Finite element-based invariant-domain preserving approximation of hyperbolic systems: Beyond second-order accuracy in space

This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high-order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor sten...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 418; s. 116470
Hlavní autori: Guermond, Jean-Luc, Nazarov, Murtazo, Popov, Bojan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2024
Predmet:
ISSN:0045-7825, 1879-2138, 1879-2138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high-order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor stencil. The construction of the flux of the low-order method is based on an idea from Abgrall et al. (2017). The mass flux of the low-order and the high-order methods are identical on each finite element cell. This allows for mass preserving and invariant-domain preserving limiting.
AbstractList This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high-order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor stencil. The construction of the flux of the low-order method is based on an idea from Abgrall et al. (2017). The mass flux of the low-order and the high-order methods are identical on each finite element cell. This allows for mass preserving and invariant-domain preserving limiting.
This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a highorder finite element method with an invariant-domain preserving low-order method that uses the closest neighbor stencil. The construction of the flux of the low-order method is based on an idea from Abgrall et al. (2017). The mass flux of the low-order and the high-order methods are identical on each finite element cell. This allows for mass preserving and invariant-domain preserving limiting.
ArticleNumber 116470
Author Popov, Bojan
Nazarov, Murtazo
Guermond, Jean-Luc
Author_xml – sequence: 1
  givenname: Jean-Luc
  orcidid: 0000-0002-6974-6818
  surname: Guermond
  fullname: Guermond, Jean-Luc
  email: guermond@tamu.edu
  organization: Department of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843, USA
– sequence: 2
  givenname: Murtazo
  orcidid: 0000-0003-4962-9048
  surname: Nazarov
  fullname: Nazarov, Murtazo
  organization: Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden
– sequence: 3
  givenname: Bojan
  orcidid: 0000-0002-6837-2404
  surname: Popov
  fullname: Popov, Bojan
  organization: Department of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843, USA
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-516908$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp9kE1vFDEMhiNUJLalP4BbfgCzJJP5pKe20A-pUi_Qa5Q4nuLVTjJKZreM-PNNu4gDh_ryyrIfy3qO2ZEPHhn7JMVaCtl82axhNOtSlGotZVO14h1bya7ti1Kq7oithKjqou3K-gM7TmkjcnWyXLE_V-RpRo5bHNHPhTUJHSe_N5FM7l0YDXk-RUwY9-QfuZmmGH7TaGYKnoeB_1omjDZsCXha0oxj-sovcAne8YSQowjRYeQGYBcNLPk6T5MB_MjeD2ab8PRvnrCfV99_XN4Ud_fXt5fndwUoVc0FNrYSoFwjyr7EFnrhlK2rQdlO2UYpJaStGxC9620r86x0ZlCD6SzYtkOnTtjnw930hNPO6inm7-OigyH9jR7OdYiPerfTtWx60eV1eViHGFKKOPwDpNAvsvVGZ9n6RbY-yM5M-x8DNL8amqOh7Zvk2YHEbGBPGHUCQg_oKCLM2gV6g34G50GfCA
CitedBy_id crossref_primary_10_1016_j_jcp_2024_113146
crossref_primary_10_1016_j_jcp_2023_112608
crossref_primary_10_1016_j_compfluid_2025_106774
Cites_doi 10.1016/j.jcp.2010.04.002
10.1016/0021-9991(83)90118-3
10.1007/s10915-011-9472-8
10.2514/6.2006-112
10.1007/s10915-017-0399-6
10.1016/0021-9991(79)90051-2
10.1007/978-94-007-4038-9
10.2514/6.1981-1259
10.1016/j.cma.2018.11.036
10.1002/cpa.3160070112
10.1007/s002110050345
10.1090/S0025-5718-1984-0758189-X
10.1137/0724022
10.2514/1.J055493
10.1137/16M1106560
10.1016/j.cma.2013.12.015
10.1090/S0025-5718-1994-1208223-4
10.1137/21M145793X
10.1016/j.camwa.2018.05.009
10.1006/jcph.1997.5756
10.1137/16M1074291
10.1137/130950240
10.1016/j.compfluid.2005.01.007
10.1007/PL00005455
10.1007/s002110050187
10.1090/S0025-5718-1988-0935073-3
10.1016/j.jcp.2009.12.030
10.1006/jcph.2001.6955
10.1515/cmam-2017-0056
10.1137/1025002
10.1007/BF01933264
10.1016/j.jcp.2010.10.036
10.1007/s10543-007-0147-7
10.1137/040614189
10.1016/j.jcp.2016.12.031
10.1137/17M1149961
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
ADTPV
AOWAS
DF2
DOI 10.1016/j.cma.2023.116470
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID oai_DiVA_org_uu_516908
10_1016_j_cma_2023_116470
S0045782523005947
GrantInformation_xml – fundername: Swedish Research Council (VR), Sweden
  grantid: 2021-04620
  funderid: http://dx.doi.org/10.13039/501100004359
– fundername: Army Research Office, USA
  grantid: W911NF-19-1-0431
  funderid: http://dx.doi.org/10.13039/100000183
– fundername: National Science Foundation, USA
  grantid: DMS2110868
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: European Union-NextGenerationEU
  grantid: BG-RRP-2.004-0008
– fundername: Air Force Office of Scientific Research, USAF, USA
  grantid: FA9550-23-1-0007
  funderid: http://dx.doi.org/10.13039/100000181
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
VH1
VOH
WUQ
ZY4
~HD
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c334t-e6b40c3d60292e7c90d3b54f3b83b633301b56c09d9b71d3b2daf3fa8bcb78ed3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100483300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
1879-2138
IngestDate Tue Nov 04 16:51:23 EST 2025
Tue Nov 18 20:47:37 EST 2025
Sat Nov 29 06:16:56 EST 2025
Sat Jul 06 15:31:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Limiting
Riemann problem
65M60
High-order method
35L45
Invariant domain
65M12
35L65
Hyperbolic systems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-e6b40c3d60292e7c90d3b54f3b83b633301b56c09d9b71d3b2daf3fa8bcb78ed3
ORCID 0000-0003-4962-9048
0000-0002-6974-6818
0000-0002-6837-2404
ParticipantIDs swepub_primary_oai_DiVA_org_uu_516908
crossref_primary_10_1016_j_cma_2023_116470
crossref_citationtrail_10_1016_j_cma_2023_116470
elsevier_sciencedirect_doi_10_1016_j_cma_2023_116470
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vilar, Abgrall (b14) 2022
Ricchiuto, Abgrall (b12) 2010; 229
Liu, Tadmor (b6) 1998; 79
Ern, Guermond (b24) 2022; 44
Perthame, Shu (b33) 1996; 73
Guermond, Popov (b3) 2016; 54
Harten, Lax, van Leer (b31) 1983; 25
P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous galerkin methods, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, Number AIAA Paper No. 2015-2006-112 in Aerospace Sciences Meetings, 2006.
Kurganov, Petrova, Popov (b44) 2007; 29
Zhang, Shu (b41) 2010; 229
Kuzmin, Quezada de Luna (b25) 2020; 411
Tadmor (b32) 1984; 43
Abgrall, Viville, Beaugendre, Dobrzynski (b4) 2017; 72
Abgrall (b11) 2006; 35
Zhang, Shu (b9) 2011; 230
Guermond, Nazarov (b15) 2014; 272
Guermond, Nazarov, Popov, Yang (b16) 2014; 52
Anderson, Dobrev, Kolev, Kuzmin, Quezada de Luna, Rieben, Tomov (b23) 2017; 334
Sanders (b5) 1988; 51
Kuzmin, Löhner, Turek (b22) 2012
Abgrall (b34) 2018; 18
Harten, Osher (b40) 1987; 24
Kurganov, Petrova (b7) 2001; 88
Quezada De Luna (b2) 2016
Guermond, Nazarov, Popov, Tomas (b17) 2018; 40
Guermond, Popov (b29) 2017; 55
Kuzmin, Turek (b21) 2002; 175
Lax (b30) 1954; 7
A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, in: 14th AIAA Fluid and Plasma Dynamics Conference, 1981, AIAA Paper 1981–1259.
Ern, Guermond (b45) 2021; vol. 72
Khobalatte, Perthame (b38) 1994; 62
Burman (b28) 2007; 47
Zhang, Xia, Shu (b10) 2012; 50
Boris, Book (b19) 1997; 135
Zalesak (b20) 1979; 31
Dafermos (b42) 2010; vol. 325
Kraaijevanger (b36) 1991; 31
Alrashed (b1) 2015
Harten (b39) 1983; 49
Pazner (b8) 2021; 382
Guermond, Popov, Tomas (b18) 2019; 347
Abgrall, Bacigaluppi, Tokareva (b13) 2019; 78
Hoff (b43) 1983; 276
Jameson (b27) 2017; 55
Logg, Mardal, Wells (b35) 2012
Pazner (10.1016/j.cma.2023.116470_b8) 2021; 382
Ern (10.1016/j.cma.2023.116470_b24) 2022; 44
Guermond (10.1016/j.cma.2023.116470_b3) 2016; 54
Zhang (10.1016/j.cma.2023.116470_b10) 2012; 50
Harten (10.1016/j.cma.2023.116470_b31) 1983; 25
Kurganov (10.1016/j.cma.2023.116470_b7) 2001; 88
Vilar (10.1016/j.cma.2023.116470_b14) 2022
10.1016/j.cma.2023.116470_b26
Kuzmin (10.1016/j.cma.2023.116470_b22) 2012
Hoff (10.1016/j.cma.2023.116470_b43) 1983; 276
Dafermos (10.1016/j.cma.2023.116470_b42) 2010; vol. 325
Anderson (10.1016/j.cma.2023.116470_b23) 2017; 334
Kraaijevanger (10.1016/j.cma.2023.116470_b36) 1991; 31
Ricchiuto (10.1016/j.cma.2023.116470_b12) 2010; 229
Logg (10.1016/j.cma.2023.116470_b35) 2012
Quezada De Luna (10.1016/j.cma.2023.116470_b2) 2016
Kuzmin (10.1016/j.cma.2023.116470_b25) 2020; 411
Lax (10.1016/j.cma.2023.116470_b30) 1954; 7
Jameson (10.1016/j.cma.2023.116470_b27) 2017; 55
Tadmor (10.1016/j.cma.2023.116470_b32) 1984; 43
Kurganov (10.1016/j.cma.2023.116470_b44) 2007; 29
Harten (10.1016/j.cma.2023.116470_b40) 1987; 24
Guermond (10.1016/j.cma.2023.116470_b17) 2018; 40
Zalesak (10.1016/j.cma.2023.116470_b20) 1979; 31
Liu (10.1016/j.cma.2023.116470_b6) 1998; 79
Boris (10.1016/j.cma.2023.116470_b19) 1997; 135
Kuzmin (10.1016/j.cma.2023.116470_b21) 2002; 175
Guermond (10.1016/j.cma.2023.116470_b16) 2014; 52
10.1016/j.cma.2023.116470_b37
Zhang (10.1016/j.cma.2023.116470_b9) 2011; 230
Zhang (10.1016/j.cma.2023.116470_b41) 2010; 229
Alrashed (10.1016/j.cma.2023.116470_b1) 2015
Abgrall (10.1016/j.cma.2023.116470_b11) 2006; 35
Perthame (10.1016/j.cma.2023.116470_b33) 1996; 73
Sanders (10.1016/j.cma.2023.116470_b5) 1988; 51
Harten (10.1016/j.cma.2023.116470_b39) 1983; 49
Abgrall (10.1016/j.cma.2023.116470_b13) 2019; 78
Guermond (10.1016/j.cma.2023.116470_b15) 2014; 272
Guermond (10.1016/j.cma.2023.116470_b29) 2017; 55
Abgrall (10.1016/j.cma.2023.116470_b34) 2018; 18
Abgrall (10.1016/j.cma.2023.116470_b4) 2017; 72
Guermond (10.1016/j.cma.2023.116470_b18) 2019; 347
Khobalatte (10.1016/j.cma.2023.116470_b38) 1994; 62
Ern (10.1016/j.cma.2023.116470_b45) 2021; vol. 72
Burman (10.1016/j.cma.2023.116470_b28) 2007; 47
References_xml – volume: 44
  start-page: A3366
  year: 2022
  end-page: A3392
  ident: b24
  article-title: Invariant-domain-preserving high-order time stepping: I Explicit Runge-Kutta schemes
  publication-title: SIAM J. Sci. Comput.
– volume: 51
  start-page: 535
  year: 1988
  end-page: 558
  ident: b5
  article-title: A third-order accurate variation nonexpansive difference scheme for single nonlinear conservation laws
  publication-title: Math. Comp.
– year: 2012
  ident: b35
  article-title: Automated Solution of Differential Equations By the Finite Element Method
– volume: 382
  year: 2021
  ident: b8
  article-title: Sparse invariant domain preserving discontinuous Galerkin methods with subcell convex limiting
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 18
  start-page: 327
  year: 2018
  end-page: 351
  ident: b34
  article-title: Some remarks about conservation for residual distribution schemes
  publication-title: Comput. Methods Appl. Math.
– volume: 54
  start-page: 2466
  year: 2016
  end-page: 2489
  ident: b3
  article-title: Invariant domains and first-order continuous finite element approximation for hyperbolic systems
  publication-title: SIAM J. Numer. Anal.
– volume: 175
  start-page: 525
  year: 2002
  end-page: 558
  ident: b21
  article-title: Flux correction tools for finite elements
  publication-title: J. Comput. Phys.
– year: 2016
  ident: b2
  article-title: High-Order Maximum Principle Preserving (MPP) Techniques for Solving Conservation Laws with Applications on Multiphase Flow
– volume: 78
  start-page: 274
  year: 2019
  end-page: 297
  ident: b13
  article-title: High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics
  publication-title: Comput. Math. Appl.
– volume: 272
  start-page: 198
  year: 2014
  end-page: 213
  ident: b15
  article-title: A maximum-principle preserving
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 43
  start-page: 369
  year: 1984
  end-page: 381
  ident: b32
  article-title: Numerical viscosity and the entropy condition for conservative difference schemes
  publication-title: Math. Comp.
– volume: 73
  start-page: 119
  year: 1996
  end-page: 130
  ident: b33
  article-title: On positivity preserving finite volume schemes for Euler equations
  publication-title: Numer. Math.
– volume: 230
  start-page: 1238
  year: 2011
  end-page: 1248
  ident: b9
  article-title: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms
  publication-title: J. Comput. Phys.
– volume: 229
  start-page: 3091
  year: 2010
  end-page: 3120
  ident: b41
  article-title: On maximum-principle-satisfying high order schemes for scalar conservation laws
  publication-title: J. Comput. Phys.
– volume: 31
  start-page: 482
  year: 1991
  end-page: 528
  ident: b36
  article-title: Contractivity of Runge-Kutta methods
  publication-title: BIT
– volume: 79
  start-page: 397
  year: 1998
  end-page: 425
  ident: b6
  article-title: Third order nonoscillatory central scheme for hyperbolic conservation laws
  publication-title: Numer. Math.
– year: 2015
  ident: b1
  article-title: Parallel Multiphase Navier-Stokes Solver
– volume: vol. 325
  year: 2010
  ident: b42
  publication-title: Hyperbolic Conservation Laws in Continuum Physics
– volume: vol. 72
  year: 2021
  ident: b45
  publication-title: Finite Elements I—Approximation and Interpolation
– volume: 7
  start-page: 159
  year: 1954
  end-page: 193
  ident: b30
  article-title: Weak solutions of nonlinear hyperbolic equations and their numerical computation
  publication-title: Comm. Pure Appl. Math.
– volume: 25
  start-page: 35
  year: 1983
  end-page: 61
  ident: b31
  article-title: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws
  publication-title: SIAM Rev.
– volume: 88
  start-page: 683
  year: 2001
  end-page: 729
  ident: b7
  article-title: A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems
  publication-title: Numer. Math.
– volume: 334
  start-page: 102
  year: 2017
  end-page: 124
  ident: b23
  article-title: High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation
  publication-title: J. Comput. Phys.
– volume: 72
  start-page: 1232
  year: 2017
  end-page: 1268
  ident: b4
  article-title: Construction of a
  publication-title: J. Sci. Comput.
– volume: 29
  start-page: 2381
  year: 2007
  end-page: 2401
  ident: b44
  article-title: Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws
  publication-title: SIAM J. Sci. Comput.
– volume: 49
  start-page: 151
  year: 1983
  end-page: 164
  ident: b39
  article-title: On the symmetric form of systems of conservation laws with entropy
  publication-title: J. Comput. Phys.
– reference: A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, in: 14th AIAA Fluid and Plasma Dynamics Conference, 1981, AIAA Paper 1981–1259.
– volume: 50
  start-page: 29
  year: 2012
  end-page: 62
  ident: b10
  article-title: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes
  publication-title: J. Sci. Comput.
– volume: 62
  start-page: 119
  year: 1994
  end-page: 131
  ident: b38
  article-title: Maximum principle on the entropy and second-order kinetic schemes
  publication-title: Math. Comp.
– volume: 55
  start-page: 3120
  year: 2017
  end-page: 3146
  ident: b29
  article-title: Invariant domains and second-order continuous finite element approximation for scalar conservation equations
  publication-title: SIAM J. Numer. Anal.
– year: 2012
  ident: b22
  article-title: Flux-corrected transport: Principles, algorithms, and applications
  publication-title: Scientific Computation
– year: 2022
  ident: b14
  article-title: A posteriori local subcell correction of high-order discontinuous galerkin scheme for conservation laws on two-dimensional unstructured grids
– reference: P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous galerkin methods, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, Number AIAA Paper No. 2015-2006-112 in Aerospace Sciences Meetings, 2006.
– volume: 31
  start-page: 335
  year: 1979
  end-page: 362
  ident: b20
  article-title: Fully multidimensional flux-corrected transport algorithms for fluids
  publication-title: J. Comput. Phys.
– volume: 276
  start-page: 707
  year: 1983
  end-page: 714
  ident: b43
  article-title: The sharp form of Oleĭnik’s entropy condition in several space variables
  publication-title: Trans. Amer. Math. Soc.
– volume: 52
  start-page: 2163
  year: 2014
  end-page: 2182
  ident: b16
  article-title: A second-order maximum principle preserving Lagrange finite element technique for nonlinear scalar conservation equations
  publication-title: SIAM J. Numer. Anal.
– volume: 47
  start-page: 715
  year: 2007
  end-page: 733
  ident: b28
  article-title: On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws
  publication-title: BIT
– volume: 135
  start-page: 170
  year: 1997
  end-page: 186
  ident: b19
  article-title: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works
  publication-title: J. Comput. Phys.
– volume: 229
  start-page: 5653
  year: 2010
  end-page: 5691
  ident: b12
  article-title: Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case
  publication-title: J. Comput. Phys.
– volume: 411
  year: 2020
  ident: b25
  article-title: Subcell flux limiting for high-order Bernstein finite element discretizations of scalar hyperbolic conservation laws
  publication-title: J. Comput. Phys.
– volume: 24
  start-page: 279
  year: 1987
  end-page: 309
  ident: b40
  article-title: Uniformly high-order accurate nonoscillatory schemes. I
  publication-title: SIAM J. Numer. Anal.
– volume: 40
  start-page: A3211
  year: 2018
  end-page: A3239
  ident: b17
  article-title: Second-order invariant domain preserving approximation of the Euler equations using convex limiting
  publication-title: SIAM J. Sci. Comput.
– volume: 347
  start-page: 143
  year: 2019
  end-page: 175
  ident: b18
  article-title: Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 55
  year: 2017
  ident: b27
  article-title: Origins and further development of the Jameson-Schmidt-Turkel scheme
  publication-title: AIAA J.
– volume: 35
  start-page: 641
  year: 2006
  end-page: 669
  ident: b11
  article-title: Residual distribution schemes: current status and future trends
  publication-title: Comput. Fluids
– volume: 229
  start-page: 5653
  issue: 16
  year: 2010
  ident: 10.1016/j.cma.2023.116470_b12
  article-title: Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.04.002
– volume: 49
  start-page: 151
  issue: 1
  year: 1983
  ident: 10.1016/j.cma.2023.116470_b39
  article-title: On the symmetric form of systems of conservation laws with entropy
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90118-3
– volume: 50
  start-page: 29
  issue: 1
  year: 2012
  ident: 10.1016/j.cma.2023.116470_b10
  article-title: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-011-9472-8
– ident: 10.1016/j.cma.2023.116470_b37
  doi: 10.2514/6.2006-112
– volume: 72
  start-page: 1232
  issue: 3
  year: 2017
  ident: 10.1016/j.cma.2023.116470_b4
  article-title: Construction of a p-adaptive continuous residual distribution scheme
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0399-6
– volume: 31
  start-page: 335
  issue: 3
  year: 1979
  ident: 10.1016/j.cma.2023.116470_b20
  article-title: Fully multidimensional flux-corrected transport algorithms for fluids
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(79)90051-2
– year: 2012
  ident: 10.1016/j.cma.2023.116470_b22
  article-title: Flux-corrected transport: Principles, algorithms, and applications
  doi: 10.1007/978-94-007-4038-9
– ident: 10.1016/j.cma.2023.116470_b26
  doi: 10.2514/6.1981-1259
– year: 2012
  ident: 10.1016/j.cma.2023.116470_b35
– volume: 276
  start-page: 707
  issue: 2
  year: 1983
  ident: 10.1016/j.cma.2023.116470_b43
  article-title: The sharp form of Oleĭnik’s entropy condition in several space variables
  publication-title: Trans. Amer. Math. Soc.
– volume: 347
  start-page: 143
  year: 2019
  ident: 10.1016/j.cma.2023.116470_b18
  article-title: Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.11.036
– year: 2016
  ident: 10.1016/j.cma.2023.116470_b2
– volume: 7
  start-page: 159
  year: 1954
  ident: 10.1016/j.cma.2023.116470_b30
  article-title: Weak solutions of nonlinear hyperbolic equations and their numerical computation
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160070112
– volume: 79
  start-page: 397
  issue: 3
  year: 1998
  ident: 10.1016/j.cma.2023.116470_b6
  article-title: Third order nonoscillatory central scheme for hyperbolic conservation laws
  publication-title: Numer. Math.
  doi: 10.1007/s002110050345
– volume: 43
  start-page: 369
  issue: 168
  year: 1984
  ident: 10.1016/j.cma.2023.116470_b32
  article-title: Numerical viscosity and the entropy condition for conservative difference schemes
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1984-0758189-X
– volume: vol. 325
  year: 2010
  ident: 10.1016/j.cma.2023.116470_b42
– volume: 382
  issue: 28
  year: 2021
  ident: 10.1016/j.cma.2023.116470_b8
  article-title: Sparse invariant domain preserving discontinuous Galerkin methods with subcell convex limiting
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 24
  start-page: 279
  issue: 2
  year: 1987
  ident: 10.1016/j.cma.2023.116470_b40
  article-title: Uniformly high-order accurate nonoscillatory schemes. I
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0724022
– volume: 55
  issue: 5
  year: 2017
  ident: 10.1016/j.cma.2023.116470_b27
  article-title: Origins and further development of the Jameson-Schmidt-Turkel scheme
  publication-title: AIAA J.
  doi: 10.2514/1.J055493
– volume: 55
  start-page: 3120
  issue: 6
  year: 2017
  ident: 10.1016/j.cma.2023.116470_b29
  article-title: Invariant domains and second-order continuous finite element approximation for scalar conservation equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1106560
– year: 2015
  ident: 10.1016/j.cma.2023.116470_b1
– volume: 272
  start-page: 198
  year: 2014
  ident: 10.1016/j.cma.2023.116470_b15
  article-title: A maximum-principle preserving C0 finite element method for scalar conservation equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2013.12.015
– volume: 62
  start-page: 119
  issue: 205
  year: 1994
  ident: 10.1016/j.cma.2023.116470_b38
  article-title: Maximum principle on the entropy and second-order kinetic schemes
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1994-1208223-4
– volume: 44
  start-page: A3366
  issue: 5
  year: 2022
  ident: 10.1016/j.cma.2023.116470_b24
  article-title: Invariant-domain-preserving high-order time stepping: I Explicit Runge-Kutta schemes
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/21M145793X
– volume: 78
  start-page: 274
  issue: 2
  year: 2019
  ident: 10.1016/j.cma.2023.116470_b13
  article-title: High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.05.009
– volume: 135
  start-page: 170
  issue: 2
  year: 1997
  ident: 10.1016/j.cma.2023.116470_b19
  article-title: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5756
– volume: 54
  start-page: 2466
  issue: 4
  year: 2016
  ident: 10.1016/j.cma.2023.116470_b3
  article-title: Invariant domains and first-order continuous finite element approximation for hyperbolic systems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1074291
– volume: 52
  start-page: 2163
  issue: 4
  year: 2014
  ident: 10.1016/j.cma.2023.116470_b16
  article-title: A second-order maximum principle preserving Lagrange finite element technique for nonlinear scalar conservation equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130950240
– volume: 35
  start-page: 641
  issue: 7
  year: 2006
  ident: 10.1016/j.cma.2023.116470_b11
  article-title: Residual distribution schemes: current status and future trends
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2005.01.007
– volume: 88
  start-page: 683
  issue: 4
  year: 2001
  ident: 10.1016/j.cma.2023.116470_b7
  article-title: A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems
  publication-title: Numer. Math.
  doi: 10.1007/PL00005455
– volume: 73
  start-page: 119
  issue: 1
  year: 1996
  ident: 10.1016/j.cma.2023.116470_b33
  article-title: On positivity preserving finite volume schemes for Euler equations
  publication-title: Numer. Math.
  doi: 10.1007/s002110050187
– volume: 51
  start-page: 535
  issue: 184
  year: 1988
  ident: 10.1016/j.cma.2023.116470_b5
  article-title: A third-order accurate variation nonexpansive difference scheme for single nonlinear conservation laws
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1988-0935073-3
– volume: 229
  start-page: 3091
  issue: 9
  year: 2010
  ident: 10.1016/j.cma.2023.116470_b41
  article-title: On maximum-principle-satisfying high order schemes for scalar conservation laws
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.12.030
– volume: 175
  start-page: 525
  issue: 2
  year: 2002
  ident: 10.1016/j.cma.2023.116470_b21
  article-title: Flux correction tools for finite elements
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6955
– volume: 411
  issue: 19
  year: 2020
  ident: 10.1016/j.cma.2023.116470_b25
  article-title: Subcell flux limiting for high-order Bernstein finite element discretizations of scalar hyperbolic conservation laws
  publication-title: J. Comput. Phys.
– volume: 18
  start-page: 327
  issn: 1609-4840
  issue: 3
  year: 2018
  ident: 10.1016/j.cma.2023.116470_b34
  article-title: Some remarks about conservation for residual distribution schemes
  publication-title: Comput. Methods Appl. Math.
  doi: 10.1515/cmam-2017-0056
– volume: 25
  start-page: 35
  issue: 1
  year: 1983
  ident: 10.1016/j.cma.2023.116470_b31
  article-title: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws
  publication-title: SIAM Rev.
  doi: 10.1137/1025002
– volume: 31
  start-page: 482
  issue: 3
  year: 1991
  ident: 10.1016/j.cma.2023.116470_b36
  article-title: Contractivity of Runge-Kutta methods
  publication-title: BIT
  doi: 10.1007/BF01933264
– volume: 230
  start-page: 1238
  issue: 4
  year: 2011
  ident: 10.1016/j.cma.2023.116470_b9
  article-title: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.10.036
– volume: 47
  start-page: 715
  issue: 4
  year: 2007
  ident: 10.1016/j.cma.2023.116470_b28
  article-title: On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws
  publication-title: BIT
  doi: 10.1007/s10543-007-0147-7
– volume: 29
  start-page: 2381
  issue: 6
  year: 2007
  ident: 10.1016/j.cma.2023.116470_b44
  article-title: Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040614189
– year: 2022
  ident: 10.1016/j.cma.2023.116470_b14
– volume: 334
  start-page: 102
  year: 2017
  ident: 10.1016/j.cma.2023.116470_b23
  article-title: High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.031
– volume: 40
  start-page: A3211
  issue: 5
  year: 2018
  ident: 10.1016/j.cma.2023.116470_b17
  article-title: Second-order invariant domain preserving approximation of the Euler equations using convex limiting
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1149961
– volume: vol. 72
  year: 2021
  ident: 10.1016/j.cma.2023.116470_b45
SSID ssj0000812
Score 2.4689233
Snippet This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time....
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 116470
SubjectTerms Beräkningsvetenskap med inriktning mot numerisk analys
Finite element method
High-order method
Hyperbolic systems
Invariant domain
Limiting
Riemann problem
Scientific Computing with specialization in Numerical Analysis
Title Finite element-based invariant-domain preserving approximation of hyperbolic systems: Beyond second-order accuracy in space
URI https://dx.doi.org/10.1016/j.cma.2023.116470
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-516908
Volume 418
WOSCitedRecordID wos001100483300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 1879-2138
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOGwwQGwz5ABeQURK7iXMsbBNU08ShTL1ZseNMrdakSpuq2l_Pc-wk3Q-mceASRU7iRH6fnj-_PH8PoY9ZJqWiKiQa2AZhimUkkZ4iEdMAISDoVkj74iw6P-eTSfyr1xs1e2HWV1Ge880mXvxXU0MbGNtsnf0Hc7edQgOcg9HhCGaH46MMfzo1NPKLtnnhxExTRl9pDYtiGEWSFvPEZI6bbUdlHU2oZcU303lHHmFtWkojGOyEnpfbFLapA-GKT9f5tInjsnNtNhI3ws-60zps03wqmAlcJeORTnJyVqk2Hp1cJ2WxrkO0FSwKrovWbxcL2_6tmDk0u0CF3RntvCqPYhL4VsalcbvM-t07LtxGE2ZfVS0LFVBw6iGzxUXuUcY-nl4MRVFeiqoS9S8__gTtBNEg5n20M_x5Mhl18zL3rXY8GxDgRSa5tf2w5n93nfl3681_ZSzb0rI1HRm_QLtuHYGH1v4vUU_n-2jPrSmw89jLffR8S3DyFRpbcOAb4MC3wYE7cOAb4MBFhjtwYAeO1-j36cn4-w_i6moQRSlbER1K5imahl4QBzpSsZdSOWAZlZzKkFLw-XIQKi9OYxn5cC1Ik4xmCZdKRlyn9A3q50Wu3yIcQV-ZomHim7IGkhrVa5X6PnQjqVL-AfKasRPKic6b2idXoskunAkYbmGGW9jhPkCf20cWVnHloZtZYxDhKKOlggLg9NBjn6zx2jfcj6XDR973Dj0ziLehufeovyorfYSeqvVquiw_OCD-AWz_nuo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element-based+invariant-domain+preserving+approximation+of+hyperbolic+systems&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Guermond%2C+Jean-Luc&rft.au=Nazarov%2C+Murtazo&rft.au=Popov%2C+Bojan&rft.date=2024&rft.issn=1879-2138&rft.volume=418&rft_id=info:doi/10.1016%2Fj.cma.2023.116470&rft.externalDocID=oai_DiVA_org_uu_516908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon