Finite element-based invariant-domain preserving approximation of hyperbolic systems: Beyond second-order accuracy in space

This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high-order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor sten...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 418; s. 116470
Hlavní autori: Guermond, Jean-Luc, Nazarov, Murtazo, Popov, Bojan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2024
Predmet:
ISSN:0045-7825, 1879-2138, 1879-2138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high-order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor stencil. The construction of the flux of the low-order method is based on an idea from Abgrall et al. (2017). The mass flux of the low-order and the high-order methods are identical on each finite element cell. This allows for mass preserving and invariant-domain preserving limiting.
ISSN:0045-7825
1879-2138
1879-2138
DOI:10.1016/j.cma.2023.116470