gao (ref_10) 2015; 107
Aman (ref_21) 2025; 25
ref_47
Luo (ref_28) 2023; 14
ref_43
ref_41
Li (ref_40) 2022; 193
ref_49
ref_48
Sun (ref_19) 2017; 188
Li (ref_37) 2023; 175
References_xml – volume: 10
  start-page: 1588
  year: 2019
  ident: ref_14
  article-title: Air PM2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.05.007
– ident: ref_17
  doi: 10.3390/atmos14050903
– volume: 44
  start-page: 262
  year: 2010
  ident: ref_6
  article-title: Use of CALPUFF for exposure assessment in a near-field, complex terrain setting
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.09.023
– volume: 124
  start-page: 104600
  year: 2020
  ident: ref_15
  article-title: Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.104600
– volume: 55
  start-page: 101916
  year: 2024
  ident: ref_34
  article-title: Multi-factor PM2.5 concentration optimization prediction model based on decomposition and integration
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2024.101916
– volume: 60
  start-page: 102237
  year: 2020
  ident: ref_27
  article-title: A Lag-FLSTM deep learning network based on Bayesian Optimization for multi-sequential-variant PM2.5 prediction
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102237
– volume: 574
  start-page: 127284
  year: 2024
  ident: ref_38
  article-title: An optimized CNN-BiLSTM network for bearing fault diagnosis under multiple working conditions with limited training samples
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127284
– ident: ref_22
  doi: 10.3390/math13121979
– volume: 53
  start-page: 177
  year: 2012
  ident: ref_12
  article-title: Modeling Europe with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII)
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.11.023
– ident: ref_49
  doi: 10.3390/modelling6010009
– volume: 19
  start-page: 1955
  year: 2017
  ident: ref_8
  article-title: Application of AERMOD for short-term air quality prediction with forecasted meteorology using WRF model
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-017-1379-0
– ident: ref_50
  doi: 10.3390/app15042224
– volume: 155
  start-page: 104869
  year: 2021
  ident: ref_25
  article-title: Spatiotemporal causal convolutional network for forecasting hourly PM2.5 concentrations in Beijing, China
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104869
– volume: 267
  start-page: 112167
  year: 2025
  ident: ref_24
  article-title: Multi-dimensional distribution prediction of PM2.5 concentration in urban residential areas based on CNN
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2024.112167
– volume: 107
  start-page: 1
  year: 2015
  ident: ref_10
  article-title: The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.02.022
– volume: 49
  start-page: 4677
  year: 1994
  ident: ref_42
  article-title: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.4677
– ident: ref_18
  doi: 10.3390/su16020832
– ident: ref_47
  doi: 10.1109/IJCNN54540.2023.10191662
– volume: 326
  start-page: 136183
  year: 2025
  ident: ref_52
  article-title: A hybrid WOA-CNN-BiLSTM framework with enhanced accuracy for low-voltage shunt capacitor remaining life prediction in power systems
  publication-title: Energy
  doi: 10.1016/j.energy.2025.136183
– volume: 11
  start-page: 469
  year: 2020
  ident: ref_20
  article-title: Prediction of outdoor PM2.5 concentrations based on a three-stage hybrid neural network model
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.11.019
– volume: 44
  start-page: 16
  year: 2022
  ident: ref_9
  article-title: Estimation of particulate matter pollution using WRF-Chem during dust storm event over India
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2022.101202
– volume: 130
  start-page: 109688
  year: 2022
  ident: ref_45
  article-title: Estimating state of health of lithium-ion batteries based on generalized regression neural network and quantum genetic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109688
– volume: 43
  start-page: 3850
  year: 2009
  ident: ref_7
  article-title: Statistical and diagnostic evaluation of the ADMS-Urban model compared with an urban air quality monitoring network
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.05.016
– volume: 56
  start-page: 2053
  year: 2023
  ident: ref_3
  article-title: Computational deep air quality prediction techniques: A systematic review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10570-9
– ident: ref_51
  doi: 10.3390/math12101549
– volume: 14
  start-page: 13
  year: 2023
  ident: ref_26
  article-title: A hybrid CLSTM-GPR model for forecasting particulate matter (PM2.5)
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2023.101832
– volume: 139
  start-page: 236
  year: 2019
  ident: ref_44
  article-title: Application of improved MCKD method based on QGA in planetary gear compound fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.071
– ident: ref_31
  doi: 10.3390/atmos14081294
– volume: 193
  start-page: 71
  year: 2022
  ident: ref_40
  article-title: A chaotic strategy-based quadratic Opposition-Based Learning adaptive variable-speed whale optimization algorithm
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.10.003
– volume: 376
  start-page: 133010
  year: 2023
  ident: ref_35
  article-title: Prediction of CO concentration in different conditions based on Gaussian-TCN
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2022.133010
– volume: 188
  start-page: 144
  year: 2017
  ident: ref_19
  article-title: Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.12.011
– volume: 82
  start-page: 410
  year: 2014
  ident: ref_11
  article-title: Application of chemical transport model CMAQ to policy decisions regarding PM2.5 in the UK
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.10.001
– ident: ref_36
  doi: 10.1038/s41598-024-57912-3
– ident: ref_48
  doi: 10.1007/978-981-99-8435-0_9
– volume: 214
  start-page: 116885
  year: 2019
  ident: ref_23
  article-title: Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.116885
– volume: 8
  start-page: 1005
  year: 2017
  ident: ref_5
  article-title: Prediction of hourly ground-level PM2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2017.04.002
– ident: ref_41
  doi: 10.1038/s41598-023-44770-8
– volume: 201
  start-page: 109084
  year: 2022
  ident: ref_46
  article-title: Real-time single-channel speech enhancement based on causal attention mechanism
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2022.109084
– volume: 14
  start-page: 101761
  year: 2023
  ident: ref_28
  article-title: Air pollutant prediction based on ARIMA-WOA-LSTM model
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2023.101761
– volume: 14
  start-page: 12
  year: 2023
  ident: ref_30
  article-title: Deep learning coupled model based on TCN-LSTM for particulate matter concentration prediction
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2023.101703
– volume: 196
  start-page: 443
  year: 2017
  ident: ref_13
  article-title: A novel hybrid strategy for PM2.5 concentration analysis and prediction
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.03.046
– ident: ref_33
  doi: 10.1016/j.bspc.2024.107142
– ident: ref_32
  doi: 10.3390/atmos14050869
– volume: 15
  start-page: 102256
  year: 2024
  ident: ref_2
  article-title: Spatial weighting EMD-LSTM based approach for short-term PM2.5 prediction research
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2024.102256
– volume: 15
  start-page: 102152
  year: 2024
  ident: ref_1
  article-title: A hybrid optimization prediction model for PM2.5 based on VMD and deep learning
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2024.102152
– volume: 12
  start-page: 23
  year: 2024
  ident: ref_29
  article-title: Prediction of PM2.5 concentration based on a CNN-LSTM neural network algorithm
  publication-title: Peerj
  doi: 10.7717/peerj.17811
– volume: 61
  start-page: 4607
  year: 2022
  ident: ref_16
  article-title: Comprehensive comparison of various machine learning algorithms for short-term ozone concentration prediction
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.10.021
– volume: 175
  start-page: 13
  year: 2023
  ident: ref_37
  article-title: Applying and dissecting LSTM neural networks and regularized learning for dynamic inferential modeling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108264
– ident: ref_43
– volume: 147
  start-page: 384
  year: 2016
  ident: ref_4
  article-title: Multiscale predictions of aviation-attributable PM2.5 for U.S. airports modeled using CMAQ with plume-in-grid and an aircraft-specific 1-D emission model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.10.016
– volume: 25
  start-page: 4
  year: 2025
  ident: ref_21
  article-title: A Visibility-Based Historical PM2.5 Estimation for Four Decades (1981–2022) Using Machine Learning in Thailand: Trends, Meteorological Normalization, and Influencing Factors Using SHAP Analysis
  publication-title: Aerosol Air Qual. Res.
  doi: 10.1007/s44408-025-00007-z
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_39
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
SSID ssj0002794581
Score 2.2978776
Snippet As industrialization and economic growth accelerate, PM2.5 pollution has become a critical environmental concern. Predicting PM2.5 concentration is challenging...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 69
SubjectTerms Accuracy
Air pollution
Artificial intelligence
BiLSTM
BiTCN
Complexity
Economic development
Feature extraction
Global optimization
Machine learning
Neural networks
Outdoor air quality
PM2.5 concentration prediction
QCAM
QMEWOA
Robustness
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZYCBN6K8lIGFwZDYeXlCBbViaVUQSN0ixw9gIC1Nyu_nLnGhAokFKUMUJ1Lke_jOd_4-Qs4THeWc5wm1TEc0lHFIRRjmVFgVGJEqHVhbk00kw2E6HouR23ArXVvlwifWjlpPFO6RX3EEbkdWFXY9fafIGoXVVUehsUraiFQGet6-6Q1HD1-7LAzULUqDpj7JIb-_qglm8KR3DOrtY5_z0npUw_b_8sr1UtPf-u9PbpNNF2R63UYrdsiKKXbJxhL04B4Z3M9hTudvtFe81E0AXreqmtZHDwE74PNh0yFeehDXeqMBu4y8WzzkWDikXW80wyoP3u6Tp37v8faOOmoFqjgPK2oMF0baOFAYQIEdSp4rA9FWBHOUK-ZrKROrfKlSy2IFGbcJZRBZJWQONi_5AWkVk8IcEk8oEGlk05ruhvlcKi0ibZVhaZ4am3bIxWKCs2mDoJFB5oHCyH4Ko0NuUAJf7yH2df1gMnvOnCllEIIKa-FiVoQa8ls8B8q0isNcSm54h5wshJM5gyyzb8kc_T18TNYZUvz6CWXBCWlVs7k5JWvqo3otZ2dOvz4BlpjdhA
  priority: 102
  providerName: ProQuest
Title Quantum-Enhanced Attention Neural Networks for PM2.5 Concentration Prediction
URI https://www.proquest.com/docview/3254606732
https://doaj.org/article/5659ff9ff2f94d54900622dc64baa3e3
Volume 6
WOSCitedRecordID wos001581593000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2673-3951
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794581
  issn: 2673-3951
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2673-3951
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794581
  issn: 2673-3951
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2673-3951
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794581
  issn: 2673-3951
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2673-3951
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794581
  issn: 2673-3951
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2673-3951
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794581
  issn: 2673-3951
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYYAB8RSFUmVgYTBN_Ejisa1awdAovKQyRY5jC5AIqE35_ZydFEUwsCBliKxESb6z4zvd3fchdBEVPKc0j7AhBcdMhgwLxnIsjAq0iFURGOPEJqIkiedzkbakvmxNWE0PXAM3AIdDGAMHMYIVEM3Yrj9SqJDlUlLteD79SLSCqVeXThOMx0Gdl6QQ1w-csIzt8A5hWvu2vrm1Dzm6_l9_Y7fFTPfQbuMbesP6nfbRhi4P0E6LMfAQzW5XAMXqDU_KZ5e794ZVVVcsepZnA25P6sLupQfuqJfOyBX3xrY3sWwIcr10YZMz9vQIPU4nD-Nr3CgiYEUpq7DWVGhpwkBZvweWj6S50uAkcfjEXBG_kDIyypcqNiRUEChrJgNulJA5LFVJj1GnfC_1CfKEAktwEzuVGuJTqQrBC6M0ifNYm7iLLtf4ZB818UUGAYPFMvuJZReNLIDf11nKajcAhswaQ2Z_GbKLemv4s2YdLTNq6fqtlg45_Y9nnKFtYvV7_QiToIc61WKlz9GW-qxelos-2hxNkvSu76ZS31aB3sNYejNLn74AY2fSpw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4F11oYAPcOBgmtjOwweESmnVVburIBWpnILjR-FAtt3NgvhT_EZm8igVSNx6QMohysOSM1_GM57HB_A8c0klZZXxIFzClUkV10pVXAcbe51bF4fQkk1ks1l-cqKLNfg51MJQWuWgE1tF7eaW9si3JTVuJ1YV8ebsnBNrFEVXBwqNDhaH_sd3dNmWryfvUL4vhNjfO9494D2rALdSqoZ7L7U3IY0t2Q4IQSMr69HQSND9r6yInDFZsJGxeRCpRWfTKxMnwWpTIdyNxHGvwbpCsEcjWC8m0-Ljxa6OQHgnedzFQyUOuN0S2lBleYq_U0R51ZfWv5Ym4K9VoF3a9u_8bx_lLtzujWi206H-Hqz5-j7cutRa8QFM368QM6uvfK_-3CY5sJ2m6VI7GTUkwddnXQb8kqHdzoqpeJWwXSrirPtOwqxYUBSLTh_ChyuZzwaM6nntN4Fpi5BNQt7S-YhIGut04oL1Iq9yH_IxvBwEWp51HUJK9KxI-OWfwh_DW5L4xXPU27u9MF-clr2qKNHE1iHgIYJWDv13qnMVzqaqMkZ6OYatAQxlr3CW5W8kPPr37Wdw4-B4elQeTWaHj-GmIDrjKOMi3oJRs1j5J3Ddfmu-LBdPe2wz-HTVyPkFrfU9YQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghA98EYsFPABDhzMJrbz8AGh0nZFVbpaBEi9pY4fwIFsu5sF8df66zrjJKUCiVsPSDlEeSmJP49n7G_mA3heuKyWsi54EC7jyuSKa6VqroNNvS6tS0OIYhPFdFoeHurZGpwOuTBEqxxsYjTUbm5pjnwsqXA7qaqIcehpEbOdyZvjE04KUrTSOshpdBDZ979-Yvi2fL23g239QojJ7qftd7xXGOBWStVy76X2JuSpJT8C4WhkbT06HZnUSW1F4owpgk2MLYPILQaeXpk0C1abGqFvJD73Clwt8M1UpA1-PJ_fEQj0rEy7lVGJjxtHaRvKMc-xYyXEsL4wEkbBgL_GgzjITW79z7_nNtzsXWu21fWFO7Dmm7uwcaHg4j04-LBCJK2-893ma6Q-sK227QifjMqU4O3Tjhe_ZOjNs9mBeJWxbUrtbPr6wmy2oLUt2r0Pny_lex7AejNv_ENg2iKQs1BGkR-RSGOdzlywXpR16UM5gpdD41bHXd2QCuMtAkL1JxBG8JZa__w6qvgdD8wXX6regFToeOsQcBNBK4dRPWW_CmdzVRsjvRzB5gCMqjdDy-o3Kh79-_QzuI5wqd7vTfcfww1BGsdJwUW6CevtYuWfwDX7o_22XDyNIGdwdNmwOQN1QkSx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum-Enhanced+Attention+Neural+Networks+for+PM2.5+Concentration+Prediction&rft.jtitle=Modelling&rft.au=Huang%2C+Tichen&rft.au=Jiang%2C+Yuyan&rft.au=Gan%2C+Rumeijiang&rft.au=Wang%2C+Fuyu&rft.date=2025-07-21&rft.issn=2673-3951&rft.eissn=2673-3951&rft.volume=6&rft.issue=3&rft.spage=69&rft_id=info:doi/10.3390%2Fmodelling6030069&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_modelling6030069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3951&client=summon