GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game
Due to its simplicity, versatility and the diversity of applications to which it can be applied, k-means is one of the well-known algorithms for clustering data. The foundation of this algorithm is based on the distance measure. However, the traditional k-means has some weaknesses that appear in som...
Saved in:
| Published in: | Knowledge-based systems Vol. 213; p. 106672 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
15.02.2021
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0950-7051, 1872-7409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to its simplicity, versatility and the diversity of applications to which it can be applied, k-means is one of the well-known algorithms for clustering data. The foundation of this algorithm is based on the distance measure. However, the traditional k-means has some weaknesses that appear in some data sets related to real applications, the most important of which is to consider only the distance criterion for clustering. Various studies have been conducted to address each of these weaknesses to achieve a balance between quality and efficiency. In this paper, a novel k-means variant of the original algorithm is proposed. This approach leverages the power of bargaining game modelling in the k-means algorithm for clustering data. In this novel setting, cluster centres compete with each other to attract the largest number of similar objectives or entities to their cluster. Thus, the centres keep changing their positions so that they have smaller distances with the maximum possible data than other cluster centres. We name this new algorithm the game-based k-means (GBK-means) algorithm. To show the superiority and efficiency of GBK-means over conventional clustering algorithms, namely, k-means and fuzzy k-means, we use the following syntactic and real-world data sets: (1) a series of two-dimensional syntactic data sets; and (2) ten benchmark data sets that are widely used in different clustering studies. The evaluation criteria show GBK-means is able to cluster data more accurately than classical algorithms based on eight evaluation metrics, namely F-measure, the Dunn index (DI), the rand index (RI), the Jaccard index (JI), normalized mutual information (NMI), normalized variation of information (NVI), the measure of concordance and error rate (ER). |
|---|---|
| AbstractList | Due to its simplicity, versatility and the diversity of applications to which it can be applied, k-means is one of the well-known algorithms for clustering data. The foundation of this algorithm is based on the distance measure. However, the traditional k-means has some weaknesses that appear in some data sets related to real applications, the most important of which is to consider only the distance criterion for clustering. Various studies have been conducted to address each of these weaknesses to achieve a balance between quality and efficiency. In this paper, a novel k-means variant of the original algorithm is proposed. This approach leverages the power of bargaining game modelling in the k-means algorithm for clustering data. In this novel setting, cluster centres compete with each other to attract the largest number of similar objectives or entities to their cluster. Thus, the centres keep changing their positions so that they have smaller distances with the maximum possible data than other cluster centres. We name this new algorithm the game-based k-means (GBK-means) algorithm. To show the superiority and efficiency of GBK-means over conventional clustering algorithms, namely, k-means and fuzzy k-means, we use the following syntactic and real-world data sets: (1) a series of two-dimensional syntactic data sets; and (2) ten benchmark data sets that are widely used in different clustering studies. The evaluation criteria show GBK-means is able to cluster data more accurately than classical algorithms based on eight evaluation metrics, namely F-measure, the Dunn index (DI), the rand index (RI), the Jaccard index (JI), normalized mutual information (NMI), normalized variation of information (NVI), the measure of concordance and error rate (ER). |
| ArticleNumber | 106672 |
| Author | Hussain, Omar Eshkevari, Milad Saberi, Morteza Jahangoshai Rezaee, Mustafa |
| Author_xml | – sequence: 1 givenname: Mustafa surname: Jahangoshai Rezaee fullname: Jahangoshai Rezaee, Mustafa organization: Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran – sequence: 2 givenname: Milad orcidid: 0000-0002-8622-6734 surname: Eshkevari fullname: Eshkevari, Milad organization: Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran – sequence: 3 givenname: Morteza surname: Saberi fullname: Saberi, Morteza email: morteza.saberi@uts.edu.au organization: School of Information, Systems and Modelling, University of Technology Sydney, Sydney, NSW, Australia – sequence: 4 givenname: Omar orcidid: 0000-0002-5738-6560 surname: Hussain fullname: Hussain, Omar organization: School of Business, University of New South Wales, Canberra, ACT, Australia |
| BookMark | eNqFkD9PwzAQxS1UJNrCN2CwxJxiO_-cDkilgoKoxAKz5SSX1KGxi-1W6rcnIcDAANPpzu_3zvcmaKSNBoQuKZlRQpPrZvamjTu6GSOsHyVJyk7QmPKUBWlEshEakywmQUpieoYmzjWEEMYoH6NydfsUtCC1w8V27zxYpWsst7Wxym_aOV5orNqdNQdoQXvsDfYbwN_MjxDn0kGJjf58zqWtpdK9VS1bOEenldw6uPiqU_R6f_eyfAjWz6vH5WIdFGEY-QAg5ByykIUsl7yMSMgIZzkB2g0p8DBmkEKaU8qqPK84pwR4QtOuy4o4jsMpuhp8u_--78F50Zi91d1KweLuYMYp71XzQVVY45yFShTKS6-M9laqraBE9KmKRgypij5VMaTawdEveGdVK-3xP-xmwKA7_6DAClco0AWUykLhRWnU3wYfy4iVZA |
| CitedBy_id | crossref_primary_10_1049_ccs2_12080 crossref_primary_10_1371_journal_pone_0326145 crossref_primary_10_1155_2022_7551035 crossref_primary_10_3390_su16031117 crossref_primary_10_1007_s42979_023_02344_5 crossref_primary_10_1109_TFUZZ_2024_3397808 crossref_primary_10_1007_s00477_021_02045_6 crossref_primary_10_1109_TPWRD_2024_3404567 crossref_primary_10_1155_2022_9143727 crossref_primary_10_1007_s40815_022_01358_0 crossref_primary_10_1080_13658816_2025_2478463 crossref_primary_10_1007_s40747_021_00312_1 crossref_primary_10_1155_2021_6847144 crossref_primary_10_3390_e23091217 crossref_primary_10_1145_3575866 crossref_primary_10_1155_2022_7272048 crossref_primary_10_3390_app15147723 crossref_primary_10_3390_app112311202 crossref_primary_10_1007_s10489_023_04580_x crossref_primary_10_1007_s12065_023_00864_w crossref_primary_10_1007_s40314_024_03004_x crossref_primary_10_1080_08839514_2021_1975393 crossref_primary_10_1016_j_jenvman_2023_118176 crossref_primary_10_32604_cmc_2022_023974 crossref_primary_10_1016_j_est_2023_107030 crossref_primary_10_1007_s12524_021_01460_0 crossref_primary_10_1142_S0129156424401153 crossref_primary_10_2478_amns_2024_0214 crossref_primary_10_1002_dac_5592 |
| Cites_doi | 10.1007/s00500-018-3540-z 10.1016/j.eswa.2020.113294 10.1016/j.neucom.2017.02.100 10.1016/j.knosys.2015.07.017 10.1016/j.energy.2011.12.030 10.1016/j.asoc.2016.10.001 10.1109/TII.2017.2684807 10.1016/j.patcog.2011.02.009 10.1016/j.ins.2013.05.029 10.1016/j.neucom.2019.11.058 10.1016/j.ins.2018.03.025 10.1016/j.knosys.2014.04.008 10.1016/j.knosys.2019.105018 10.1016/j.jclepro.2019.02.235 10.1016/j.asoc.2017.12.018 10.1016/j.ins.2019.07.099 10.1016/j.neucom.2018.02.072 10.1016/j.knosys.2017.11.017 10.1016/j.asoc.2015.12.001 10.1016/j.asoc.2016.01.034 10.1016/j.patcog.2016.03.008 10.1016/j.eswa.2018.12.027 10.1016/j.knosys.2020.105682 10.1016/j.knosys.2019.105330 10.1109/TKDE.2018.2807444 10.1007/s11222-017-9742-x 10.1016/j.knosys.2019.104905 10.1016/j.knosys.2020.105637 10.1016/j.patcog.2015.10.018 10.1109/TCYB.2017.2702343 10.1016/j.csda.2018.08.016 10.1016/j.neucom.2020.02.071 10.1049/trit.2018.0006 10.1016/j.eswa.2018.09.006 10.1016/j.asoc.2017.09.042 10.2307/1907266 10.1007/s11634-015-0219-5 10.1007/s00500-016-2435-0 10.1016/j.knosys.2018.09.013 10.1016/j.eswa.2016.12.011 10.1016/j.knosys.2011.06.012 10.1016/j.future.2018.04.045 10.1016/j.neucom.2018.12.093 10.1016/j.inffus.2020.03.009 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Feb 15, 2021 |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Feb 15, 2021 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2020.106672 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2020_106672 S0950705120308017 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-ee388e93232ba8d4032082b0e1e931e8352e7e7b112fbbf8810e86172fb9c5553 |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614644100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 18:41:32 EST 2025 Sat Nov 29 07:11:49 EST 2025 Tue Nov 18 21:22:38 EST 2025 Fri Feb 23 02:41:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Clustering improvement K-means algorithm Bargaining game Maximum data coverage Cluster centre competition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-ee388e93232ba8d4032082b0e1e931e8352e7e7b112fbbf8810e86172fb9c5553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8622-6734 0000-0002-5738-6560 |
| PQID | 2502228185 |
| PQPubID | 2035257 |
| ParticipantIDs | proquest_journals_2502228185 crossref_citationtrail_10_1016_j_knosys_2020_106672 crossref_primary_10_1016_j_knosys_2020_106672 elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106672 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-15 |
| PublicationDateYYYYMMDD | 2021-02-15 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Wei, Tang, McNicholas (b16) 2019; 130 Zhao, Deng, Ngo (b54) 2018; 291 Zheng, Qu, Qian, Cheng (b13) 2018; 141 Lin, Azarnoush, Runger (b33) 2018; 30 Liang, Yang, Li, Sun, Xie (b40) 2020 Bordogna, Pasi (b19) 2012; 26 Ma, Jiang, Gong (b9) 2018; 3 Wang, Deng, Choi, Jiang, Luo, Chung, Wang (b45) 2016; 52 Kumar, Reddy (b5) 2016; 58 Xu, Deng, Wang, Zhang, Choi, Wang (b49) 2019 Shi, Nie, Wang, Li (b38) 2020 Dua, Graff (b56) 2019 José-García, Gómez-Flores (b2) 2016; 41 Chen, Wang, Zheng, Cen (b35) 2020 Deng, Liu, Xu, Choi, Zhang, Tian, Zhang, Liang, Qin, Wang (b41) 2020 Spurek, Tabor, Byrski (b4) 2017; 72 Krishna, Krishna, Bindu (b11) 2019 Paul, Shill (b18) 2018; 448 Alguliyev, Aliguliyev, Sukhostat (b25) 2020; 150 Zhou, Wu, Luo, Abdel-Baset (b29) 2019; 163 Gan, Zhang, Dey (b3) 2016; 41 Zheng, Zhu, Tian, Li, Pang, Jia (b39) 2020 Zhao, Cao, Liang (b34) 2018; 335 Liu, Zhao, Yan, Elsayed, Sarker (b48) 2019; 505 Bai, Liang, Cao (b43) 2020 Li, Yang, Qin, Zhu (b32) 2019; 184 Tao, Gu, Wang, Jiang (b28) 2020; 393 Hussain, Haris (b14) 2019; 118 Bu (b27) 2018; 88 Melendez-Melendez, Cruz-Paz, Carrasco-Ochoa, Martínez-Trinidad (b12) 2019; 121 Rezaee, Moini, Makui (b52) 2012; 38 Zhang, Zhu, Yang, Chen, Zhao, Li (b26) 2017; 13 Nash (b51) 1950 Zhu, Xu, Goodman (b30) 2020; 188 Huang, Wang, Lai (b7) 2017; 48 Wu, Hu, Li, Lin, Su (b36) 2020 Wang, Wang, Chung, Deng (b44) 2013; 246 Dotto, Farcomeni, García-Escudero, Mayo-Iscar (b8) 2018; 28 Hu, Bodyanskiy, Tyshchenko, Boiko (b24) 2018; 68 Tortora, Summa, Marino, Palumbo (b15) 2016; 10 Gómez, Yáñez, Guada, Rodríguez, Montero, Zarrazola (b20) 2015; 87 Tsai, Lin (b42) 2011; 44 Al-Jabery, Obafemi-Ajayi, Olbricht, Wunsch (b55) 2019 Pimentel, de Carvalho (b31) 2020 Akbulut, Şengür, Guo, Polat (b23) 2017; 52 Huang, Yu, Gu (b10) 2018; 277 Flores-Vidal (b1) 2019; 23 Li, Deng, Wang, Feng, Fan (b21) 2014; 65 Guo, Liu, Wu, Hong, Zhang (b22) 2015; 14 Zhu, Pei, Liu, Zhou (b53) 2019; 223 Kordestani, Alkhateeb, Rezaeian, Rueda, Saif (b6) 2016 Liang, Pan, Lai, Yin (b37) 2020; 385 Zhi, Bi (b46) 2019 Chakraborty, Roy (b47) 2018; 64 Zhang, Chung, Wang (b50) 2020; 193 Ienco, Bordogna (b17) 2018; 22 Liu (10.1016/j.knosys.2020.106672_b48) 2019; 505 Wang (10.1016/j.knosys.2020.106672_b44) 2013; 246 José-García (10.1016/j.knosys.2020.106672_b2) 2016; 41 Gómez (10.1016/j.knosys.2020.106672_b20) 2015; 87 Lin (10.1016/j.knosys.2020.106672_b33) 2018; 30 Bu (10.1016/j.knosys.2020.106672_b27) 2018; 88 Li (10.1016/j.knosys.2020.106672_b32) 2019; 184 Zhu (10.1016/j.knosys.2020.106672_b30) 2020; 188 Chakraborty (10.1016/j.knosys.2020.106672_b47) 2018; 64 Krishna (10.1016/j.knosys.2020.106672_b11) 2019 Deng (10.1016/j.knosys.2020.106672_b41) 2020 Wei (10.1016/j.knosys.2020.106672_b16) 2019; 130 Hu (10.1016/j.knosys.2020.106672_b24) 2018; 68 Zhu (10.1016/j.knosys.2020.106672_b53) 2019; 223 Zhang (10.1016/j.knosys.2020.106672_b50) 2020; 193 Bordogna (10.1016/j.knosys.2020.106672_b19) 2012; 26 Alguliyev (10.1016/j.knosys.2020.106672_b25) 2020; 150 Shi (10.1016/j.knosys.2020.106672_b38) 2020 Xu (10.1016/j.knosys.2020.106672_b49) 2019 Melendez-Melendez (10.1016/j.knosys.2020.106672_b12) 2019; 121 Wang (10.1016/j.knosys.2020.106672_b45) 2016; 52 Kordestani (10.1016/j.knosys.2020.106672_b6) 2016 Tsai (10.1016/j.knosys.2020.106672_b42) 2011; 44 Liang (10.1016/j.knosys.2020.106672_b40) 2020 Zhang (10.1016/j.knosys.2020.106672_b26) 2017; 13 Zhao (10.1016/j.knosys.2020.106672_b34) 2018; 335 Huang (10.1016/j.knosys.2020.106672_b7) 2017; 48 Zheng (10.1016/j.knosys.2020.106672_b13) 2018; 141 Ma (10.1016/j.knosys.2020.106672_b9) 2018; 3 Li (10.1016/j.knosys.2020.106672_b21) 2014; 65 Tortora (10.1016/j.knosys.2020.106672_b15) 2016; 10 Nash (10.1016/j.knosys.2020.106672_b51) 1950 Zhao (10.1016/j.knosys.2020.106672_b54) 2018; 291 Huang (10.1016/j.knosys.2020.106672_b10) 2018; 277 Al-Jabery (10.1016/j.knosys.2020.106672_b55) 2019 Zhou (10.1016/j.knosys.2020.106672_b29) 2019; 163 Spurek (10.1016/j.knosys.2020.106672_b4) 2017; 72 Paul (10.1016/j.knosys.2020.106672_b18) 2018; 448 Bai (10.1016/j.knosys.2020.106672_b43) 2020 Zhi (10.1016/j.knosys.2020.106672_b46) 2019 Tao (10.1016/j.knosys.2020.106672_b28) 2020; 393 Akbulut (10.1016/j.knosys.2020.106672_b23) 2017; 52 Hussain (10.1016/j.knosys.2020.106672_b14) 2019; 118 Gan (10.1016/j.knosys.2020.106672_b3) 2016; 41 Guo (10.1016/j.knosys.2020.106672_b22) 2015; 14 Flores-Vidal (10.1016/j.knosys.2020.106672_b1) 2019; 23 Liang (10.1016/j.knosys.2020.106672_b37) 2020; 385 Ienco (10.1016/j.knosys.2020.106672_b17) 2018; 22 Kumar (10.1016/j.knosys.2020.106672_b5) 2016; 58 Chen (10.1016/j.knosys.2020.106672_b35) 2020 Zheng (10.1016/j.knosys.2020.106672_b39) 2020 Pimentel (10.1016/j.knosys.2020.106672_b31) 2020 Wu (10.1016/j.knosys.2020.106672_b36) 2020 Dotto (10.1016/j.knosys.2020.106672_b8) 2018; 28 Dua (10.1016/j.knosys.2020.106672_b56) 2019 Rezaee (10.1016/j.knosys.2020.106672_b52) 2012; 38 |
| References_xml | – year: 2020 ident: b43 article-title: A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters publication-title: Inf. Fusion – volume: 505 start-page: 440 year: 2019 end-page: 456 ident: b48 article-title: Transfer learning-assisted multi-objective evolutionary clustering framework with decomposition for high-dimensional data publication-title: Inform. Sci. – start-page: 1 year: 2016 end-page: 4 ident: b6 article-title: A new clustering method using wavelet based probability density functions for identifying patterns in time-series data publication-title: 2016 IEEE EMBS International Student Conference, ISC – volume: 23 start-page: 1809 year: 2019 end-page: 1821 ident: b1 article-title: A new edge detection method based on global evaluation using fuzzy clustering publication-title: Soft Comput. – volume: 393 start-page: 234 year: 2020 end-page: 244 ident: b28 article-title: An intelligent clustering algorithm for high-dimensional multi-view data in big data applications publication-title: Neurocomputing – year: 2020 ident: b36 article-title: Hierarchical multi-task learning with CRF for implicit discourse relation recognition publication-title: Knowl.-Based Syst. – volume: 52 start-page: 113 year: 2016 end-page: 134 ident: b45 article-title: Distance metric learning for soft subspace clustering in composite kernel space publication-title: Pattern Recognit. – volume: 130 start-page: 18 year: 2019 end-page: 41 ident: b16 article-title: Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data publication-title: Comput. Statist. Data Anal. – volume: 38 start-page: 96 year: 2012 end-page: 103 ident: b52 article-title: Operational and non-operational performance evaluation of thermal power plants in Iran: A game theory approach publication-title: Energy – year: 2020 ident: b31 article-title: A meta-learning approach for recommending the number of clusters for clustering algorithms publication-title: Knowl.-Based Syst. – volume: 22 start-page: 1719 year: 2018 end-page: 1730 ident: b17 article-title: Fuzzy extensions of the DBSCAN clustering algorithm publication-title: Soft Comput. – volume: 223 start-page: 869 year: 2019 end-page: 882 ident: b53 article-title: Analyzing commercial aircraft fuel consumption during descent: A case study using an improved K-means clustering algorithm publication-title: J. Cleaner Prod. – volume: 44 start-page: 1750 year: 2011 end-page: 1760 ident: b42 article-title: Fuzzy C-means based clustering for linearly and nonlinearly separable data publication-title: Pattern Recognit. – volume: 118 start-page: 20 year: 2019 end-page: 34 ident: b14 article-title: A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data publication-title: Expert Syst. Appl. – volume: 335 start-page: 264 year: 2018 end-page: 277 ident: b34 article-title: A sequential ensemble clusterings generation algorithm for mixed data publication-title: Appl. Math. Comput. – start-page: 155 year: 1950 end-page: 162 ident: b51 article-title: The bargaining problem publication-title: Econometrica – volume: 72 start-page: 49 year: 2017 end-page: 66 ident: b4 article-title: Active function cross-entropy clustering publication-title: Expert Syst. Appl. – year: 2019 ident: b55 article-title: Computational Learning Approaches to Data Analytics in Biomedical Applications – volume: 41 start-page: 192 year: 2016 end-page: 213 ident: b2 article-title: Automatic clustering using nature-inspired metaheuristics: A survey publication-title: Appl. Soft Comput. – volume: 48 start-page: 1460 year: 2017 end-page: 1473 ident: b7 article-title: Locally weighted ensemble clustering publication-title: IEEE Trans. Cybern. – year: 2020 ident: b35 article-title: Graph-regularized least squares regression for multi-view subspace clustering publication-title: Knowl.-Based Syst. – volume: 26 start-page: 9 year: 2012 end-page: 19 ident: b19 article-title: A quality driven hierarchical data divisive soft clustering for information retrieval publication-title: Knowl.-Based Syst. – start-page: 39 year: 2019 end-page: 46 ident: b11 article-title: Hybridizing spectral clustering with shadow clustering publication-title: Soft Computing and Medical Bioinformatics – volume: 68 start-page: 710 year: 2018 end-page: 718 ident: b24 article-title: A neuro-fuzzy Kohonen network for data stream possibilistic clustering and its online self-learning procedure publication-title: Appl. Soft Comput. – volume: 141 start-page: 200 year: 2018 end-page: 210 ident: b13 article-title: A hierarchical co-clustering approach for entity exploration over linked data publication-title: Knowl.-Based Syst. – volume: 448 start-page: 112 year: 2018 end-page: 133 ident: b18 article-title: New automatic fuzzy relational clustering algorithms using multi-objective NSGA-II publication-title: Inform. Sci. – volume: 13 start-page: 1193 year: 2017 end-page: 1201 ident: b26 article-title: An incremental CFS algorithm for clustering large data in industrial Internet of Things publication-title: IEEE Trans. Ind. Inf. – year: 2020 ident: b41 article-title: Multi-view clustering with the cooperation of visible and hidden views publication-title: IEEE Trans. Knowl. Data Eng. – year: 2019 ident: b49 article-title: Transfer representation learning with TSK fuzzy system publication-title: IEEE Trans. Fuzzy Syst. – volume: 52 start-page: 714 year: 2017 end-page: 724 ident: b23 article-title: KNCM: Kernel neutrosophic c-means clustering publication-title: Appl. Soft Comput. – volume: 14 start-page: 369 year: 2015 end-page: 381 ident: b22 article-title: A new spatial fuzzy C-means for spatial clustering publication-title: WSEAS Trans. Comput. – volume: 163 start-page: 546 year: 2019 end-page: 557 ident: b29 article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm publication-title: Knowl.-Based Syst. – volume: 193 year: 2020 ident: b50 article-title: Clustering by transmission learning from data density to label manifold with statistical diffusion publication-title: Knowl.-Based Syst. – volume: 41 start-page: 390 year: 2016 end-page: 399 ident: b3 article-title: Clustering by propagating probabilities between data points publication-title: Appl. Soft Comput. – volume: 184 year: 2019 ident: b32 article-title: Local gap density for clustering high-dimensional data with varying densities publication-title: Knowl.-Based Syst. – year: 2020 ident: b40 article-title: Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints publication-title: Knowl.-Based Syst. – start-page: 105 year: 2019 end-page: 112 ident: b46 article-title: Minkowski metric based soft subspace clustering with different Minkowski exponent and feature weight exponent publication-title: The International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery – volume: 10 start-page: 441 year: 2016 end-page: 464 ident: b15 article-title: Factor probabilistic distance clustering (FPDC): A new clustering method publication-title: Adv. Data Anal. Classif. – volume: 188 year: 2020 ident: b30 article-title: Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy publication-title: Knowl.-Based Syst. – year: 2020 ident: b39 article-title: Constrained bilinear factorization multi-view subspace clustering publication-title: Knowl.-Based Syst. – year: 2020 ident: b38 article-title: Auto-weighted multi-view clustering via spectral embedding publication-title: Neurocomputing – volume: 58 start-page: 39 year: 2016 end-page: 48 ident: b5 article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method publication-title: Pattern Recognit. – volume: 88 start-page: 675 year: 2018 end-page: 682 ident: b27 article-title: An efficient fuzzy C-means approach based on canonical polyadic decomposition for clustering big data in IoT publication-title: Future Gener. Comput. Syst. – volume: 64 start-page: 508 year: 2018 end-page: 525 ident: b47 article-title: A neural approach under transfer learning for domain adaptation in land-cover classification using two-level cluster mapping publication-title: Appl. Soft Comput. – volume: 277 start-page: 108 year: 2018 end-page: 119 ident: b10 article-title: A clustering method based on extreme learning machine publication-title: Neurocomputing – volume: 65 start-page: 60 year: 2014 end-page: 71 ident: b21 article-title: Hierarchical clustering algorithm for categorical data using a probabilistic rough set model publication-title: Knowl.-Based Syst. – volume: 28 start-page: 477 year: 2018 end-page: 493 ident: b8 article-title: A reweighting approach to robust clustering publication-title: Statist. Comput. – volume: 3 start-page: 59 year: 2018 end-page: 64 ident: b9 article-title: Two-phase clustering algorithm with density exploring distance measure publication-title: CAAI Trans. Intell. Technol. – volume: 87 start-page: 26 year: 2015 end-page: 37 ident: b20 article-title: Fuzzy image segmentation based upon hierarchical clustering publication-title: Knowl.-Based Syst. – volume: 291 start-page: 195 year: 2018 end-page: 206 ident: b54 article-title: K-means: A revisit publication-title: Neurocomputing – volume: 150 year: 2020 ident: b25 article-title: Weighted consensus clustering and its application to Big data publication-title: Expert Syst. Appl. – volume: 121 start-page: 282 year: 2019 end-page: 291 ident: b12 article-title: An improved algorithm for partial clustering publication-title: Expert Syst. Appl. – volume: 246 start-page: 133 year: 2013 end-page: 154 ident: b44 article-title: Fuzzy partition based soft subspace clustering and its applications in high dimensional data publication-title: Inform. Sci. – year: 2019 ident: b56 article-title: UCI Machine Learning Repository – volume: 385 start-page: 220 year: 2020 end-page: 230 ident: b37 article-title: Robust multi-view clustering via inter-and-intra-view low rank fusion publication-title: Neurocomputing – volume: 30 start-page: 1686 year: 2018 end-page: 1696 ident: b33 article-title: Crafter: A tree-ensemble clustering algorithm for static datasets with mixed attributes and high dimensionality publication-title: IEEE Trans. Knowl. Data Eng. – volume: 23 start-page: 1809 issue: 6 year: 2019 ident: 10.1016/j.knosys.2020.106672_b1 article-title: A new edge detection method based on global evaluation using fuzzy clustering publication-title: Soft Comput. doi: 10.1007/s00500-018-3540-z – volume: 150 year: 2020 ident: 10.1016/j.knosys.2020.106672_b25 article-title: Weighted consensus clustering and its application to Big data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113294 – year: 2019 ident: 10.1016/j.knosys.2020.106672_b55 – volume: 277 start-page: 108 year: 2018 ident: 10.1016/j.knosys.2020.106672_b10 article-title: A clustering method based on extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.100 – year: 2020 ident: 10.1016/j.knosys.2020.106672_b41 article-title: Multi-view clustering with the cooperation of visible and hidden views publication-title: IEEE Trans. Knowl. Data Eng. – volume: 87 start-page: 26 year: 2015 ident: 10.1016/j.knosys.2020.106672_b20 article-title: Fuzzy image segmentation based upon hierarchical clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.017 – volume: 38 start-page: 96 issue: 1 year: 2012 ident: 10.1016/j.knosys.2020.106672_b52 article-title: Operational and non-operational performance evaluation of thermal power plants in Iran: A game theory approach publication-title: Energy doi: 10.1016/j.energy.2011.12.030 – volume: 52 start-page: 714 year: 2017 ident: 10.1016/j.knosys.2020.106672_b23 article-title: KNCM: Kernel neutrosophic c-means clustering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.10.001 – volume: 13 start-page: 1193 issue: 3 year: 2017 ident: 10.1016/j.knosys.2020.106672_b26 article-title: An incremental CFS algorithm for clustering large data in industrial Internet of Things publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2684807 – volume: 44 start-page: 1750 issue: 8 year: 2011 ident: 10.1016/j.knosys.2020.106672_b42 article-title: Fuzzy C-means based clustering for linearly and nonlinearly separable data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.02.009 – start-page: 39 year: 2019 ident: 10.1016/j.knosys.2020.106672_b11 article-title: Hybridizing spectral clustering with shadow clustering – volume: 246 start-page: 133 year: 2013 ident: 10.1016/j.knosys.2020.106672_b44 article-title: Fuzzy partition based soft subspace clustering and its applications in high dimensional data publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.05.029 – year: 2020 ident: 10.1016/j.knosys.2020.106672_b39 article-title: Constrained bilinear factorization multi-view subspace clustering publication-title: Knowl.-Based Syst. – year: 2020 ident: 10.1016/j.knosys.2020.106672_b40 article-title: Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints publication-title: Knowl.-Based Syst. – volume: 385 start-page: 220 year: 2020 ident: 10.1016/j.knosys.2020.106672_b37 article-title: Robust multi-view clustering via inter-and-intra-view low rank fusion publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.058 – volume: 448 start-page: 112 year: 2018 ident: 10.1016/j.knosys.2020.106672_b18 article-title: New automatic fuzzy relational clustering algorithms using multi-objective NSGA-II publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.03.025 – year: 2019 ident: 10.1016/j.knosys.2020.106672_b56 – volume: 65 start-page: 60 year: 2014 ident: 10.1016/j.knosys.2020.106672_b21 article-title: Hierarchical clustering algorithm for categorical data using a probabilistic rough set model publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.04.008 – volume: 188 year: 2020 ident: 10.1016/j.knosys.2020.106672_b30 article-title: Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105018 – volume: 223 start-page: 869 year: 2019 ident: 10.1016/j.knosys.2020.106672_b53 article-title: Analyzing commercial aircraft fuel consumption during descent: A case study using an improved K-means clustering algorithm publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.02.235 – year: 2019 ident: 10.1016/j.knosys.2020.106672_b49 article-title: Transfer representation learning with TSK fuzzy system publication-title: IEEE Trans. Fuzzy Syst. – volume: 64 start-page: 508 year: 2018 ident: 10.1016/j.knosys.2020.106672_b47 article-title: A neural approach under transfer learning for domain adaptation in land-cover classification using two-level cluster mapping publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.018 – volume: 505 start-page: 440 year: 2019 ident: 10.1016/j.knosys.2020.106672_b48 article-title: Transfer learning-assisted multi-objective evolutionary clustering framework with decomposition for high-dimensional data publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.07.099 – volume: 291 start-page: 195 year: 2018 ident: 10.1016/j.knosys.2020.106672_b54 article-title: K-means: A revisit publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.072 – start-page: 1 year: 2016 ident: 10.1016/j.knosys.2020.106672_b6 article-title: A new clustering method using wavelet based probability density functions for identifying patterns in time-series data – volume: 141 start-page: 200 year: 2018 ident: 10.1016/j.knosys.2020.106672_b13 article-title: A hierarchical co-clustering approach for entity exploration over linked data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.11.017 – volume: 41 start-page: 192 year: 2016 ident: 10.1016/j.knosys.2020.106672_b2 article-title: Automatic clustering using nature-inspired metaheuristics: A survey publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.001 – volume: 41 start-page: 390 year: 2016 ident: 10.1016/j.knosys.2020.106672_b3 article-title: Clustering by propagating probabilities between data points publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.01.034 – start-page: 105 year: 2019 ident: 10.1016/j.knosys.2020.106672_b46 article-title: Minkowski metric based soft subspace clustering with different Minkowski exponent and feature weight exponent – volume: 58 start-page: 39 year: 2016 ident: 10.1016/j.knosys.2020.106672_b5 article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.03.008 – volume: 121 start-page: 282 year: 2019 ident: 10.1016/j.knosys.2020.106672_b12 article-title: An improved algorithm for partial clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.027 – year: 2020 ident: 10.1016/j.knosys.2020.106672_b35 article-title: Graph-regularized least squares regression for multi-view subspace clustering publication-title: Knowl.-Based Syst. – year: 2020 ident: 10.1016/j.knosys.2020.106672_b31 article-title: A meta-learning approach for recommending the number of clusters for clustering algorithms publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105682 – volume: 193 year: 2020 ident: 10.1016/j.knosys.2020.106672_b50 article-title: Clustering by transmission learning from data density to label manifold with statistical diffusion publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105330 – volume: 30 start-page: 1686 issue: 9 year: 2018 ident: 10.1016/j.knosys.2020.106672_b33 article-title: Crafter: A tree-ensemble clustering algorithm for static datasets with mixed attributes and high dimensionality publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2807444 – volume: 28 start-page: 477 issue: 2 year: 2018 ident: 10.1016/j.knosys.2020.106672_b8 article-title: A reweighting approach to robust clustering publication-title: Statist. Comput. doi: 10.1007/s11222-017-9742-x – volume: 184 year: 2019 ident: 10.1016/j.knosys.2020.106672_b32 article-title: Local gap density for clustering high-dimensional data with varying densities publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.104905 – year: 2020 ident: 10.1016/j.knosys.2020.106672_b36 article-title: Hierarchical multi-task learning with CRF for implicit discourse relation recognition publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105637 – volume: 52 start-page: 113 year: 2016 ident: 10.1016/j.knosys.2020.106672_b45 article-title: Distance metric learning for soft subspace clustering in composite kernel space publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.10.018 – volume: 48 start-page: 1460 issue: 5 year: 2017 ident: 10.1016/j.knosys.2020.106672_b7 article-title: Locally weighted ensemble clustering publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2702343 – volume: 335 start-page: 264 year: 2018 ident: 10.1016/j.knosys.2020.106672_b34 article-title: A sequential ensemble clusterings generation algorithm for mixed data publication-title: Appl. Math. Comput. – volume: 130 start-page: 18 year: 2019 ident: 10.1016/j.knosys.2020.106672_b16 article-title: Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2018.08.016 – volume: 14 start-page: 369 year: 2015 ident: 10.1016/j.knosys.2020.106672_b22 article-title: A new spatial fuzzy C-means for spatial clustering publication-title: WSEAS Trans. Comput. – year: 2020 ident: 10.1016/j.knosys.2020.106672_b38 article-title: Auto-weighted multi-view clustering via spectral embedding publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.071 – volume: 3 start-page: 59 issue: 1 year: 2018 ident: 10.1016/j.knosys.2020.106672_b9 article-title: Two-phase clustering algorithm with density exploring distance measure publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2018.0006 – volume: 118 start-page: 20 year: 2019 ident: 10.1016/j.knosys.2020.106672_b14 article-title: A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.006 – volume: 68 start-page: 710 year: 2018 ident: 10.1016/j.knosys.2020.106672_b24 article-title: A neuro-fuzzy Kohonen network for data stream possibilistic clustering and its online self-learning procedure publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.042 – start-page: 155 year: 1950 ident: 10.1016/j.knosys.2020.106672_b51 article-title: The bargaining problem publication-title: Econometrica doi: 10.2307/1907266 – volume: 10 start-page: 441 issue: 4 year: 2016 ident: 10.1016/j.knosys.2020.106672_b15 article-title: Factor probabilistic distance clustering (FPDC): A new clustering method publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-015-0219-5 – volume: 22 start-page: 1719 issue: 5 year: 2018 ident: 10.1016/j.knosys.2020.106672_b17 article-title: Fuzzy extensions of the DBSCAN clustering algorithm publication-title: Soft Comput. doi: 10.1007/s00500-016-2435-0 – volume: 163 start-page: 546 year: 2019 ident: 10.1016/j.knosys.2020.106672_b29 article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.09.013 – volume: 72 start-page: 49 year: 2017 ident: 10.1016/j.knosys.2020.106672_b4 article-title: Active function cross-entropy clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.12.011 – volume: 26 start-page: 9 year: 2012 ident: 10.1016/j.knosys.2020.106672_b19 article-title: A quality driven hierarchical data divisive soft clustering for information retrieval publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.06.012 – volume: 88 start-page: 675 year: 2018 ident: 10.1016/j.knosys.2020.106672_b27 article-title: An efficient fuzzy C-means approach based on canonical polyadic decomposition for clustering big data in IoT publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.04.045 – volume: 393 start-page: 234 year: 2020 ident: 10.1016/j.knosys.2020.106672_b28 article-title: An intelligent clustering algorithm for high-dimensional multi-view data in big data applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.093 – year: 2020 ident: 10.1016/j.knosys.2020.106672_b43 article-title: A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.03.009 |
| SSID | ssj0002218 |
| Score | 2.574185 |
| Snippet | Due to its simplicity, versatility and the diversity of applications to which it can be applied, k-means is one of the well-known algorithms for clustering... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106672 |
| SubjectTerms | Algorithms Bargaining Bargaining game Cluster centre competition Clustering Clustering improvement Criteria Data Datasets Distance measurement Error analysis Evaluation Games Indexes K-means algorithm Maximum data coverage Novels Simplicity Syntax |
| Title | GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game |
| URI | https://dx.doi.org/10.1016/j.knosys.2020.106672 https://www.proquest.com/docview/2502228185 |
| Volume | 213 |
| WOSCitedRecordID | wos000614644100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaElgMX3kwLhdGB4ZJRx7bsSOYWmBToI-WQzuTmkWw5cUnsEKedTv8Uf5GVJTkpr8KBiyeRrMTZ3Wg_fdLuIvQ6zgI_Z6EkaS-MYIES5oRz2iM0y3wqMp95Mm-KTbDhkI_H8edO55uLhbmcsbLkV1fx4r-qGtpA2Tp09h_U3X4oNMBrUDpcQe1w_SvFf3h3ROYKPFA3nV3oNAhNGOJsUi2L1XRuicCi4RIaatChTzeqvbWrPVxmdxPgzXJiqkl0J-JmhoMjx8sRM6LeyIKu93LUtTDHfU50tFYuuodC09RVPRVFi-jrKfxSYeLeT4qZyFruR0gbDt8cDL4Wa0usa2FSIJzOxXKTvwh8feTZRHAaUs0F1ri5bH2aybCUHmGezUmrzBzNGSwKQi_enMQDn25Mw_4vnYPhKc73v5QVCGIfHkY39nqmdtDNXNzD0-Tg7Pg4GQ3GozeLr0SXKdPb-bZmyx20HbAoBk-w3f80GB-2zj8IGkq5fW4XrdkcKfz5i3-Hhn7ABQ3YGT1E9-0qBfeNdT1CHVU-Rg9cBRBshfgEZa2x4bWx4daC3uJ-iTdMDa8qDLaE3Zj2RtwYDq7Kpnttalib2lN0djAYvf9IbN0OklIarohSlHMFCwMaSMGz0KMBAE3pKR8afaUxv2KKSYD6uZQ5576nuEbSuYzTKIroM7RVVqXaQThIe2kMzjwNVRxm0pdcSJAx5SLK05ipXUSd_JLUJrXXtVVmiTu9eJ4YqSda6omR-i4i7aiFSepyy_3MqSaxwNQAzgRM65aRe06TiZ0joD_SLItGys__3P0C3Vv_Y_bQ1mp5oV6iu-nlqqiXr6zpfQe-_LpT |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GBK-means+clustering+algorithm%3A+An+improvement+to+the+K-means+algorithm+based+on+the+bargaining+game&rft.jtitle=Knowledge-based+systems&rft.au=Rezaee%2C+Mustafa+Jahangoshai&rft.au=Eshkevari%2C+Milad&rft.au=Saberi%2C+Morteza&rft.au=Hussain%2C+Omar&rft.date=2021-02-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=213&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2020.106672&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |