Finite element-based invariant-domain preserving approximation of hyperbolic systems: Beyond second-order accuracy in space
This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high-order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor sten...
Uložené v:
| Vydané v: | Computer methods in applied mechanics and engineering Ročník 418; s. 116470 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.01.2024
|
| Predmet: | |
| ISSN: | 0045-7825, 1879-2138, 1879-2138 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high-order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor stencil. The construction of the flux of the low-order method is based on an idea from Abgrall et al. (2017). The mass flux of the low-order and the high-order methods are identical on each finite element cell. This allows for mass preserving and invariant-domain preserving limiting. |
|---|---|
| ISSN: | 0045-7825 1879-2138 1879-2138 |
| DOI: | 10.1016/j.cma.2023.116470 |