GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game

Due to its simplicity, versatility and the diversity of applications to which it can be applied, k-means is one of the well-known algorithms for clustering data. The foundation of this algorithm is based on the distance measure. However, the traditional k-means has some weaknesses that appear in som...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 213; S. 106672
Hauptverfasser: Jahangoshai Rezaee, Mustafa, Eshkevari, Milad, Saberi, Morteza, Hussain, Omar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 15.02.2021
Elsevier Science Ltd
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Due to its simplicity, versatility and the diversity of applications to which it can be applied, k-means is one of the well-known algorithms for clustering data. The foundation of this algorithm is based on the distance measure. However, the traditional k-means has some weaknesses that appear in some data sets related to real applications, the most important of which is to consider only the distance criterion for clustering. Various studies have been conducted to address each of these weaknesses to achieve a balance between quality and efficiency. In this paper, a novel k-means variant of the original algorithm is proposed. This approach leverages the power of bargaining game modelling in the k-means algorithm for clustering data. In this novel setting, cluster centres compete with each other to attract the largest number of similar objectives or entities to their cluster. Thus, the centres keep changing their positions so that they have smaller distances with the maximum possible data than other cluster centres. We name this new algorithm the game-based k-means (GBK-means) algorithm. To show the superiority and efficiency of GBK-means over conventional clustering algorithms, namely, k-means and fuzzy k-means, we use the following syntactic and real-world data sets: (1) a series of two-dimensional syntactic data sets; and (2) ten benchmark data sets that are widely used in different clustering studies. The evaluation criteria show GBK-means is able to cluster data more accurately than classical algorithms based on eight evaluation metrics, namely F-measure, the Dunn index (DI), the rand index (RI), the Jaccard index (JI), normalized mutual information (NMI), normalized variation of information (NVI), the measure of concordance and error rate (ER).
AbstractList Due to its simplicity, versatility and the diversity of applications to which it can be applied, k-means is one of the well-known algorithms for clustering data. The foundation of this algorithm is based on the distance measure. However, the traditional k-means has some weaknesses that appear in some data sets related to real applications, the most important of which is to consider only the distance criterion for clustering. Various studies have been conducted to address each of these weaknesses to achieve a balance between quality and efficiency. In this paper, a novel k-means variant of the original algorithm is proposed. This approach leverages the power of bargaining game modelling in the k-means algorithm for clustering data. In this novel setting, cluster centres compete with each other to attract the largest number of similar objectives or entities to their cluster. Thus, the centres keep changing their positions so that they have smaller distances with the maximum possible data than other cluster centres. We name this new algorithm the game-based k-means (GBK-means) algorithm. To show the superiority and efficiency of GBK-means over conventional clustering algorithms, namely, k-means and fuzzy k-means, we use the following syntactic and real-world data sets: (1) a series of two-dimensional syntactic data sets; and (2) ten benchmark data sets that are widely used in different clustering studies. The evaluation criteria show GBK-means is able to cluster data more accurately than classical algorithms based on eight evaluation metrics, namely F-measure, the Dunn index (DI), the rand index (RI), the Jaccard index (JI), normalized mutual information (NMI), normalized variation of information (NVI), the measure of concordance and error rate (ER).
ArticleNumber 106672
Author Hussain, Omar
Eshkevari, Milad
Saberi, Morteza
Jahangoshai Rezaee, Mustafa
Author_xml – sequence: 1
  givenname: Mustafa
  surname: Jahangoshai Rezaee
  fullname: Jahangoshai Rezaee, Mustafa
  organization: Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran
– sequence: 2
  givenname: Milad
  orcidid: 0000-0002-8622-6734
  surname: Eshkevari
  fullname: Eshkevari, Milad
  organization: Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran
– sequence: 3
  givenname: Morteza
  surname: Saberi
  fullname: Saberi, Morteza
  email: morteza.saberi@uts.edu.au
  organization: School of Information, Systems and Modelling, University of Technology Sydney, Sydney, NSW, Australia
– sequence: 4
  givenname: Omar
  orcidid: 0000-0002-5738-6560
  surname: Hussain
  fullname: Hussain, Omar
  organization: School of Business, University of New South Wales, Canberra, ACT, Australia
BookMark eNqFkD9PwzAQxS1UJNrCN2CwxJxiO_-cDkilgoKoxAKz5SSX1KGxi-1W6rcnIcDAANPpzu_3zvcmaKSNBoQuKZlRQpPrZvamjTu6GSOsHyVJyk7QmPKUBWlEshEakywmQUpieoYmzjWEEMYoH6NydfsUtCC1w8V27zxYpWsst7Wxym_aOV5orNqdNQdoQXvsDfYbwN_MjxDn0kGJjf58zqWtpdK9VS1bOEenldw6uPiqU_R6f_eyfAjWz6vH5WIdFGEY-QAg5ByykIUsl7yMSMgIZzkB2g0p8DBmkEKaU8qqPK84pwR4QtOuy4o4jsMpuhp8u_--78F50Zi91d1KweLuYMYp71XzQVVY45yFShTKS6-M9laqraBE9KmKRgypij5VMaTawdEveGdVK-3xP-xmwKA7_6DAClco0AWUykLhRWnU3wYfy4iVZA
CitedBy_id crossref_primary_10_1049_ccs2_12080
crossref_primary_10_1371_journal_pone_0326145
crossref_primary_10_1155_2022_7551035
crossref_primary_10_3390_su16031117
crossref_primary_10_1007_s42979_023_02344_5
crossref_primary_10_1109_TFUZZ_2024_3397808
crossref_primary_10_1007_s00477_021_02045_6
crossref_primary_10_1109_TPWRD_2024_3404567
crossref_primary_10_1155_2022_9143727
crossref_primary_10_1007_s40815_022_01358_0
crossref_primary_10_1080_13658816_2025_2478463
crossref_primary_10_1007_s40747_021_00312_1
crossref_primary_10_1155_2021_6847144
crossref_primary_10_3390_e23091217
crossref_primary_10_1145_3575866
crossref_primary_10_1155_2022_7272048
crossref_primary_10_3390_app15147723
crossref_primary_10_3390_app112311202
crossref_primary_10_1007_s10489_023_04580_x
crossref_primary_10_1007_s12065_023_00864_w
crossref_primary_10_1007_s40314_024_03004_x
crossref_primary_10_1080_08839514_2021_1975393
crossref_primary_10_1016_j_jenvman_2023_118176
crossref_primary_10_32604_cmc_2022_023974
crossref_primary_10_1016_j_est_2023_107030
crossref_primary_10_1007_s12524_021_01460_0
crossref_primary_10_1142_S0129156424401153
crossref_primary_10_2478_amns_2024_0214
crossref_primary_10_1002_dac_5592
Cites_doi 10.1007/s00500-018-3540-z
10.1016/j.eswa.2020.113294
10.1016/j.neucom.2017.02.100
10.1016/j.knosys.2015.07.017
10.1016/j.energy.2011.12.030
10.1016/j.asoc.2016.10.001
10.1109/TII.2017.2684807
10.1016/j.patcog.2011.02.009
10.1016/j.ins.2013.05.029
10.1016/j.neucom.2019.11.058
10.1016/j.ins.2018.03.025
10.1016/j.knosys.2014.04.008
10.1016/j.knosys.2019.105018
10.1016/j.jclepro.2019.02.235
10.1016/j.asoc.2017.12.018
10.1016/j.ins.2019.07.099
10.1016/j.neucom.2018.02.072
10.1016/j.knosys.2017.11.017
10.1016/j.asoc.2015.12.001
10.1016/j.asoc.2016.01.034
10.1016/j.patcog.2016.03.008
10.1016/j.eswa.2018.12.027
10.1016/j.knosys.2020.105682
10.1016/j.knosys.2019.105330
10.1109/TKDE.2018.2807444
10.1007/s11222-017-9742-x
10.1016/j.knosys.2019.104905
10.1016/j.knosys.2020.105637
10.1016/j.patcog.2015.10.018
10.1109/TCYB.2017.2702343
10.1016/j.csda.2018.08.016
10.1016/j.neucom.2020.02.071
10.1049/trit.2018.0006
10.1016/j.eswa.2018.09.006
10.1016/j.asoc.2017.09.042
10.2307/1907266
10.1007/s11634-015-0219-5
10.1007/s00500-016-2435-0
10.1016/j.knosys.2018.09.013
10.1016/j.eswa.2016.12.011
10.1016/j.knosys.2011.06.012
10.1016/j.future.2018.04.045
10.1016/j.neucom.2018.12.093
10.1016/j.inffus.2020.03.009
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Feb 15, 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Feb 15, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2020.106672
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2020_106672
S0950705120308017
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-ee388e93232ba8d4032082b0e1e931e8352e7e7b112fbbf8810e86172fb9c5553
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614644100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:41:32 EST 2025
Sat Nov 29 07:11:49 EST 2025
Tue Nov 18 21:22:38 EST 2025
Fri Feb 23 02:41:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Clustering improvement
K-means algorithm
Bargaining game
Maximum data coverage
Cluster centre competition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-ee388e93232ba8d4032082b0e1e931e8352e7e7b112fbbf8810e86172fb9c5553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8622-6734
0000-0002-5738-6560
PQID 2502228185
PQPubID 2035257
ParticipantIDs proquest_journals_2502228185
crossref_citationtrail_10_1016_j_knosys_2020_106672
crossref_primary_10_1016_j_knosys_2020_106672
elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106672
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Wei, Tang, McNicholas (b16) 2019; 130
Zhao, Deng, Ngo (b54) 2018; 291
Zheng, Qu, Qian, Cheng (b13) 2018; 141
Lin, Azarnoush, Runger (b33) 2018; 30
Liang, Yang, Li, Sun, Xie (b40) 2020
Bordogna, Pasi (b19) 2012; 26
Ma, Jiang, Gong (b9) 2018; 3
Wang, Deng, Choi, Jiang, Luo, Chung, Wang (b45) 2016; 52
Kumar, Reddy (b5) 2016; 58
Xu, Deng, Wang, Zhang, Choi, Wang (b49) 2019
Shi, Nie, Wang, Li (b38) 2020
Dua, Graff (b56) 2019
José-García, Gómez-Flores (b2) 2016; 41
Chen, Wang, Zheng, Cen (b35) 2020
Deng, Liu, Xu, Choi, Zhang, Tian, Zhang, Liang, Qin, Wang (b41) 2020
Spurek, Tabor, Byrski (b4) 2017; 72
Krishna, Krishna, Bindu (b11) 2019
Paul, Shill (b18) 2018; 448
Alguliyev, Aliguliyev, Sukhostat (b25) 2020; 150
Zhou, Wu, Luo, Abdel-Baset (b29) 2019; 163
Gan, Zhang, Dey (b3) 2016; 41
Zheng, Zhu, Tian, Li, Pang, Jia (b39) 2020
Zhao, Cao, Liang (b34) 2018; 335
Liu, Zhao, Yan, Elsayed, Sarker (b48) 2019; 505
Bai, Liang, Cao (b43) 2020
Li, Yang, Qin, Zhu (b32) 2019; 184
Tao, Gu, Wang, Jiang (b28) 2020; 393
Hussain, Haris (b14) 2019; 118
Bu (b27) 2018; 88
Melendez-Melendez, Cruz-Paz, Carrasco-Ochoa, Martínez-Trinidad (b12) 2019; 121
Rezaee, Moini, Makui (b52) 2012; 38
Zhang, Zhu, Yang, Chen, Zhao, Li (b26) 2017; 13
Nash (b51) 1950
Zhu, Xu, Goodman (b30) 2020; 188
Huang, Wang, Lai (b7) 2017; 48
Wu, Hu, Li, Lin, Su (b36) 2020
Wang, Wang, Chung, Deng (b44) 2013; 246
Dotto, Farcomeni, García-Escudero, Mayo-Iscar (b8) 2018; 28
Hu, Bodyanskiy, Tyshchenko, Boiko (b24) 2018; 68
Tortora, Summa, Marino, Palumbo (b15) 2016; 10
Gómez, Yáñez, Guada, Rodríguez, Montero, Zarrazola (b20) 2015; 87
Tsai, Lin (b42) 2011; 44
Al-Jabery, Obafemi-Ajayi, Olbricht, Wunsch (b55) 2019
Pimentel, de Carvalho (b31) 2020
Akbulut, Şengür, Guo, Polat (b23) 2017; 52
Huang, Yu, Gu (b10) 2018; 277
Flores-Vidal (b1) 2019; 23
Li, Deng, Wang, Feng, Fan (b21) 2014; 65
Guo, Liu, Wu, Hong, Zhang (b22) 2015; 14
Zhu, Pei, Liu, Zhou (b53) 2019; 223
Kordestani, Alkhateeb, Rezaeian, Rueda, Saif (b6) 2016
Liang, Pan, Lai, Yin (b37) 2020; 385
Zhi, Bi (b46) 2019
Chakraborty, Roy (b47) 2018; 64
Zhang, Chung, Wang (b50) 2020; 193
Ienco, Bordogna (b17) 2018; 22
Liu (10.1016/j.knosys.2020.106672_b48) 2019; 505
Wang (10.1016/j.knosys.2020.106672_b44) 2013; 246
José-García (10.1016/j.knosys.2020.106672_b2) 2016; 41
Gómez (10.1016/j.knosys.2020.106672_b20) 2015; 87
Lin (10.1016/j.knosys.2020.106672_b33) 2018; 30
Bu (10.1016/j.knosys.2020.106672_b27) 2018; 88
Li (10.1016/j.knosys.2020.106672_b32) 2019; 184
Zhu (10.1016/j.knosys.2020.106672_b30) 2020; 188
Chakraborty (10.1016/j.knosys.2020.106672_b47) 2018; 64
Krishna (10.1016/j.knosys.2020.106672_b11) 2019
Deng (10.1016/j.knosys.2020.106672_b41) 2020
Wei (10.1016/j.knosys.2020.106672_b16) 2019; 130
Hu (10.1016/j.knosys.2020.106672_b24) 2018; 68
Zhu (10.1016/j.knosys.2020.106672_b53) 2019; 223
Zhang (10.1016/j.knosys.2020.106672_b50) 2020; 193
Bordogna (10.1016/j.knosys.2020.106672_b19) 2012; 26
Alguliyev (10.1016/j.knosys.2020.106672_b25) 2020; 150
Shi (10.1016/j.knosys.2020.106672_b38) 2020
Xu (10.1016/j.knosys.2020.106672_b49) 2019
Melendez-Melendez (10.1016/j.knosys.2020.106672_b12) 2019; 121
Wang (10.1016/j.knosys.2020.106672_b45) 2016; 52
Kordestani (10.1016/j.knosys.2020.106672_b6) 2016
Tsai (10.1016/j.knosys.2020.106672_b42) 2011; 44
Liang (10.1016/j.knosys.2020.106672_b40) 2020
Zhang (10.1016/j.knosys.2020.106672_b26) 2017; 13
Zhao (10.1016/j.knosys.2020.106672_b34) 2018; 335
Huang (10.1016/j.knosys.2020.106672_b7) 2017; 48
Zheng (10.1016/j.knosys.2020.106672_b13) 2018; 141
Ma (10.1016/j.knosys.2020.106672_b9) 2018; 3
Li (10.1016/j.knosys.2020.106672_b21) 2014; 65
Tortora (10.1016/j.knosys.2020.106672_b15) 2016; 10
Nash (10.1016/j.knosys.2020.106672_b51) 1950
Zhao (10.1016/j.knosys.2020.106672_b54) 2018; 291
Huang (10.1016/j.knosys.2020.106672_b10) 2018; 277
Al-Jabery (10.1016/j.knosys.2020.106672_b55) 2019
Zhou (10.1016/j.knosys.2020.106672_b29) 2019; 163
Spurek (10.1016/j.knosys.2020.106672_b4) 2017; 72
Paul (10.1016/j.knosys.2020.106672_b18) 2018; 448
Bai (10.1016/j.knosys.2020.106672_b43) 2020
Zhi (10.1016/j.knosys.2020.106672_b46) 2019
Tao (10.1016/j.knosys.2020.106672_b28) 2020; 393
Akbulut (10.1016/j.knosys.2020.106672_b23) 2017; 52
Hussain (10.1016/j.knosys.2020.106672_b14) 2019; 118
Gan (10.1016/j.knosys.2020.106672_b3) 2016; 41
Guo (10.1016/j.knosys.2020.106672_b22) 2015; 14
Flores-Vidal (10.1016/j.knosys.2020.106672_b1) 2019; 23
Liang (10.1016/j.knosys.2020.106672_b37) 2020; 385
Ienco (10.1016/j.knosys.2020.106672_b17) 2018; 22
Kumar (10.1016/j.knosys.2020.106672_b5) 2016; 58
Chen (10.1016/j.knosys.2020.106672_b35) 2020
Zheng (10.1016/j.knosys.2020.106672_b39) 2020
Pimentel (10.1016/j.knosys.2020.106672_b31) 2020
Wu (10.1016/j.knosys.2020.106672_b36) 2020
Dotto (10.1016/j.knosys.2020.106672_b8) 2018; 28
Dua (10.1016/j.knosys.2020.106672_b56) 2019
Rezaee (10.1016/j.knosys.2020.106672_b52) 2012; 38
References_xml – year: 2020
  ident: b43
  article-title: A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters
  publication-title: Inf. Fusion
– volume: 505
  start-page: 440
  year: 2019
  end-page: 456
  ident: b48
  article-title: Transfer learning-assisted multi-objective evolutionary clustering framework with decomposition for high-dimensional data
  publication-title: Inform. Sci.
– start-page: 1
  year: 2016
  end-page: 4
  ident: b6
  article-title: A new clustering method using wavelet based probability density functions for identifying patterns in time-series data
  publication-title: 2016 IEEE EMBS International Student Conference, ISC
– volume: 23
  start-page: 1809
  year: 2019
  end-page: 1821
  ident: b1
  article-title: A new edge detection method based on global evaluation using fuzzy clustering
  publication-title: Soft Comput.
– volume: 393
  start-page: 234
  year: 2020
  end-page: 244
  ident: b28
  article-title: An intelligent clustering algorithm for high-dimensional multi-view data in big data applications
  publication-title: Neurocomputing
– year: 2020
  ident: b36
  article-title: Hierarchical multi-task learning with CRF for implicit discourse relation recognition
  publication-title: Knowl.-Based Syst.
– volume: 52
  start-page: 113
  year: 2016
  end-page: 134
  ident: b45
  article-title: Distance metric learning for soft subspace clustering in composite kernel space
  publication-title: Pattern Recognit.
– volume: 130
  start-page: 18
  year: 2019
  end-page: 41
  ident: b16
  article-title: Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data
  publication-title: Comput. Statist. Data Anal.
– volume: 38
  start-page: 96
  year: 2012
  end-page: 103
  ident: b52
  article-title: Operational and non-operational performance evaluation of thermal power plants in Iran: A game theory approach
  publication-title: Energy
– year: 2020
  ident: b31
  article-title: A meta-learning approach for recommending the number of clusters for clustering algorithms
  publication-title: Knowl.-Based Syst.
– volume: 22
  start-page: 1719
  year: 2018
  end-page: 1730
  ident: b17
  article-title: Fuzzy extensions of the DBSCAN clustering algorithm
  publication-title: Soft Comput.
– volume: 223
  start-page: 869
  year: 2019
  end-page: 882
  ident: b53
  article-title: Analyzing commercial aircraft fuel consumption during descent: A case study using an improved K-means clustering algorithm
  publication-title: J. Cleaner Prod.
– volume: 44
  start-page: 1750
  year: 2011
  end-page: 1760
  ident: b42
  article-title: Fuzzy C-means based clustering for linearly and nonlinearly separable data
  publication-title: Pattern Recognit.
– volume: 118
  start-page: 20
  year: 2019
  end-page: 34
  ident: b14
  article-title: A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data
  publication-title: Expert Syst. Appl.
– volume: 335
  start-page: 264
  year: 2018
  end-page: 277
  ident: b34
  article-title: A sequential ensemble clusterings generation algorithm for mixed data
  publication-title: Appl. Math. Comput.
– start-page: 155
  year: 1950
  end-page: 162
  ident: b51
  article-title: The bargaining problem
  publication-title: Econometrica
– volume: 72
  start-page: 49
  year: 2017
  end-page: 66
  ident: b4
  article-title: Active function cross-entropy clustering
  publication-title: Expert Syst. Appl.
– year: 2019
  ident: b55
  article-title: Computational Learning Approaches to Data Analytics in Biomedical Applications
– volume: 41
  start-page: 192
  year: 2016
  end-page: 213
  ident: b2
  article-title: Automatic clustering using nature-inspired metaheuristics: A survey
  publication-title: Appl. Soft Comput.
– volume: 48
  start-page: 1460
  year: 2017
  end-page: 1473
  ident: b7
  article-title: Locally weighted ensemble clustering
  publication-title: IEEE Trans. Cybern.
– year: 2020
  ident: b35
  article-title: Graph-regularized least squares regression for multi-view subspace clustering
  publication-title: Knowl.-Based Syst.
– volume: 26
  start-page: 9
  year: 2012
  end-page: 19
  ident: b19
  article-title: A quality driven hierarchical data divisive soft clustering for information retrieval
  publication-title: Knowl.-Based Syst.
– start-page: 39
  year: 2019
  end-page: 46
  ident: b11
  article-title: Hybridizing spectral clustering with shadow clustering
  publication-title: Soft Computing and Medical Bioinformatics
– volume: 68
  start-page: 710
  year: 2018
  end-page: 718
  ident: b24
  article-title: A neuro-fuzzy Kohonen network for data stream possibilistic clustering and its online self-learning procedure
  publication-title: Appl. Soft Comput.
– volume: 141
  start-page: 200
  year: 2018
  end-page: 210
  ident: b13
  article-title: A hierarchical co-clustering approach for entity exploration over linked data
  publication-title: Knowl.-Based Syst.
– volume: 448
  start-page: 112
  year: 2018
  end-page: 133
  ident: b18
  article-title: New automatic fuzzy relational clustering algorithms using multi-objective NSGA-II
  publication-title: Inform. Sci.
– volume: 13
  start-page: 1193
  year: 2017
  end-page: 1201
  ident: b26
  article-title: An incremental CFS algorithm for clustering large data in industrial Internet of Things
  publication-title: IEEE Trans. Ind. Inf.
– year: 2020
  ident: b41
  article-title: Multi-view clustering with the cooperation of visible and hidden views
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2019
  ident: b49
  article-title: Transfer representation learning with TSK fuzzy system
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 52
  start-page: 714
  year: 2017
  end-page: 724
  ident: b23
  article-title: KNCM: Kernel neutrosophic c-means clustering
  publication-title: Appl. Soft Comput.
– volume: 14
  start-page: 369
  year: 2015
  end-page: 381
  ident: b22
  article-title: A new spatial fuzzy C-means for spatial clustering
  publication-title: WSEAS Trans. Comput.
– volume: 163
  start-page: 546
  year: 2019
  end-page: 557
  ident: b29
  article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm
  publication-title: Knowl.-Based Syst.
– volume: 193
  year: 2020
  ident: b50
  article-title: Clustering by transmission learning from data density to label manifold with statistical diffusion
  publication-title: Knowl.-Based Syst.
– volume: 41
  start-page: 390
  year: 2016
  end-page: 399
  ident: b3
  article-title: Clustering by propagating probabilities between data points
  publication-title: Appl. Soft Comput.
– volume: 184
  year: 2019
  ident: b32
  article-title: Local gap density for clustering high-dimensional data with varying densities
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: b40
  article-title: Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints
  publication-title: Knowl.-Based Syst.
– start-page: 105
  year: 2019
  end-page: 112
  ident: b46
  article-title: Minkowski metric based soft subspace clustering with different Minkowski exponent and feature weight exponent
  publication-title: The International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
– volume: 10
  start-page: 441
  year: 2016
  end-page: 464
  ident: b15
  article-title: Factor probabilistic distance clustering (FPDC): A new clustering method
  publication-title: Adv. Data Anal. Classif.
– volume: 188
  year: 2020
  ident: b30
  article-title: Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: b39
  article-title: Constrained bilinear factorization multi-view subspace clustering
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: b38
  article-title: Auto-weighted multi-view clustering via spectral embedding
  publication-title: Neurocomputing
– volume: 58
  start-page: 39
  year: 2016
  end-page: 48
  ident: b5
  article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method
  publication-title: Pattern Recognit.
– volume: 88
  start-page: 675
  year: 2018
  end-page: 682
  ident: b27
  article-title: An efficient fuzzy C-means approach based on canonical polyadic decomposition for clustering big data in IoT
  publication-title: Future Gener. Comput. Syst.
– volume: 64
  start-page: 508
  year: 2018
  end-page: 525
  ident: b47
  article-title: A neural approach under transfer learning for domain adaptation in land-cover classification using two-level cluster mapping
  publication-title: Appl. Soft Comput.
– volume: 277
  start-page: 108
  year: 2018
  end-page: 119
  ident: b10
  article-title: A clustering method based on extreme learning machine
  publication-title: Neurocomputing
– volume: 65
  start-page: 60
  year: 2014
  end-page: 71
  ident: b21
  article-title: Hierarchical clustering algorithm for categorical data using a probabilistic rough set model
  publication-title: Knowl.-Based Syst.
– volume: 28
  start-page: 477
  year: 2018
  end-page: 493
  ident: b8
  article-title: A reweighting approach to robust clustering
  publication-title: Statist. Comput.
– volume: 3
  start-page: 59
  year: 2018
  end-page: 64
  ident: b9
  article-title: Two-phase clustering algorithm with density exploring distance measure
  publication-title: CAAI Trans. Intell. Technol.
– volume: 87
  start-page: 26
  year: 2015
  end-page: 37
  ident: b20
  article-title: Fuzzy image segmentation based upon hierarchical clustering
  publication-title: Knowl.-Based Syst.
– volume: 291
  start-page: 195
  year: 2018
  end-page: 206
  ident: b54
  article-title: K-means: A revisit
  publication-title: Neurocomputing
– volume: 150
  year: 2020
  ident: b25
  article-title: Weighted consensus clustering and its application to Big data
  publication-title: Expert Syst. Appl.
– volume: 121
  start-page: 282
  year: 2019
  end-page: 291
  ident: b12
  article-title: An improved algorithm for partial clustering
  publication-title: Expert Syst. Appl.
– volume: 246
  start-page: 133
  year: 2013
  end-page: 154
  ident: b44
  article-title: Fuzzy partition based soft subspace clustering and its applications in high dimensional data
  publication-title: Inform. Sci.
– year: 2019
  ident: b56
  article-title: UCI Machine Learning Repository
– volume: 385
  start-page: 220
  year: 2020
  end-page: 230
  ident: b37
  article-title: Robust multi-view clustering via inter-and-intra-view low rank fusion
  publication-title: Neurocomputing
– volume: 30
  start-page: 1686
  year: 2018
  end-page: 1696
  ident: b33
  article-title: Crafter: A tree-ensemble clustering algorithm for static datasets with mixed attributes and high dimensionality
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 23
  start-page: 1809
  issue: 6
  year: 2019
  ident: 10.1016/j.knosys.2020.106672_b1
  article-title: A new edge detection method based on global evaluation using fuzzy clustering
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3540-z
– volume: 150
  year: 2020
  ident: 10.1016/j.knosys.2020.106672_b25
  article-title: Weighted consensus clustering and its application to Big data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113294
– year: 2019
  ident: 10.1016/j.knosys.2020.106672_b55
– volume: 277
  start-page: 108
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b10
  article-title: A clustering method based on extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.100
– year: 2020
  ident: 10.1016/j.knosys.2020.106672_b41
  article-title: Multi-view clustering with the cooperation of visible and hidden views
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 87
  start-page: 26
  year: 2015
  ident: 10.1016/j.knosys.2020.106672_b20
  article-title: Fuzzy image segmentation based upon hierarchical clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.017
– volume: 38
  start-page: 96
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2020.106672_b52
  article-title: Operational and non-operational performance evaluation of thermal power plants in Iran: A game theory approach
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.030
– volume: 52
  start-page: 714
  year: 2017
  ident: 10.1016/j.knosys.2020.106672_b23
  article-title: KNCM: Kernel neutrosophic c-means clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.10.001
– volume: 13
  start-page: 1193
  issue: 3
  year: 2017
  ident: 10.1016/j.knosys.2020.106672_b26
  article-title: An incremental CFS algorithm for clustering large data in industrial Internet of Things
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2684807
– volume: 44
  start-page: 1750
  issue: 8
  year: 2011
  ident: 10.1016/j.knosys.2020.106672_b42
  article-title: Fuzzy C-means based clustering for linearly and nonlinearly separable data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.02.009
– start-page: 39
  year: 2019
  ident: 10.1016/j.knosys.2020.106672_b11
  article-title: Hybridizing spectral clustering with shadow clustering
– volume: 246
  start-page: 133
  year: 2013
  ident: 10.1016/j.knosys.2020.106672_b44
  article-title: Fuzzy partition based soft subspace clustering and its applications in high dimensional data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.05.029
– year: 2020
  ident: 10.1016/j.knosys.2020.106672_b39
  article-title: Constrained bilinear factorization multi-view subspace clustering
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: 10.1016/j.knosys.2020.106672_b40
  article-title: Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints
  publication-title: Knowl.-Based Syst.
– volume: 385
  start-page: 220
  year: 2020
  ident: 10.1016/j.knosys.2020.106672_b37
  article-title: Robust multi-view clustering via inter-and-intra-view low rank fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.058
– volume: 448
  start-page: 112
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b18
  article-title: New automatic fuzzy relational clustering algorithms using multi-objective NSGA-II
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.03.025
– year: 2019
  ident: 10.1016/j.knosys.2020.106672_b56
– volume: 65
  start-page: 60
  year: 2014
  ident: 10.1016/j.knosys.2020.106672_b21
  article-title: Hierarchical clustering algorithm for categorical data using a probabilistic rough set model
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.04.008
– volume: 188
  year: 2020
  ident: 10.1016/j.knosys.2020.106672_b30
  article-title: Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105018
– volume: 223
  start-page: 869
  year: 2019
  ident: 10.1016/j.knosys.2020.106672_b53
  article-title: Analyzing commercial aircraft fuel consumption during descent: A case study using an improved K-means clustering algorithm
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.02.235
– year: 2019
  ident: 10.1016/j.knosys.2020.106672_b49
  article-title: Transfer representation learning with TSK fuzzy system
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 64
  start-page: 508
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b47
  article-title: A neural approach under transfer learning for domain adaptation in land-cover classification using two-level cluster mapping
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.018
– volume: 505
  start-page: 440
  year: 2019
  ident: 10.1016/j.knosys.2020.106672_b48
  article-title: Transfer learning-assisted multi-objective evolutionary clustering framework with decomposition for high-dimensional data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.07.099
– volume: 291
  start-page: 195
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b54
  article-title: K-means: A revisit
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.072
– start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2020.106672_b6
  article-title: A new clustering method using wavelet based probability density functions for identifying patterns in time-series data
– volume: 141
  start-page: 200
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b13
  article-title: A hierarchical co-clustering approach for entity exploration over linked data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.11.017
– volume: 41
  start-page: 192
  year: 2016
  ident: 10.1016/j.knosys.2020.106672_b2
  article-title: Automatic clustering using nature-inspired metaheuristics: A survey
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.001
– volume: 41
  start-page: 390
  year: 2016
  ident: 10.1016/j.knosys.2020.106672_b3
  article-title: Clustering by propagating probabilities between data points
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.01.034
– start-page: 105
  year: 2019
  ident: 10.1016/j.knosys.2020.106672_b46
  article-title: Minkowski metric based soft subspace clustering with different Minkowski exponent and feature weight exponent
– volume: 58
  start-page: 39
  year: 2016
  ident: 10.1016/j.knosys.2020.106672_b5
  article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.008
– volume: 121
  start-page: 282
  year: 2019
  ident: 10.1016/j.knosys.2020.106672_b12
  article-title: An improved algorithm for partial clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.027
– year: 2020
  ident: 10.1016/j.knosys.2020.106672_b35
  article-title: Graph-regularized least squares regression for multi-view subspace clustering
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: 10.1016/j.knosys.2020.106672_b31
  article-title: A meta-learning approach for recommending the number of clusters for clustering algorithms
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105682
– volume: 193
  year: 2020
  ident: 10.1016/j.knosys.2020.106672_b50
  article-title: Clustering by transmission learning from data density to label manifold with statistical diffusion
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105330
– volume: 30
  start-page: 1686
  issue: 9
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b33
  article-title: Crafter: A tree-ensemble clustering algorithm for static datasets with mixed attributes and high dimensionality
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2807444
– volume: 28
  start-page: 477
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b8
  article-title: A reweighting approach to robust clustering
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-017-9742-x
– volume: 184
  year: 2019
  ident: 10.1016/j.knosys.2020.106672_b32
  article-title: Local gap density for clustering high-dimensional data with varying densities
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104905
– year: 2020
  ident: 10.1016/j.knosys.2020.106672_b36
  article-title: Hierarchical multi-task learning with CRF for implicit discourse relation recognition
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105637
– volume: 52
  start-page: 113
  year: 2016
  ident: 10.1016/j.knosys.2020.106672_b45
  article-title: Distance metric learning for soft subspace clustering in composite kernel space
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.10.018
– volume: 48
  start-page: 1460
  issue: 5
  year: 2017
  ident: 10.1016/j.knosys.2020.106672_b7
  article-title: Locally weighted ensemble clustering
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2702343
– volume: 335
  start-page: 264
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b34
  article-title: A sequential ensemble clusterings generation algorithm for mixed data
  publication-title: Appl. Math. Comput.
– volume: 130
  start-page: 18
  year: 2019
  ident: 10.1016/j.knosys.2020.106672_b16
  article-title: Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2018.08.016
– volume: 14
  start-page: 369
  year: 2015
  ident: 10.1016/j.knosys.2020.106672_b22
  article-title: A new spatial fuzzy C-means for spatial clustering
  publication-title: WSEAS Trans. Comput.
– year: 2020
  ident: 10.1016/j.knosys.2020.106672_b38
  article-title: Auto-weighted multi-view clustering via spectral embedding
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.071
– volume: 3
  start-page: 59
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b9
  article-title: Two-phase clustering algorithm with density exploring distance measure
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2018.0006
– volume: 118
  start-page: 20
  year: 2019
  ident: 10.1016/j.knosys.2020.106672_b14
  article-title: A k-means based co-clustering (kCC) algorithm for sparse, high dimensional data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.006
– volume: 68
  start-page: 710
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b24
  article-title: A neuro-fuzzy Kohonen network for data stream possibilistic clustering and its online self-learning procedure
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.042
– start-page: 155
  year: 1950
  ident: 10.1016/j.knosys.2020.106672_b51
  article-title: The bargaining problem
  publication-title: Econometrica
  doi: 10.2307/1907266
– volume: 10
  start-page: 441
  issue: 4
  year: 2016
  ident: 10.1016/j.knosys.2020.106672_b15
  article-title: Factor probabilistic distance clustering (FPDC): A new clustering method
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-015-0219-5
– volume: 22
  start-page: 1719
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b17
  article-title: Fuzzy extensions of the DBSCAN clustering algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2435-0
– volume: 163
  start-page: 546
  year: 2019
  ident: 10.1016/j.knosys.2020.106672_b29
  article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.09.013
– volume: 72
  start-page: 49
  year: 2017
  ident: 10.1016/j.knosys.2020.106672_b4
  article-title: Active function cross-entropy clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.12.011
– volume: 26
  start-page: 9
  year: 2012
  ident: 10.1016/j.knosys.2020.106672_b19
  article-title: A quality driven hierarchical data divisive soft clustering for information retrieval
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.06.012
– volume: 88
  start-page: 675
  year: 2018
  ident: 10.1016/j.knosys.2020.106672_b27
  article-title: An efficient fuzzy C-means approach based on canonical polyadic decomposition for clustering big data in IoT
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.04.045
– volume: 393
  start-page: 234
  year: 2020
  ident: 10.1016/j.knosys.2020.106672_b28
  article-title: An intelligent clustering algorithm for high-dimensional multi-view data in big data applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.093
– year: 2020
  ident: 10.1016/j.knosys.2020.106672_b43
  article-title: A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.03.009
SSID ssj0002218
Score 2.574185
Snippet Due to its simplicity, versatility and the diversity of applications to which it can be applied, k-means is one of the well-known algorithms for clustering...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106672
SubjectTerms Algorithms
Bargaining
Bargaining game
Cluster centre competition
Clustering
Clustering improvement
Criteria
Data
Datasets
Distance measurement
Error analysis
Evaluation
Games
Indexes
K-means algorithm
Maximum data coverage
Novels
Simplicity
Syntax
Title GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game
URI https://dx.doi.org/10.1016/j.knosys.2020.106672
https://www.proquest.com/docview/2502228185
Volume 213
WOSCitedRecordID wos000614644100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojSgnzgtnKVh1M7vS1oeVUtSBRpb5GTOLsp2aRK0qrqj-A3M35ll65QAYlLtOvE8cbz7czniWcGoddUBqB5_Yjkae4RCosKkvKQEoBK5DMmMurnutgEOznhs1n8ZTT64WJhLitW1_zqKj7_r6KGNhC2Cp39C3EPN4UG-AxChyOIHY5_JPj3b47IUoIFGmfVhUqDoMMQq3nTlv1iaR2BpfYlaNegY5-u13DpWFm43L5NgC_t3FSTGM_FrxkOjpxfjpge3VoWdB3Gr5zSTbcQJUjzWpitP8cqcqsYjMK0W8CTChP3flxWIh98PyK14fB6Y_C1WCGx64RJgfB5Kdp1_0Xgqy3PJoLTONU2Amusd9IjzLO5aKXRzZzBYoB68bryDkwk64YhMD6Js_3vdQMPvQ8Dq8aDA1Mn6EaK7a9qODVaoLL3gI66g7YDFsWg6LcnH6ezT4NtDwLtMR5-ngvG1DsGN8f6Hdm5YfY1lzl9iO7bRQieGPA8QiNZP0YPXIEPbPX9E5QPWMIrLOEBIId4UuM1JOG-wQAV7PoMF2KNC9zU-vQKSVgh6Sn69m56-vYDsWU5SBaGtCdShpxL4P1hkAqeUy8MgEemnvSh0ZeK0ksmWQpMvkjTgnPfk1wR5SKNsyiKwmdoq25q-RxhRmMeZrGkMbBEBivzIi1AAIUIY5oLyXdQ6OYvyWzOelU6pUrc5sSzxMx6omY9MbO-g8jQ69zkbLnleuZEk1jeafhkAmi6peeek2RiVQCcj5QTRRHhF_984110b_Vf2UNbfXshX6K72WVfdu0ri8qfO_m0mw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GBK-means+clustering+algorithm%3A+An+improvement+to+the+K-means+algorithm+based+on+the+bargaining+game&rft.jtitle=Knowledge-based+systems&rft.au=Jahangoshai+Rezaee%2C+Mustafa&rft.au=Eshkevari%2C+Milad&rft.au=Saberi%2C+Morteza&rft.au=Hussain%2C+Omar&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=213&rft_id=info:doi/10.1016%2Fj.knosys.2020.106672&rft.externalDocID=S0950705120308017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon