Process-based vegetative growth model for cereal rye winter cover crop using object-oriented programming and linked-list data structure
•A cereal rye cover crop model is developed using object-oriented programming.•Organs are assembled based on a tiller hierarchy as the entire plant architecture.•The “representative plant” bridges individual and field-scale plant morphology. Cereal rye (Secale cereale L.) has been extensively studie...
Saved in:
| Published in: | Computers and electronics in agriculture Vol. 231; p. 109964 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.04.2025
|
| Subjects: | |
| ISSN: | 0168-1699 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A cereal rye cover crop model is developed using object-oriented programming.•Organs are assembled based on a tiller hierarchy as the entire plant architecture.•The “representative plant” bridges individual and field-scale plant morphology.
Cereal rye (Secale cereale L.) has been extensively studied as a winter cover crop in conservation agriculture using experimental and modeling approaches. Previous studies generally modeled cereal rye by modifying existing cash crop models. This study aims to develop a new cereal rye vegetative growth model and evaluate model accuracy. The new model, namely RYESIM, employs object-oriented programming techniques and a linked-list data structure to present the emergence order of cereal rye organs, such as leaves, internodes, and tillers. Individual organs are abstracted as “classes,” which encapsulate organs’ morphological features and emergence-growth-senescence processes as member variables and functions. Multiple organs are assembled based on the tiller hierarchy to formulate the cereal rye plant architecture. RYESIM also contains “representative plant” as an average process among multiple individual plants, which bridges individual organs’ growth and field-scale averaged plant morphology, as well as ensuring plant-level biomass and nitrogen (N) mass balance. Existing soil (2DSOIL) and biochemical photosynthesis models are incorporated to estimate soil water-nutrient supply, carbon assimilation and transpiration. RYESIM was evaluated using published field data measured in the Mid-Atlantic region of the USA. Compared to observed values, the relative mean absolute errors of RYESIM for tiller number, aboveground biomass and N mass were within 0.3, 0.4 and 0.5 (with exceptions), and the RYESIM simulated values fell within the value ranges from literature results. Therefore, RYESIM provides effective simulations on cereal rye vegetative growth, and the RYESIM model structure also provides a paradigm for future “multi-tiller” cash crop model development. |
|---|---|
| AbstractList | Cereal rye (Secale cereale L.) has been extensively studied as a winter cover crop in conservation agriculture using experimental and modeling approaches. Previous studies generally modeled cereal rye by modifying existing cash crop models. This study aims to develop a new cereal rye vegetative growth model and evaluate model accuracy. The new model, namely RYESIM, employs object-oriented programming techniques and a linked-list data structure to present the emergence order of cereal rye organs, such as leaves, internodes, and tillers. Individual organs are abstracted as "classes," which encapsulate organs' morphological features and emergence-growth-senescence processes as member variables and functions. Multiple organs are assembled based on the tiller hierarchy to formulate the cereal rye plant architecture. RYESIM also contains "representative plant" as an average process among multiple individual plants, which bridges individual organs' growth and field-scale averaged plant morphology, as well as ensuring plant-level biomass and nitrogen (N) mass balance. Existing soil (2DSOIL) and biochemical photosynthesis models are incorporated to estimate soil water-nutrient supply, carbon assimilation and transpiration. RYESIM was evaluated using published field data measured in the Mid-Atlantic region of the USA. Compared to observed values, the relative mean absolute errors of RYESIM for tiller number, aboveground biomass and N mass were within 0.3, 0.4 and 0.5 (with exceptions), and the RYESIM simulated values fell within the value ranges from literature results. Therefore, RYESIM provides effective simulations on cereal rye vegetative growth, and the RYESIM model structure also provides a paradigm for future "multi-tiller" cash crop model development. •A cereal rye cover crop model is developed using object-oriented programming.•Organs are assembled based on a tiller hierarchy as the entire plant architecture.•The “representative plant” bridges individual and field-scale plant morphology. Cereal rye (Secale cereale L.) has been extensively studied as a winter cover crop in conservation agriculture using experimental and modeling approaches. Previous studies generally modeled cereal rye by modifying existing cash crop models. This study aims to develop a new cereal rye vegetative growth model and evaluate model accuracy. The new model, namely RYESIM, employs object-oriented programming techniques and a linked-list data structure to present the emergence order of cereal rye organs, such as leaves, internodes, and tillers. Individual organs are abstracted as “classes,” which encapsulate organs’ morphological features and emergence-growth-senescence processes as member variables and functions. Multiple organs are assembled based on the tiller hierarchy to formulate the cereal rye plant architecture. RYESIM also contains “representative plant” as an average process among multiple individual plants, which bridges individual organs’ growth and field-scale averaged plant morphology, as well as ensuring plant-level biomass and nitrogen (N) mass balance. Existing soil (2DSOIL) and biochemical photosynthesis models are incorporated to estimate soil water-nutrient supply, carbon assimilation and transpiration. RYESIM was evaluated using published field data measured in the Mid-Atlantic region of the USA. Compared to observed values, the relative mean absolute errors of RYESIM for tiller number, aboveground biomass and N mass were within 0.3, 0.4 and 0.5 (with exceptions), and the RYESIM simulated values fell within the value ranges from literature results. Therefore, RYESIM provides effective simulations on cereal rye vegetative growth, and the RYESIM model structure also provides a paradigm for future “multi-tiller” cash crop model development. |
| ArticleNumber | 109964 |
| Author | Reddy, Vangimalla Han, Eunjin Horton, Robert Schomberg, Harry Tully, Katherine Wang, Zhuangji Beegum, Sahila Thapa, Resham Timlin, Dennis Fleisher, David Sun, Wenguang Mirsky, Steven |
| Author_xml | – sequence: 1 givenname: Zhuangji surname: Wang fullname: Wang, Zhuangji organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705 – sequence: 2 givenname: Dennis orcidid: 0000-0003-4883-4664 surname: Timlin fullname: Timlin, Dennis email: Dennis.Timlin@usda.gov organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705 – sequence: 3 givenname: Resham surname: Thapa fullname: Thapa, Resham organization: Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, USA 37209 – sequence: 4 givenname: David surname: Fleisher fullname: Fleisher, David organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705 – sequence: 5 givenname: Sahila surname: Beegum fullname: Beegum, Sahila organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705 – sequence: 6 givenname: Eunjin surname: Han fullname: Han, Eunjin organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705 – sequence: 7 givenname: Harry surname: Schomberg fullname: Schomberg, Harry organization: Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD, USA 20705 – sequence: 8 givenname: Steven surname: Mirsky fullname: Mirsky, Steven organization: Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD, USA 20705 – sequence: 9 givenname: Wenguang surname: Sun fullname: Sun, Wenguang organization: Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA 80523 – sequence: 10 givenname: Vangimalla surname: Reddy fullname: Reddy, Vangimalla organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705 – sequence: 11 givenname: Robert surname: Horton fullname: Horton, Robert organization: Department of Agronomy, Iowa State University, Ames, IA, USA 50011 – sequence: 12 givenname: Katherine surname: Tully fullname: Tully, Katherine organization: Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA 20742 |
| BookMark | eNp9kE1PwzAMhnMYEhvwDzjkyKUjadKvCxKa-JImwQHOUZq4JaNtRpJu2i_gb5OqnLnYsv36lf2s0GKwAyB0TcmaEprf7tbK9nvZrlOSZrFVVTlfoGUclQnNq-ocrbzfkVhXZbFEP2_OKvA-qaUHjQ_QQpDBHAC3zh7DJ-6thg431mEFDmSH3Qnw0QwBYscepujsHo_eDC229Q5USKwzEAUa751tnez7aSYHjTszfIFOOuMD1jJI7IMbVRgdXKKzRnYerv7yBfp4fHjfPCfb16eXzf02UYzxkACrNcuzRlFNOCl4UWZFSVLS8LpkDUvrOuMpI0rzqiYyg4KTstSVVmlWAqWUXaCb2Tee9j2CD6I3XkHXyQHs6AVLCUkLRvM8SvksjQ9676ARe2d66U6CEjGxFjsxsxYTazGzjmt38xrENw4GnPAq4lCgjYtwhLbmf4NfSsWQDg |
| Cites_doi | 10.1016/S0304-3800(96)01926-6 10.13031/2013.39836 10.1017/S0021859600071483 10.1016/0304-3800(91)90156-U 10.1094/PDIS-07-16-1067-RE 10.1007/s11104-023-06431-7 10.1016/j.agwat.2021.107348 10.1111/j.1365-3040.1992.tb00974.x 10.2134/agronj2016.09.0557 10.1007/978-1-4612-1626-1_15 10.1016/j.agrformet.2006.06.002 10.1016/j.agsy.2021.103151 10.1002/agj2.20429 10.2136/sssaj1994.03615995005800050041x 10.1080/00224561.2001.12457370 10.1071/EA9830073 10.1111/1365-3040.ep11581834 10.1614/WT-D-12-00078.1 10.1093/aob/mcg080 10.1002/ael2.20121 10.1111/gfs.12645 10.1016/j.agwat.2021.106966 10.1016/j.eja.2021.126244 10.1002/agj2.21306 10.1016/j.agrformet.2021.108700 10.1007/978-94-017-0519-6_48 10.3390/agronomy12122927 10.2137/145960606777245542 10.2134/agronj14.0462 10.2134/agronj2016.05.0266 10.1002/agj2.21030 10.1038/s41598-023-34378-3 10.1016/j.agwat.2022.107862 10.2134/agronj1996.00021962008800020008x 10.1017/S1742170520000411 10.24266/0738-2898-16.2.90 10.1016/j.envsoft.2014.07.009 10.2134/jeq2006.0468 10.1029/2021WR030431 10.2134/agronj2015.0481 10.2489/jswc.73.2.164 10.1007/BF00386231 10.1094/PDIS-04-21-0836-RE 10.1007/BF02033664 10.1016/j.still.2018.03.004 10.2134/agronj2017.09.0544 10.1111/sum.12747 10.1002/agj2.21418 10.1111/j.1365-3040.1997.00094.x 10.1139/cjps-2021-0032 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.compag.2025.109964 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| ExternalDocumentID | 10_1016_j_compag_2025_109964 S0168169925000705 |
| GeographicLocations | Mid-Atlantic region |
| GeographicLocations_xml | – name: Mid-Atlantic region |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABMAC ABMZM ABRWV ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACIWK ACMHX ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADQTV ADSLC AEBSH AEFWE AEIPS AEKER AENEX AEQOU AEUPX AEXOQ AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWPP AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM 9DU AAYXX ACLOT CITATION EFLBG ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c334t-e3bd365fc1d0407478578020f4b83f32bb54230cd49b0a5e74088d9dc258e1113 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001421690000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-1699 |
| IngestDate | Fri Nov 14 18:39:33 EST 2025 Sat Nov 29 07:44:01 EST 2025 Sat Aug 30 17:14:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cereal Rye Cover Crop Tiller Hierarchy Object-Oriented Programming Crop Growth Model Plant Botanical Structures |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-e3bd365fc1d0407478578020f4b83f32bb54230cd49b0a5e74088d9dc258e1113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4883-4664 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.compag.2025.109964 |
| PQID | 3200273166 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3200273166 crossref_primary_10_1016_j_compag_2025_109964 elsevier_sciencedirect_doi_10_1016_j_compag_2025_109964 |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers and electronics in agriculture |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ball, J.T., Woodrow, I.E., Berry, J.A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins, J. (eds) Progress in Photosynthesis Research. Springer, Dordrecht. doi: 10.1007/978-94-017-0519-6_48. Keene, Curran, Wallace, Ryan, Mirsky, VanGessel, Barbercheck (b0120) 2017; 109 Huusela-veistola, Jalli, Salonen (b0105) 2006; 15 McMaster, Wilhelm, Morgan (b0160) 1992; 119 Wang, Z., Timlin, D., Thapa, R., Fleisher, D., Sun, W., Beegum, S., Lu, Y., Schomberg, H., Mirsky, S., Reberg-Horton, C., Zhang, X., Reddy, V.R., Horton, R., Tully, K. unpublished results. Modeling cover crop growth, cover crop residue mulch and residue decomposition in a “Cereal Rye-Residue Mulch” management during winter periods. Wong, Griffiths, Moran, Johnston, Liu, Sellers, Topp (b0270) 2023; 500 Yanai (b0275) 1994; 58 Balkcom, Read, Gamble (b0020) 2023; 115 Fleisher, Timlin (b0060) 2006; 139 Sun, Fleisher, Timlin, Li, Wang, Reddy (b0205) 2022; 312 Wang, E. 2014. The APSIM-Wheat Module (7.5 R3008). In APSIM [Software documentation]. Retrieved from Timlin, David, Green, Fleisher, Kim, Ahuja (b0220) 2016; 108 Qi, Helmers, Malone, Thorp (b0190) 2011; 54 Marcos, Acharya, Parvej, Robertson, Licht (b0145) 2023; 115 Mirsky, Spargo, Curran, Reberg-Horton, Ryan, Schomberg, Ackroyd (b0170) 2017; 109 Fournier, C., Andrieu, B., Ljutovac, S., Saint-Jean, S. 2002. Development of an architectural growth model for wheat. In book: Development of Vegetation Architectural Models for Remote Sensing Applications (pp 67-106). Final report of ESA Contract 14940. Chapter 6. Editors UCL. Haruna, Nkongolo, Anderson, Eivazi, Zaibon (b0090) 2018; 73 Reed, Karsten (b0195) 2022; 114 Wang, Thapa, Timlin, Li, Sun, Beegum, Fleisher, Mirsky, Cabrera, Sauer, Reddy, Horton, Tully (b0250) 2021; 57 de Pury, Farquhar (b0045) 1997; 20 Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N,I., McLean, G., Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish, J.P.M. Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z., Thorhurn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E., Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van Rees, H., McClelland, T., Carberry, P.S., Hargreaves, J.N.G., MacLeod, N., McDonald, C., Harsdorf, J., Wedgwood, S., Keating, S.A. 2014. APSIM – Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327-350. doi: 10.1016/j.envsoft.2014.07.009. Kim, Lieth (b0125) 2003; 91 Kaspar, Jaynes, Parkin, Moorman (b0115) 2007; 36 Marcillo, Mirsky, Poncet, Reberg-Horton, Timlin, Schomberg, Ramos (b0140) 2020; 112 Mwaja, Masiunas, Weston (b0175) 1995; 21 Vogeler, Jensen, Thomsen, Labouriau, Hansen (b0235) 2021; 124 Korucu, Shipitalo, Kaspar (b0130) 2018; 180 Acock, Reddy (b0010) 1997; 94 Gaimaro, Timlin, Tully (b0070) 2022; 261 Timlin, Fleisher, Tokay, Paff, Sun, Beegum, Li, Wang, Reddy (b0225) 2023; 5 Wang, Timlin, Li, Fleisher, Dathe, Luo, Dong, Reddy, Tully (b0255) 2021; 254 Gupta, Bhattarai, Coppess, Jeong, Ruffatti, Armstrong (b0080) 2022; 272 Vogeler, Thomsen, Taube, Poulsen, Loges, Hansen (b0240) 2022; 38 Poffenbarger, Mirsky, Weil, Maul, Kramer, Spargo, Cavigelli (b0180) 2015; 107 Timlin, Pachepsky, Acock (b0215) 1996; 88 Campbell, G.S., Norman, J.M. 1998. The light environment of plant canopies. In: An Introduction to Environmental Biophysics. Springer, New York, NY. doi: 10.1007/978-1-4612-1626-1_15. Graham, Geytenbeek, Radcliffe (b0075) 1983; 23 (last accessed: 01/01/2025). Thapa, Poffenbarger, Tully, Ackroyd, Kramer, Mirsky (b0210) 2018; 110 Beegum, Timlin, Reddy, Reddy, Sun, Wang, Fleisher, Ray (b0030) 2023; 13 Harley, Thomas, Reynolds, Strain (b0085) 1992; 15 Baker, Gallagher, Monteith (b0015) 1980; 3 Farzadfar, Knight, Congreves (b0055) 2021; 101 Sadeghpour, Adeyemi, Hunter, Luo, Armstrong (b0200) 2021; 36 McClelland, Paustian, Williams, Schipanski (b0150) 2021; 191 Acharya, Moorman, Kaspar, Lenssen, Gailans, Robertson (b0005) 2022; 106 Mirsky, Ryan, Teasdale, Curran, Reberg-Horton, Spargo, Wells, Keene, Moyer (b0165) 2013; 27 Li, Fleisher, Timlin, Barnaby, Sun, Wang, Reddy (b0135) 2022; 12 Kaspar, Radke, Laflen (b0110) 2001; 56 Huddell, Needelman, Law, Ackroyd, Bagavathiannan, Bradley, Davis, Evans, Everman, Flessner, Jordan, Schwartz-Lazaro, Leon, Lindquist, Norsworthy, Shergill, VanGessel, Mirsky (b0100) 2024; 9 McMaster, Klepper, Rickman, Wilhelm, Willis (b0155) 1991; 53 Calkins, Swanson (b0035) 1998; 16 Farquhar, von Caemmerer, Berry (b0050) 1980; 149 Vaughn, Adeyemi, Zandvakili, Battaglia, Babaei, Nair, Still, Burkett, Sadeghpour (b0230) 2024; 79 Prabhakara, Hively, McCarty (b0185) 2015; 39 Wen, Lee-Marzano, Ortiz-Ribbing, Gruver, Hartman, Eastburn (b0265) 2017; 101 Mirsky (10.1016/j.compag.2025.109964_b0170) 2017; 109 Qi (10.1016/j.compag.2025.109964_b0190) 2011; 54 Beegum (10.1016/j.compag.2025.109964_b0030) 2023; 13 Kim (10.1016/j.compag.2025.109964_b0125) 2003; 91 Haruna (10.1016/j.compag.2025.109964_b0090) 2018; 73 Poffenbarger (10.1016/j.compag.2025.109964_b0180) 2015; 107 Harley (10.1016/j.compag.2025.109964_b0085) 1992; 15 Sadeghpour (10.1016/j.compag.2025.109964_b0200) 2021; 36 Kaspar (10.1016/j.compag.2025.109964_b0115) 2007; 36 Marcos (10.1016/j.compag.2025.109964_b0145) 2023; 115 Vogeler (10.1016/j.compag.2025.109964_b0240) 2022; 38 Calkins (10.1016/j.compag.2025.109964_b0035) 1998; 16 Wang (10.1016/j.compag.2025.109964_b0250) 2021; 57 Sun (10.1016/j.compag.2025.109964_b0205) 2022; 312 10.1016/j.compag.2025.109964_b0040 Gaimaro (10.1016/j.compag.2025.109964_b0070) 2022; 261 10.1016/j.compag.2025.109964_b0245 Farzadfar (10.1016/j.compag.2025.109964_b0055) 2021; 101 Baker (10.1016/j.compag.2025.109964_b0015) 1980; 3 Mwaja (10.1016/j.compag.2025.109964_b0175) 1995; 21 Balkcom (10.1016/j.compag.2025.109964_b0020) 2023; 115 Vaughn (10.1016/j.compag.2025.109964_b0230) 2024; 79 Fleisher (10.1016/j.compag.2025.109964_b0060) 2006; 139 Kaspar (10.1016/j.compag.2025.109964_b0110) 2001; 56 Acharya (10.1016/j.compag.2025.109964_b0005) 2022; 106 McMaster (10.1016/j.compag.2025.109964_b0155) 1991; 53 Farquhar (10.1016/j.compag.2025.109964_b0050) 1980; 149 Yanai (10.1016/j.compag.2025.109964_b0275) 1994; 58 10.1016/j.compag.2025.109964_b0095 Gupta (10.1016/j.compag.2025.109964_b0080) 2022; 272 Huusela-veistola (10.1016/j.compag.2025.109964_b0105) 2006; 15 Prabhakara (10.1016/j.compag.2025.109964_b0185) 2015; 39 Mirsky (10.1016/j.compag.2025.109964_b0165) 2013; 27 de Pury (10.1016/j.compag.2025.109964_b0045) 1997; 20 Keene (10.1016/j.compag.2025.109964_b0120) 2017; 109 Timlin (10.1016/j.compag.2025.109964_b0220) 2016; 108 McClelland (10.1016/j.compag.2025.109964_b0150) 2021; 191 Huddell (10.1016/j.compag.2025.109964_b0100) 2024; 9 10.1016/j.compag.2025.109964_b0065 10.1016/j.compag.2025.109964_b0260 10.1016/j.compag.2025.109964_b0025 McMaster (10.1016/j.compag.2025.109964_b0160) 1992; 119 Timlin (10.1016/j.compag.2025.109964_b0215) 1996; 88 Timlin (10.1016/j.compag.2025.109964_b0225) 2023; 5 Wang (10.1016/j.compag.2025.109964_b0255) 2021; 254 Wong (10.1016/j.compag.2025.109964_b0270) 2023; 500 Korucu (10.1016/j.compag.2025.109964_b0130) 2018; 180 Wen (10.1016/j.compag.2025.109964_b0265) 2017; 101 Vogeler (10.1016/j.compag.2025.109964_b0235) 2021; 124 Li (10.1016/j.compag.2025.109964_b0135) 2022; 12 Thapa (10.1016/j.compag.2025.109964_b0210) 2018; 110 Graham (10.1016/j.compag.2025.109964_b0075) 1983; 23 Marcillo (10.1016/j.compag.2025.109964_b0140) 2020; 112 Reed (10.1016/j.compag.2025.109964_b0195) 2022; 114 Acock (10.1016/j.compag.2025.109964_b0010) 1997; 94 |
| References_xml | – volume: 88 start-page: 162 year: 1996 end-page: 169 ident: b0215 article-title: A design for a modular, generic soil simulator to interface with plant models publication-title: Agron. J. – reference: Campbell, G.S., Norman, J.M. 1998. The light environment of plant canopies. In: An Introduction to Environmental Biophysics. Springer, New York, NY. doi: 10.1007/978-1-4612-1626-1_15. – volume: 16 start-page: 90 year: 1998 end-page: 97 ident: b0035 article-title: Comparison of conventional and alternative nursery field management systems: soil physical properties publication-title: J. Environ. Hortic. – volume: 191 year: 2021 ident: b0150 article-title: Modeling cover crop biomass production and related emissions to improve farm-scale decision-support tools publication-title: Agric. Syst. – volume: 312 year: 2022 ident: b0205 article-title: Effects of elevated CO publication-title: Agric. For. Meteorol. – volume: 109 start-page: 272 year: 2017 end-page: 282 ident: b0120 article-title: Cover crop termination timing is critical in organic rotational no-till systems publication-title: Agron. J. – reference: (last accessed: 01/01/2025). – reference: Fournier, C., Andrieu, B., Ljutovac, S., Saint-Jean, S. 2002. Development of an architectural growth model for wheat. In book: Development of Vegetation Architectural Models for Remote Sensing Applications (pp 67-106). Final report of ESA Contract 14940. Chapter 6. Editors UCL. – volume: 23 start-page: 73 year: 1983 end-page: 79 ident: b0075 article-title: Responses of triticale, wheat, rye and barley to nitrogen fertilizer publication-title: Aust. J. Exp. Agric. Anim. Husb. – volume: 115 start-page: 1356 year: 2023 end-page: 1372 ident: b0145 article-title: Cereal rye cover crop seeding method, seeding rate, and termination timing effects corn development and seedling disease publication-title: Agron. J. – volume: 91 start-page: 771 year: 2003 end-page: 781 ident: b0125 article-title: A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf ( publication-title: Ann. Bot. – volume: 101 start-page: 1014 year: 2021 end-page: 1028 ident: b0055 article-title: Rye cover crop improves vegetable crop nitrogen use efficiency and yield in a short season growing region publication-title: Can. J. Plant Sci. – volume: 36 start-page: 328 year: 2021 end-page: 333 ident: b0200 article-title: Precision planting impacts on winter cereal rye growth, nutrient uptake, spring soil temperature and adoption cost publication-title: Renewable Agric. Food Syst. – volume: 57 year: 2021 ident: b0250 article-title: Simulations of water and thermal dynamics for soil surfaces with residue mulch and surface runoff publication-title: Water Resour. Res. – volume: 124 year: 2021 ident: b0235 article-title: Fertiliser N rates interact with sowing time and catch crops in cereals and affect yield and nitrate leaching publication-title: Eur. J. Agron. – volume: 94 start-page: 33 year: 1997 end-page: 44 ident: b0010 article-title: Designing an object-oriented structure for crop models publication-title: Ecol. Model. – volume: 261 year: 2022 ident: b0070 article-title: Comparison of cover crop monocultures and mixtures for suppressing nitrogen leaching losses publication-title: Agric. Water Manag. – volume: 13 start-page: 7314 year: 2023 ident: b0030 article-title: Improving the cotton simulation model, GOSSYM, for soil, photosynthesis, and transpiration processes publication-title: Sci. Rep. – volume: 5 year: 2023 ident: b0225 article-title: CLASSIM: a relational database driven crop model interface publication-title: Smart Agr. Technol. – volume: 3 start-page: 285 year: 1980 end-page: 287 ident: b0015 article-title: Daylength change and leaf appearance in winter wheat publication-title: Plant Cell Environ. – volume: 79 start-page: 239 year: 2024 end-page: 253 ident: b0230 article-title: Nitrogen rate and harvesting time based on growing degree days influenced winter cereal rye morphological traits, forage yield, quality, and farm profit in poorly drained Alfisols publication-title: Grass Forage Sci. – volume: 254 year: 2021 ident: b0255 article-title: A diffusive model of maize root growth in MAIZSIM and its applications in Ridge-Furrow Rainfall Harvesting publication-title: Agric. Water Manag. – volume: 9 year: 2024 ident: b0100 article-title: Early-season biomass and weather enable robust cereal rye cover crop biomass predictions publication-title: Agric. Environ. Lett. – volume: 53 start-page: 189 year: 1991 end-page: 204 ident: b0155 article-title: Simulation of shoot vegetative development and growth of unstressed winter wheat publication-title: Ecol. Model. – volume: 21 start-page: 81 year: 1995 end-page: 96 ident: b0175 article-title: Effects of fertility on biomass, phytotoxicity, and allelochemical content of cereal rye publication-title: J. Chem. Ecol. – volume: 58 start-page: 1562 year: 1994 end-page: 1571 ident: b0275 article-title: A steady-state model of nutrient uptake accounting for newly grown roots publication-title: Soil Sci. Soc. Am. J. – volume: 500 start-page: 279 year: 2023 end-page: 296 ident: b0270 article-title: Cover crop cultivars and species differ in root traits potentially impacting their selection for ecosystem services publication-title: Plant Soil. – volume: 38 start-page: 663 year: 2022 end-page: 675 ident: b0240 article-title: Effect of winter cereal sowing time on yield and nitrogen leaching based on experiments and modelling publication-title: Soil Use Manag. – reference: Wang, Z., Timlin, D., Thapa, R., Fleisher, D., Sun, W., Beegum, S., Lu, Y., Schomberg, H., Mirsky, S., Reberg-Horton, C., Zhang, X., Reddy, V.R., Horton, R., Tully, K. unpublished results. Modeling cover crop growth, cover crop residue mulch and residue decomposition in a “Cereal Rye-Residue Mulch” management during winter periods. – reference: Wang, E. 2014. The APSIM-Wheat Module (7.5 R3008). In APSIM [Software documentation]. Retrieved from – volume: 272 year: 2022 ident: b0080 article-title: Modeling the impact of winter cover crop on tile drainage and nitrate loss using DSSAT model publication-title: Agric. Water Manag. – volume: 56 start-page: 160 year: 2001 end-page: 164 ident: b0110 article-title: Small grain cover crops and wheel traffic effects on infiltration, runoff, and erosion publication-title: J. Soil Water Conserv. – volume: 27 start-page: 193 year: 2013 end-page: 203 ident: b0165 article-title: Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the Eastern United States publication-title: Weed Technol. – volume: 180 start-page: 99 year: 2018 end-page: 106 ident: b0130 article-title: Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff publication-title: Soil Tillage Res. – reference: Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N,I., McLean, G., Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish, J.P.M. Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z., Thorhurn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E., Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van Rees, H., McClelland, T., Carberry, P.S., Hargreaves, J.N.G., MacLeod, N., McDonald, C., Harsdorf, J., Wedgwood, S., Keating, S.A. 2014. APSIM – Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327-350. doi: 10.1016/j.envsoft.2014.07.009. – volume: 15 start-page: 271 year: 1992 end-page: 282 ident: b0085 article-title: Modelling photosynthesis of cotton grown in elevated CO publication-title: Plant Cell Environ. – volume: 12 start-page: 2927 year: 2022 ident: b0135 article-title: Improving simulations of rice in response to temperature and CO publication-title: Agronomy – volume: 73 start-page: 164 year: 2018 end-page: 172 ident: b0090 article-title: In situ infiltration as influenced by cover crop and tillage management publication-title: J. Soil Water Conserv. – volume: 15 start-page: 43 year: 2006 end-page: 60 ident: b0105 article-title: Sowing time affects the abundance of pests and weeds in winter rye publication-title: Agric. Food Sci. – volume: 109 start-page: 1520 year: 2017 end-page: 1531 ident: b0170 article-title: Characterizing cereal rye biomass and allometric relationships across a range of fall available nitrogen rates in the eastern United States publication-title: Agron. J. – volume: 54 start-page: 1575 year: 2011 end-page: 1588 ident: b0190 article-title: Simulating long-term impacts of winter rye cover crop on hydrologic cycling and nitrogen dynamics for a corn-soybean crop system publication-title: Trans. ASABE – volume: 115 start-page: 2351 year: 2023 end-page: 2368 ident: b0020 article-title: Rye planting date impacts biomass production more than seeding rate and nitrogen fertilizer publication-title: Agron. J. – volume: 107 start-page: 2069 year: 2015 end-page: 2082 ident: b0180 article-title: Biomass and nitrogen content of hairy vetch–cereal rye cover crop mixtures as influenced by species proportions publication-title: Agron. J. – volume: 110 start-page: 1197 year: 2018 end-page: 1208 ident: b0210 article-title: Biomass production and nitrogen accumulation by hairy vetch–cereal rye mixtures: a meta-analysis publication-title: Agron. J. – reference: Ball, J.T., Woodrow, I.E., Berry, J.A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins, J. (eds) Progress in Photosynthesis Research. Springer, Dordrecht. doi: 10.1007/978-94-017-0519-6_48. – volume: 114 start-page: 1311 year: 2022 end-page: 1323 ident: b0195 article-title: Does winter cereal rye seeding rate, termination time, and N rate impact no-till soybean? publication-title: Agron. J. – volume: 108 start-page: 1782 year: 2016 end-page: 1786 ident: b0220 article-title: Proposed standards for peer-reviewed publication of computer code publication-title: Agron. J. – volume: 36 start-page: 1503 year: 2007 end-page: 1511 ident: b0115 article-title: Rye cover crop and Gamagrass strip effects on NO publication-title: J. Environ. Qual. – volume: 119 start-page: 1 year: 1992 end-page: 12 ident: b0160 article-title: Simulating winter wheat shoot apex phenology publication-title: J. Agric. Sci. – volume: 39 start-page: 88 year: 2015 end-page: 102 ident: b0185 article-title: Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 149 start-page: 78 year: 1980 end-page: 90 ident: b0050 article-title: A biochemical model of photosynthetic CO publication-title: Planta – volume: 101 start-page: 1918 year: 2017 end-page: 1928 ident: b0265 article-title: Suppression of soilborne diseases of soybean with cover crops publication-title: Plant Dis. – volume: 112 start-page: 4898 year: 2020 end-page: 4913 ident: b0140 article-title: Using statistical learning algorithms to predict cover crop biomass and cover crop nitrogen content publication-title: Agron. J. – volume: 106 start-page: 114 year: 2022 end-page: 120 ident: b0005 article-title: Effect of planting into a green winter cereal rye cover crop on growth and development, seedling disease, and yield of corn publication-title: Plant Dis. – volume: 20 start-page: 537 year: 1997 end-page: 557 ident: b0045 article-title: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models publication-title: Plant Cell Environ. – volume: 139 start-page: 84 year: 2006 end-page: 93 ident: b0060 article-title: Modeling expansion of individual leaves in the potato canopy publication-title: Agric. For. Meteorol. – volume: 94 start-page: 33 issue: 1 year: 1997 ident: 10.1016/j.compag.2025.109964_b0010 article-title: Designing an object-oriented structure for crop models publication-title: Ecol. Model. doi: 10.1016/S0304-3800(96)01926-6 – volume: 54 start-page: 1575 issue: 5 year: 2011 ident: 10.1016/j.compag.2025.109964_b0190 article-title: Simulating long-term impacts of winter rye cover crop on hydrologic cycling and nitrogen dynamics for a corn-soybean crop system publication-title: Trans. ASABE doi: 10.13031/2013.39836 – volume: 119 start-page: 1 issue: 1 year: 1992 ident: 10.1016/j.compag.2025.109964_b0160 article-title: Simulating winter wheat shoot apex phenology publication-title: J. Agric. Sci. doi: 10.1017/S0021859600071483 – volume: 53 start-page: 189 year: 1991 ident: 10.1016/j.compag.2025.109964_b0155 article-title: Simulation of shoot vegetative development and growth of unstressed winter wheat publication-title: Ecol. Model. doi: 10.1016/0304-3800(91)90156-U – volume: 101 start-page: 1918 issue: 11 year: 2017 ident: 10.1016/j.compag.2025.109964_b0265 article-title: Suppression of soilborne diseases of soybean with cover crops publication-title: Plant Dis. doi: 10.1094/PDIS-07-16-1067-RE – volume: 500 start-page: 279 year: 2023 ident: 10.1016/j.compag.2025.109964_b0270 article-title: Cover crop cultivars and species differ in root traits potentially impacting their selection for ecosystem services publication-title: Plant Soil. doi: 10.1007/s11104-023-06431-7 – volume: 261 year: 2022 ident: 10.1016/j.compag.2025.109964_b0070 article-title: Comparison of cover crop monocultures and mixtures for suppressing nitrogen leaching losses publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107348 – volume: 15 start-page: 271 issue: 3 year: 1992 ident: 10.1016/j.compag.2025.109964_b0085 article-title: Modelling photosynthesis of cotton grown in elevated CO2 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1992.tb00974.x – volume: 109 start-page: 1520 issue: 4 year: 2017 ident: 10.1016/j.compag.2025.109964_b0170 article-title: Characterizing cereal rye biomass and allometric relationships across a range of fall available nitrogen rates in the eastern United States publication-title: Agron. J. doi: 10.2134/agronj2016.09.0557 – ident: 10.1016/j.compag.2025.109964_b0040 doi: 10.1007/978-1-4612-1626-1_15 – volume: 139 start-page: 84 issue: 1–2 year: 2006 ident: 10.1016/j.compag.2025.109964_b0060 article-title: Modeling expansion of individual leaves in the potato canopy publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.06.002 – volume: 191 year: 2021 ident: 10.1016/j.compag.2025.109964_b0150 article-title: Modeling cover crop biomass production and related emissions to improve farm-scale decision-support tools publication-title: Agric. Syst. doi: 10.1016/j.agsy.2021.103151 – volume: 112 start-page: 4898 issue: 6 year: 2020 ident: 10.1016/j.compag.2025.109964_b0140 article-title: Using statistical learning algorithms to predict cover crop biomass and cover crop nitrogen content publication-title: Agron. J. doi: 10.1002/agj2.20429 – volume: 58 start-page: 1562 issue: 5 year: 1994 ident: 10.1016/j.compag.2025.109964_b0275 article-title: A steady-state model of nutrient uptake accounting for newly grown roots publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1994.03615995005800050041x – volume: 56 start-page: 160 issue: 2 year: 2001 ident: 10.1016/j.compag.2025.109964_b0110 article-title: Small grain cover crops and wheel traffic effects on infiltration, runoff, and erosion publication-title: J. Soil Water Conserv. doi: 10.1080/00224561.2001.12457370 – volume: 5 year: 2023 ident: 10.1016/j.compag.2025.109964_b0225 article-title: CLASSIM: a relational database driven crop model interface publication-title: Smart Agr. Technol. – volume: 23 start-page: 73 issue: 120 year: 1983 ident: 10.1016/j.compag.2025.109964_b0075 article-title: Responses of triticale, wheat, rye and barley to nitrogen fertilizer publication-title: Aust. J. Exp. Agric. Anim. Husb. doi: 10.1071/EA9830073 – volume: 3 start-page: 285 year: 1980 ident: 10.1016/j.compag.2025.109964_b0015 article-title: Daylength change and leaf appearance in winter wheat publication-title: Plant Cell Environ. doi: 10.1111/1365-3040.ep11581834 – volume: 27 start-page: 193 issue: 1 year: 2013 ident: 10.1016/j.compag.2025.109964_b0165 article-title: Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the Eastern United States publication-title: Weed Technol. doi: 10.1614/WT-D-12-00078.1 – volume: 91 start-page: 771 issue: 7 year: 2003 ident: 10.1016/j.compag.2025.109964_b0125 article-title: A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.) publication-title: Ann. Bot. doi: 10.1093/aob/mcg080 – volume: 9 issue: 1 year: 2024 ident: 10.1016/j.compag.2025.109964_b0100 article-title: Early-season biomass and weather enable robust cereal rye cover crop biomass predictions publication-title: Agric. Environ. Lett. doi: 10.1002/ael2.20121 – volume: 79 start-page: 239 issue: 2 year: 2024 ident: 10.1016/j.compag.2025.109964_b0230 article-title: Nitrogen rate and harvesting time based on growing degree days influenced winter cereal rye morphological traits, forage yield, quality, and farm profit in poorly drained Alfisols publication-title: Grass Forage Sci. doi: 10.1111/gfs.12645 – volume: 254 year: 2021 ident: 10.1016/j.compag.2025.109964_b0255 article-title: A diffusive model of maize root growth in MAIZSIM and its applications in Ridge-Furrow Rainfall Harvesting publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.106966 – volume: 124 year: 2021 ident: 10.1016/j.compag.2025.109964_b0235 article-title: Fertiliser N rates interact with sowing time and catch crops in cereals and affect yield and nitrate leaching publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2021.126244 – volume: 115 start-page: 1356 issue: 3 year: 2023 ident: 10.1016/j.compag.2025.109964_b0145 article-title: Cereal rye cover crop seeding method, seeding rate, and termination timing effects corn development and seedling disease publication-title: Agron. J. doi: 10.1002/agj2.21306 – volume: 312 year: 2022 ident: 10.1016/j.compag.2025.109964_b0205 article-title: Effects of elevated CO2 and temperature on soybean growth and gas exchange rates: a modified GLYCIM model publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108700 – ident: 10.1016/j.compag.2025.109964_b0025 doi: 10.1007/978-94-017-0519-6_48 – volume: 12 start-page: 2927 issue: 12 year: 2022 ident: 10.1016/j.compag.2025.109964_b0135 article-title: Improving simulations of rice in response to temperature and CO2 publication-title: Agronomy doi: 10.3390/agronomy12122927 – ident: 10.1016/j.compag.2025.109964_b0245 – ident: 10.1016/j.compag.2025.109964_b0065 – volume: 15 start-page: 43 issue: 1 year: 2006 ident: 10.1016/j.compag.2025.109964_b0105 article-title: Sowing time affects the abundance of pests and weeds in winter rye publication-title: Agric. Food Sci. doi: 10.2137/145960606777245542 – volume: 107 start-page: 2069 issue: 6 year: 2015 ident: 10.1016/j.compag.2025.109964_b0180 article-title: Biomass and nitrogen content of hairy vetch–cereal rye cover crop mixtures as influenced by species proportions publication-title: Agron. J. doi: 10.2134/agronj14.0462 – volume: 109 start-page: 272 issue: 1 year: 2017 ident: 10.1016/j.compag.2025.109964_b0120 article-title: Cover crop termination timing is critical in organic rotational no-till systems publication-title: Agron. J. doi: 10.2134/agronj2016.05.0266 – volume: 114 start-page: 1311 issue: 2 year: 2022 ident: 10.1016/j.compag.2025.109964_b0195 article-title: Does winter cereal rye seeding rate, termination time, and N rate impact no-till soybean? publication-title: Agron. J. doi: 10.1002/agj2.21030 – volume: 13 start-page: 7314 year: 2023 ident: 10.1016/j.compag.2025.109964_b0030 article-title: Improving the cotton simulation model, GOSSYM, for soil, photosynthesis, and transpiration processes publication-title: Sci. Rep. doi: 10.1038/s41598-023-34378-3 – volume: 272 year: 2022 ident: 10.1016/j.compag.2025.109964_b0080 article-title: Modeling the impact of winter cover crop on tile drainage and nitrate loss using DSSAT model publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.107862 – volume: 39 start-page: 88 year: 2015 ident: 10.1016/j.compag.2025.109964_b0185 article-title: Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 88 start-page: 162 issue: 2 year: 1996 ident: 10.1016/j.compag.2025.109964_b0215 article-title: A design for a modular, generic soil simulator to interface with plant models publication-title: Agron. J. doi: 10.2134/agronj1996.00021962008800020008x – volume: 36 start-page: 328 issue: 4 year: 2021 ident: 10.1016/j.compag.2025.109964_b0200 article-title: Precision planting impacts on winter cereal rye growth, nutrient uptake, spring soil temperature and adoption cost publication-title: Renewable Agric. Food Syst. doi: 10.1017/S1742170520000411 – volume: 16 start-page: 90 issue: 2 year: 1998 ident: 10.1016/j.compag.2025.109964_b0035 article-title: Comparison of conventional and alternative nursery field management systems: soil physical properties publication-title: J. Environ. Hortic. doi: 10.24266/0738-2898-16.2.90 – ident: 10.1016/j.compag.2025.109964_b0095 doi: 10.1016/j.envsoft.2014.07.009 – volume: 36 start-page: 1503 issue: 5 year: 2007 ident: 10.1016/j.compag.2025.109964_b0115 article-title: Rye cover crop and Gamagrass strip effects on NO3 concentration and load in tile drainage publication-title: J. Environ. Qual. doi: 10.2134/jeq2006.0468 – volume: 57 year: 2021 ident: 10.1016/j.compag.2025.109964_b0250 article-title: Simulations of water and thermal dynamics for soil surfaces with residue mulch and surface runoff publication-title: Water Resour. Res. doi: 10.1029/2021WR030431 – volume: 108 start-page: 1782 issue: 5 year: 2016 ident: 10.1016/j.compag.2025.109964_b0220 article-title: Proposed standards for peer-reviewed publication of computer code publication-title: Agron. J. doi: 10.2134/agronj2015.0481 – volume: 73 start-page: 164 issue: 3 year: 2018 ident: 10.1016/j.compag.2025.109964_b0090 article-title: In situ infiltration as influenced by cover crop and tillage management publication-title: J. Soil Water Conserv. doi: 10.2489/jswc.73.2.164 – volume: 149 start-page: 78 year: 1980 ident: 10.1016/j.compag.2025.109964_b0050 article-title: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species publication-title: Planta doi: 10.1007/BF00386231 – volume: 106 start-page: 114 issue: 1 year: 2022 ident: 10.1016/j.compag.2025.109964_b0005 article-title: Effect of planting into a green winter cereal rye cover crop on growth and development, seedling disease, and yield of corn publication-title: Plant Dis. doi: 10.1094/PDIS-04-21-0836-RE – volume: 21 start-page: 81 issue: 1 year: 1995 ident: 10.1016/j.compag.2025.109964_b0175 article-title: Effects of fertility on biomass, phytotoxicity, and allelochemical content of cereal rye publication-title: J. Chem. Ecol. doi: 10.1007/BF02033664 – volume: 180 start-page: 99 year: 2018 ident: 10.1016/j.compag.2025.109964_b0130 article-title: Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.03.004 – volume: 110 start-page: 1197 issue: 4 year: 2018 ident: 10.1016/j.compag.2025.109964_b0210 article-title: Biomass production and nitrogen accumulation by hairy vetch–cereal rye mixtures: a meta-analysis publication-title: Agron. J. doi: 10.2134/agronj2017.09.0544 – volume: 38 start-page: 663 issue: 1 year: 2022 ident: 10.1016/j.compag.2025.109964_b0240 article-title: Effect of winter cereal sowing time on yield and nitrogen leaching based on experiments and modelling publication-title: Soil Use Manag. doi: 10.1111/sum.12747 – ident: 10.1016/j.compag.2025.109964_b0260 – volume: 115 start-page: 2351 issue: 5 year: 2023 ident: 10.1016/j.compag.2025.109964_b0020 article-title: Rye planting date impacts biomass production more than seeding rate and nitrogen fertilizer publication-title: Agron. J. doi: 10.1002/agj2.21418 – volume: 20 start-page: 537 issue: 5 year: 1997 ident: 10.1016/j.compag.2025.109964_b0045 article-title: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1997.00094.x – volume: 101 start-page: 1014 issue: 6 year: 2021 ident: 10.1016/j.compag.2025.109964_b0055 article-title: Rye cover crop improves vegetable crop nitrogen use efficiency and yield in a short season growing region publication-title: Can. J. Plant Sci. doi: 10.1139/cjps-2021-0032 |
| SSID | ssj0016987 |
| Score | 2.4278157 |
| Snippet | •A cereal rye cover crop model is developed using object-oriented programming.•Organs are assembled based on a tiller hierarchy as the entire plant... Cereal rye (Secale cereale L.) has been extensively studied as a winter cover crop in conservation agriculture using experimental and modeling approaches.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 109964 |
| SubjectTerms | aboveground biomass agricultural conservation practice agriculture carbon dioxide fixation cash crops Cereal Rye Cover Crop cover crops Crop Growth Model crop models electronics Mid-Atlantic region nitrogen Object-Oriented Programming photosynthesis plant architecture Plant Botanical Structures rye Secale cereale soil Tiller Hierarchy transpiration vegetative growth |
| Title | Process-based vegetative growth model for cereal rye winter cover crop using object-oriented programming and linked-list data structure |
| URI | https://dx.doi.org/10.1016/j.compag.2025.109964 https://www.proquest.com/docview/3200273166 |
| Volume | 231 |
| WOSCitedRecordID | wos001421690000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0168-1699 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016987 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ7a5SUjIS5RqiZ2XscKugJUFQ5dVHGxkthJW23T0hf7D_gR_FlmbCcpC4jlwCWKrCSt_H3yjGc-zxDy0vPysOCedGUKMHCZFm6cSlQAxEke5GAwdfu2T8NoNIonk-Rjp_O9Pguzv4iqKr68TFb_FWoYA7Dx6Ow_wN18FAbgHkCHK8AO12sBb6X_Lton6exVqQWFe-WUsOPeTk3vG60uzNUaywqD1-18xbIRMIKCTge7ejk7HURYZhincZdYDRl9UyvnWtRHGzH_q6R7AWRxUGzqmHq0tkxJUwLBto4w9aDbzjtai5uWa1v_o00T2SD25-kO7uazJrwwW9j-8m-6raIFzL0hymaaLg742DR1b3X7NrzhBweqGBvxDGGbG5ouSvWSDU6ps8JKWEnI3d8aAhOTmHe1kr_s4pft863hq5P9ow_i7Hw4FOPBZPxq9QXntMTUve3PcoMc-1GQwJJ53H83mLxvklRhEpvT-PYf1icztXzw1x_-k-dzxQfQjs34LrljdyS0b5h0j3RUdZ_c7reoPCDffuIUbTlFDaeo5hQFTlHDKQqcooZTVHOKIqeo5hS9wil6wCkK_KAHnKLIKdpw6iE5PxuMX791bQcPN2eMb13FMsnCoMg9CcYCWzWAgYANSsGzmBXMz7IA3PleLnmS9dJARRyMnkxk7gexAivMHpGjalmpE0KjtCdl4EvJe5Jn3IvhdVhZFPNYIZXHTolbz65YmUItolYwzoVBQyAawqBxSqIaAmGdTeNECqDQX958USMmYC3GBFtaqeVuI5ivy0N5Yfj4Gs88Ibdawj8lRzCX6hm5me-3s836uSXbDz4PtEw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process-based+vegetative+growth+model+for+cereal+rye+winter+cover+crop+using+object-oriented+programming+and+linked-list+data+structure&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Wang%2C+Zhuangji&rft.au=Timlin%2C+D.&rft.au=Thapa%2C+Resham&rft.au=Fleisher%2C+David&rft.date=2025-04-01&rft.issn=0168-1699&rft.volume=231+p.109964-&rft_id=info:doi/10.1016%2Fj.compag.2025.109964&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |