Artificial Intelligence Aided Low Complexity RRM Algorithms for 5G-MBS

For the upcoming 5G-Advanced, the multicast/broadcast services (5G-MBS) capability is one of the most appealing use cases. The effective integration of point-to-multipoint communication will address the ever-growing traffic demands, disruptive multimedia services, massive connectivity, and low-laten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on broadcasting Jg. 70; H. 1; S. 1 - 0
Hauptverfasser: Pupo, Ernesto Fontes, Gonzalez, Claudia Carballo, Montalban, Jon, Angueira, Pablo, Murroni, Maurizio, Iradier, Eneko
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9316, 1557-9611
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For the upcoming 5G-Advanced, the multicast/broadcast services (5G-MBS) capability is one of the most appealing use cases. The effective integration of point-to-multipoint communication will address the ever-growing traffic demands, disruptive multimedia services, massive connectivity, and low-latency applications. This paper proposes novel approaches for the dynamic access technique selection and resource allocation for multicast groups (MGs) subject to the 5G-MBS paradigm. Our proposal is oriented to address and contextualize the complexity associated with multicast radio resource management (RRM) and the implications of fast variations in the reception conditions of the MG members. We propose a solution structured by a multicast-oriented trigger to avoid overrunning the algorithm, a K-means clustering for group-oriented detection and splitting, a classifier for selecting the most suitable multicast access technique, and a final resource allocation algorithm. To choose the multicast access technique that better fits the specific reception conditions of the users, we evaluate heuristic strategies and machine learning (ML) multiclass classification solutions. We consider the conventional multicast scheme (MCS) and subgrouping based on orthogonal/non-orthogonal multiplex access (OMA/NOMA) as access techniques. We assess the effectiveness of our solution in terms of the quality of service (QoS) parameters and complexity. The proposed technical solution is validated through extensive simulation for a single-cell 5G-MBS use case in the microwave <inline-formula> <tex-math notation="LaTeX">(\mu</tex-math> </inline-formula>Wave) and millimeter wave (mmWave) band with different mobility behaviors.
AbstractList For the upcoming 5G-Advanced, the multicast/broadcast services (5G-MBS) capability is one of the most appealing use cases. The effective integration of point-to-multipoint communication will address the ever-growing traffic demands, disruptive multimedia services, massive connectivity, and low-latency applications. This paper proposes novel approaches for the dynamic access technique selection and resource allocation for multicast groups (MGs) subject to the 5G-MBS paradigm. Our proposal is oriented to address and contextualize the complexity associated with multicast radio resource management (RRM) and the implications of fast variations in the reception conditions of the MG members. We propose a solution structured by a multicast-oriented trigger to avoid overrunning the algorithm, a K-means clustering for group-oriented detection and splitting, a classifier for selecting the most suitable multicast access technique, and a final resource allocation algorithm. To choose the multicast access technique that better fits the specific reception conditions of the users, we evaluate heuristic strategies and machine learning (ML) multiclass classification solutions. We consider the conventional multicast scheme (MCS) and subgrouping based on orthogonal/non-orthogonal multiplex access (OMA/NOMA) as access techniques. We assess the effectiveness of our solution in terms of the quality of service (QoS) parameters and complexity. The proposed technical solution is validated through extensive simulation for a single-cell 5G-MBS use case in the microwave [Formula Omitted]Wave) and millimeter wave (mmWave) band with different mobility behaviors.
For the upcoming 5G-Advanced, the multicast/broadcast services (5G-MBS) capability is one of the most appealing use cases. The effective integration of point-to-multipoint communication will address the ever-growing traffic demands, disruptive multimedia services, massive connectivity, and low-latency applications. This paper proposes novel approaches for the dynamic access technique selection and resource allocation for multicast groups (MGs) subject to the 5G-MBS paradigm. Our proposal is oriented to address and contextualize the complexity associated with multicast radio resource management (RRM) and the implications of fast variations in the reception conditions of the MG members. We propose a solution structured by a multicast-oriented trigger to avoid overrunning the algorithm, a K-means clustering for group-oriented detection and splitting, a classifier for selecting the most suitable multicast access technique, and a final resource allocation algorithm. To choose the multicast access technique that better fits the specific reception conditions of the users, we evaluate heuristic strategies and machine learning (ML) multiclass classification solutions. We consider the conventional multicast scheme (MCS) and subgrouping based on orthogonal/non-orthogonal multiplex access (OMA/NOMA) as access techniques. We assess the effectiveness of our solution in terms of the quality of service (QoS) parameters and complexity. The proposed technical solution is validated through extensive simulation for a single-cell 5G-MBS use case in the microwave <inline-formula> <tex-math notation="LaTeX">(\mu</tex-math> </inline-formula>Wave) and millimeter wave (mmWave) band with different mobility behaviors.
Author Angueira, Pablo
Gonzalez, Claudia Carballo
Pupo, Ernesto Fontes
Iradier, Eneko
Murroni, Maurizio
Montalban, Jon
Author_xml – sequence: 1
  givenname: Ernesto Fontes
  orcidid: 0000-0002-1715-6015
  surname: Pupo
  fullname: Pupo, Ernesto Fontes
  organization: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
– sequence: 2
  givenname: Claudia Carballo
  surname: Gonzalez
  fullname: Gonzalez, Claudia Carballo
  organization: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
– sequence: 3
  givenname: Jon
  orcidid: 0000-0003-0309-3401
  surname: Montalban
  fullname: Montalban, Jon
  organization: Communications Engineering Department, University of the Basque County, Bilbao, Spain
– sequence: 4
  givenname: Pablo
  orcidid: 0000-0002-5188-8412
  surname: Angueira
  fullname: Angueira, Pablo
  organization: Communications Engineering Department, University of the Basque County, Bilbao, Spain
– sequence: 5
  givenname: Maurizio
  orcidid: 0000-0002-4618-0698
  surname: Murroni
  fullname: Murroni, Maurizio
  organization: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
– sequence: 6
  givenname: Eneko
  orcidid: 0000-0002-0424-3857
  surname: Iradier
  fullname: Iradier, Eneko
  organization: Communications Engineering Department, University of the Basque County, Bilbao, Spain
BookMark eNp9kEFPwjAUgBuDiYDePXho4nn42ret63EQQRKICXJv6tZhyVixK1H-vSNwMB48vcv3vffyDUivcY0h5J7BiDGQT-vxZMSB4wiRMURxRfosSUQkU8Z6pA_AskgiS2_IoG23AIAAvE-muQ-2soXVNZ03wdS13ZimMDS3pSnpwn3Ridvta_Ntw5GuVkua1xvnbfjYtbRyniazaDl-uyXXla5bc3eZQ7KePq8nL9HidTaf5IuoQIxDZMo4EUIzoRNA-c5kVgrJZap5Fcfd4yUHjRkXIBMuMglFjDKJDWdpVvAScUgez2v33n0eTBvU1h18011UXKKQMmPIOyo9U4V3betNpQobdLCuCV7bWjFQp2SqS6ZOydQlWSfCH3Hv7U7743_Kw1mxxphfOE_SVMT4AwoNdNE
CODEN IETBAC
CitedBy_id crossref_primary_10_1109_TBC_2024_3417342
crossref_primary_10_1016_j_comnet_2025_111041
crossref_primary_10_1109_TBC_2025_3575341
Cites_doi 10.1109/OJCOMS.2022.3161312
10.1109/INFCOM.2005.1498468
10.1109/TBC.2014.2321678
10.1109/TBC.2013.2271387
10.1109/MCOM.2018.1700660
10.1109/MVT.2022.3232919
10.1109/ACCESS.2021.3102301
10.1109/LWC.2014.2387824
10.1109/EuCNC.2019.8802062
10.1109/TBC.2022.3206595
10.1109/TCOMM.2019.2948343
10.1109/COMST.2019.2897800
10.1613/jair.953
10.1109/SURV.2012.013012.00074
10.1109/TNSM.2022.3150978
10.1109/ACCESS.2020.3002252
10.1109/TBC.2020.2983563
10.1109/MWC.2019.8752473
10.1109/COMST.2022.3199901
10.1007/s10994-006-6226-1
10.1109/MCOMSTD.0001.2100068
10.1109/TBC.2022.3221696
10.1109/JIOT.2021.3064874
10.1109/TBC.2015.2505408
10.1109/TIT.1982.1056489
10.1109/TBC.2020.3028316
10.1109/TVT.2022.3193122
10.1109/TBC.2022.3190990
10.1109/BMSB53066.2021.9547169
10.1109/MCOM.2018.1800255
10.1109/BMSB55706.2022.9828674
10.1109/TBC.2021.3132804
10.1109/MCOMSTD.0001.2200001
10.1109/ACCESS.2022.3146349
10.1109/72.80266
10.1109/BMSB58369.2023.10211507
10.1109/OJCOMS.2020.2969899
10.1109/ACCESS.2022.3196657
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TBC.2023.3311337
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1557-9611
EndPage 0
ExternalDocumentID 10_1109_TBC_2023_3311337
10256674
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
7SP
8FD
L7M
ID FETCH-LOGICAL-c334t-ed4577a17a5039b198d79296a2f44331d20a382709527890c43954e2168c2d33
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071905700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9316
IngestDate Mon Jun 30 10:23:27 EDT 2025
Sat Nov 29 04:03:10 EST 2025
Tue Nov 18 21:42:11 EST 2025
Wed Aug 27 02:13:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-ed4577a17a5039b198d79296a2f44331d20a382709527890c43954e2168c2d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5188-8412
0000-0003-0309-3401
0000-0002-0424-3857
0000-0002-1715-6015
0000-0002-4618-0698
OpenAccessLink https://hdl.handle.net/11584/420264
PQID 2937998132
PQPubID 85473
PageCount 0
ParticipantIDs ieee_primary_10256674
crossref_citationtrail_10_1109_TBC_2023_3311337
crossref_primary_10_1109_TBC_2023_3311337
proquest_journals_2937998132
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on broadcasting
PublicationTitleAbbrev TBC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref36
(ref28) 2020
ref30
ref11
ref33
ref10
ref2
ref1
Géron (ref40) 2022
ref17
ref39
ref16
ref38
ref19
ref18
Alves (ref37) 2021
(ref32) 2023
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
Aly (ref35) 2005; 19
ref44
ref21
ref43
(ref45) 2017
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Le Boudec (ref31) 2008
References_xml – ident: ref6
  doi: 10.1109/OJCOMS.2022.3161312
– volume-title: Hands-On Machine Learning With Scikit-Learn, Keras, and TensorFlow
  year: 2022
  ident: ref40
– ident: ref44
  doi: 10.1109/INFCOM.2005.1498468
– ident: ref24
  doi: 10.1109/TBC.2014.2321678
– volume-title: Rate Adaptation, Congestion Control and Fairness: A Tutorial
  year: 2008
  ident: ref31
– year: 2020
  ident: ref28
  article-title: 5g; NR; physical layer procedures for data
– ident: ref17
  doi: 10.1109/TBC.2013.2271387
– ident: ref18
  doi: 10.1109/MCOM.2018.1700660
– ident: ref1
  doi: 10.1109/MVT.2022.3232919
– ident: ref21
  doi: 10.1109/ACCESS.2021.3102301
– volume-title: Time-time access and conversions
  year: 2023
  ident: ref32
– ident: ref25
  doi: 10.1109/LWC.2014.2387824
– ident: ref29
  doi: 10.1109/EuCNC.2019.8802062
– ident: ref9
  doi: 10.1109/TBC.2022.3206595
– ident: ref22
  doi: 10.1109/TCOMM.2019.2948343
– ident: ref23
  doi: 10.1109/COMST.2019.2897800
– ident: ref39
  doi: 10.1613/jair.953
– ident: ref15
  doi: 10.1109/SURV.2012.013012.00074
– ident: ref3
  doi: 10.1109/TNSM.2022.3150978
– ident: ref10
  doi: 10.1109/ACCESS.2020.3002252
– year: 2021
  ident: ref37
  article-title: Beyond 5G URLLC evolution: New service modes and practical considerations
  publication-title: arXiv:2106.11825
– ident: ref4
  doi: 10.1109/TBC.2020.2983563
– ident: ref38
  doi: 10.1109/MWC.2019.8752473
– ident: ref11
  doi: 10.1109/COMST.2022.3199901
– volume: 19
  start-page: 2
  issue: 1
  year: 2005
  ident: ref35
  article-title: Survey on multiclass classification methods
  publication-title: Neural Netw.
– ident: ref42
  doi: 10.1007/s10994-006-6226-1
– ident: ref13
  doi: 10.1109/MCOMSTD.0001.2100068
– ident: ref27
  doi: 10.1109/TBC.2022.3221696
– ident: ref12
  doi: 10.1109/JIOT.2021.3064874
– ident: ref30
  doi: 10.1109/TBC.2015.2505408
– ident: ref43
  doi: 10.1109/TIT.1982.1056489
– ident: ref16
  doi: 10.1109/TBC.2020.3028316
– ident: ref7
  doi: 10.1109/TVT.2022.3193122
– year: 2017
  ident: ref45
  article-title: Study on channel model for frequencies from 0.5 to 100 GHz (release 14)
– ident: ref8
  doi: 10.1109/TBC.2022.3190990
– ident: ref19
  doi: 10.1109/BMSB53066.2021.9547169
– ident: ref33
  doi: 10.1109/MCOM.2018.1800255
– ident: ref5
  doi: 10.1109/BMSB55706.2022.9828674
– ident: ref36
  doi: 10.1109/TBC.2021.3132804
– ident: ref14
  doi: 10.1109/MCOMSTD.0001.2200001
– ident: ref20
  doi: 10.1109/ACCESS.2022.3146349
– ident: ref41
  doi: 10.1109/72.80266
– ident: ref34
  doi: 10.1109/BMSB58369.2023.10211507
– ident: ref26
  doi: 10.1109/OJCOMS.2020.2969899
– ident: ref2
  doi: 10.1109/ACCESS.2022.3196657
SSID ssj0003002
Score 2.4507535
Snippet For the upcoming 5G-Advanced, the multicast/broadcast services (5G-MBS) capability is one of the most appealing use cases. The effective integration of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 5G mobile communication
5G-MBS
Algorithms
Artificial intelligence
Cluster analysis
Clustering
Complexity
computational complexity
Machine learning
Millimeter wave communication
Millimeter waves
mmWave
multicast access techniques
Multicast algorithms
Multicasting
Multimedia
NOMA
Proposals
Quality of service
Resource allocation
Resource management
Vector quantization
Title Artificial Intelligence Aided Low Complexity RRM Algorithms for 5G-MBS
URI https://ieeexplore.ieee.org/document/10256674
https://www.proquest.com/docview/2937998132
Volume 70
WOSCitedRecordID wos001071905700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9611
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003002
  issn: 0018-9316
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGH7R4UEPfkzFuSk5iOChW5qkTXvchlNBReYOu5U0zXSwL9ZO8d-bpN3YEAVvPeQtpU_frybP8wJc0ZC5JKYDhwTCc1jgMyfG2q985sVYqTgWMrbDJvjzc9Dvhy8FWd1yYZRS9vCZqptLu5efTOXC_CrTHq4TtM_ZNmxzznOy1irsUoxzaXBXezB1V3uSOGz0Wu26GRNep9TVPRnfyEF2qMqPSGzTS-fgnw92CPtFHYmaOfBHsKUmZdhbUxcsQ7VYNEzH6BptMEHSY-gY01w-Aj2s6XKi5jBRCXqcfhqTmdHLzL5Qt_uEmqO36XyYvY9TpCtd5N05T63XE-h1bnvte6cYquBISlnmqIR5nAuXCw_TMHbDIOG6RPIFGTDDnkoIFjQgXJdeliQrdcXiMUVcP5AkofQUSpPpRJ0BEkx4hHHpCkYZSYiQWAVGzj0e-DqQeBVoLN9yJAvBcTP3YhTZxgOHkcYlMrhEBS4VuFlZzHKxjT_Wnhgc1tblEFSgtkQyKtwxjXRNw3VfqTvv81_MqrCr787y02U1KGXzhbqAHfmRDdP5pf3SvgGSgsw3
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH64gXpwF-s6BxE8pM6aSY5VrIptEe3BW5hMplrQVpqo-O-dmcRSEQVvOcwjIV_elpnvewCHLOaEpqwX0EiJgEchD1Js_SrkIsXGpKnSqR82ITud6P4-vqnI6p4LY4zxh89M3V36vfxsqF_drzLr4TZBh5JPw6zgnJKSrjUOvAzjUhycWB9mZLwrieOT7ulZ3Q0KrzNGbFcmv2UhP1blRyz2Caa5_M9HW4GlqpJEjRL6VZgygzVYnNAXXIOdalE_f0ZH6BsXJF-HpjMtBSTQ1YQyJ2r0M5Oh1vDdmbw4xcziA93etlHj6WE46hePzzmytS4SF0H79G4Dus3z7tllUI1VCDRjvAhMxoWUikglMItTEkeZtEVSqGiPO_5URrFiEZW2-PI0WW1rFsENJWGkacbYJswMhgOzBUhxJSiXmijOOM2o0thETtA97YU2lIganHy95URXkuNu8sVT4lsPHCcWl8ThklS41OB4bPFSym38sXbD4TCxroSgBrtfSCaVQ-aJrWqk7Sxt7739i9kBzF92262kddW53oEFeydenjXbhZli9Gr2YE6_Ff18tO-_uk9g089-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Aided+Low+Complexity+RRM+Algorithms+for+5G-MBS&rft.jtitle=IEEE+transactions+on+broadcasting&rft.au=Ernesto+Fontes+Pupo&rft.au=Claudia+Carballo+Gonzalez&rft.au=Montalban%2C+Jon&rft.au=Angueira%2C+Pablo&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9316&rft.eissn=1557-9611&rft.volume=70&rft.issue=1&rft.spage=110&rft_id=info:doi/10.1109%2FTBC.2023.3311337&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9316&client=summon