Process-based vegetative growth model for cereal rye winter cover crop using object-oriented programming and linked-list data structure

•A cereal rye cover crop model is developed using object-oriented programming.•Organs are assembled based on a tiller hierarchy as the entire plant architecture.•The “representative plant” bridges individual and field-scale plant morphology. Cereal rye (Secale cereale L.) has been extensively studie...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture Vol. 231; p. 109964
Main Authors: Wang, Zhuangji, Timlin, Dennis, Thapa, Resham, Fleisher, David, Beegum, Sahila, Han, Eunjin, Schomberg, Harry, Mirsky, Steven, Sun, Wenguang, Reddy, Vangimalla, Horton, Robert, Tully, Katherine
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2025
Subjects:
ISSN:0168-1699
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A cereal rye cover crop model is developed using object-oriented programming.•Organs are assembled based on a tiller hierarchy as the entire plant architecture.•The “representative plant” bridges individual and field-scale plant morphology. Cereal rye (Secale cereale L.) has been extensively studied as a winter cover crop in conservation agriculture using experimental and modeling approaches. Previous studies generally modeled cereal rye by modifying existing cash crop models. This study aims to develop a new cereal rye vegetative growth model and evaluate model accuracy. The new model, namely RYESIM, employs object-oriented programming techniques and a linked-list data structure to present the emergence order of cereal rye organs, such as leaves, internodes, and tillers. Individual organs are abstracted as “classes,” which encapsulate organs’ morphological features and emergence-growth-senescence processes as member variables and functions. Multiple organs are assembled based on the tiller hierarchy to formulate the cereal rye plant architecture. RYESIM also contains “representative plant” as an average process among multiple individual plants, which bridges individual organs’ growth and field-scale averaged plant morphology, as well as ensuring plant-level biomass and nitrogen (N) mass balance. Existing soil (2DSOIL) and biochemical photosynthesis models are incorporated to estimate soil water-nutrient supply, carbon assimilation and transpiration. RYESIM was evaluated using published field data measured in the Mid-Atlantic region of the USA. Compared to observed values, the relative mean absolute errors of RYESIM for tiller number, aboveground biomass and N mass were within 0.3, 0.4 and 0.5 (with exceptions), and the RYESIM simulated values fell within the value ranges from literature results. Therefore, RYESIM provides effective simulations on cereal rye vegetative growth, and the RYESIM model structure also provides a paradigm for future “multi-tiller” cash crop model development.
AbstractList Cereal rye (Secale cereale L.) has been extensively studied as a winter cover crop in conservation agriculture using experimental and modeling approaches. Previous studies generally modeled cereal rye by modifying existing cash crop models. This study aims to develop a new cereal rye vegetative growth model and evaluate model accuracy. The new model, namely RYESIM, employs object-oriented programming techniques and a linked-list data structure to present the emergence order of cereal rye organs, such as leaves, internodes, and tillers. Individual organs are abstracted as "classes," which encapsulate organs' morphological features and emergence-growth-senescence processes as member variables and functions. Multiple organs are assembled based on the tiller hierarchy to formulate the cereal rye plant architecture. RYESIM also contains "representative plant" as an average process among multiple individual plants, which bridges individual organs' growth and field-scale averaged plant morphology, as well as ensuring plant-level biomass and nitrogen (N) mass balance. Existing soil (2DSOIL) and biochemical photosynthesis models are incorporated to estimate soil water-nutrient supply, carbon assimilation and transpiration. RYESIM was evaluated using published field data measured in the Mid-Atlantic region of the USA. Compared to observed values, the relative mean absolute errors of RYESIM for tiller number, aboveground biomass and N mass were within 0.3, 0.4 and 0.5 (with exceptions), and the RYESIM simulated values fell within the value ranges from literature results. Therefore, RYESIM provides effective simulations on cereal rye vegetative growth, and the RYESIM model structure also provides a paradigm for future "multi-tiller" cash crop model development.
•A cereal rye cover crop model is developed using object-oriented programming.•Organs are assembled based on a tiller hierarchy as the entire plant architecture.•The “representative plant” bridges individual and field-scale plant morphology. Cereal rye (Secale cereale L.) has been extensively studied as a winter cover crop in conservation agriculture using experimental and modeling approaches. Previous studies generally modeled cereal rye by modifying existing cash crop models. This study aims to develop a new cereal rye vegetative growth model and evaluate model accuracy. The new model, namely RYESIM, employs object-oriented programming techniques and a linked-list data structure to present the emergence order of cereal rye organs, such as leaves, internodes, and tillers. Individual organs are abstracted as “classes,” which encapsulate organs’ morphological features and emergence-growth-senescence processes as member variables and functions. Multiple organs are assembled based on the tiller hierarchy to formulate the cereal rye plant architecture. RYESIM also contains “representative plant” as an average process among multiple individual plants, which bridges individual organs’ growth and field-scale averaged plant morphology, as well as ensuring plant-level biomass and nitrogen (N) mass balance. Existing soil (2DSOIL) and biochemical photosynthesis models are incorporated to estimate soil water-nutrient supply, carbon assimilation and transpiration. RYESIM was evaluated using published field data measured in the Mid-Atlantic region of the USA. Compared to observed values, the relative mean absolute errors of RYESIM for tiller number, aboveground biomass and N mass were within 0.3, 0.4 and 0.5 (with exceptions), and the RYESIM simulated values fell within the value ranges from literature results. Therefore, RYESIM provides effective simulations on cereal rye vegetative growth, and the RYESIM model structure also provides a paradigm for future “multi-tiller” cash crop model development.
ArticleNumber 109964
Author Reddy, Vangimalla
Han, Eunjin
Horton, Robert
Schomberg, Harry
Tully, Katherine
Wang, Zhuangji
Beegum, Sahila
Thapa, Resham
Timlin, Dennis
Fleisher, David
Sun, Wenguang
Mirsky, Steven
Author_xml – sequence: 1
  givenname: Zhuangji
  surname: Wang
  fullname: Wang, Zhuangji
  organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705
– sequence: 2
  givenname: Dennis
  orcidid: 0000-0003-4883-4664
  surname: Timlin
  fullname: Timlin, Dennis
  email: Dennis.Timlin@usda.gov
  organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705
– sequence: 3
  givenname: Resham
  surname: Thapa
  fullname: Thapa, Resham
  organization: Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, USA 37209
– sequence: 4
  givenname: David
  surname: Fleisher
  fullname: Fleisher, David
  organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705
– sequence: 5
  givenname: Sahila
  surname: Beegum
  fullname: Beegum, Sahila
  organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705
– sequence: 6
  givenname: Eunjin
  surname: Han
  fullname: Han, Eunjin
  organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705
– sequence: 7
  givenname: Harry
  surname: Schomberg
  fullname: Schomberg, Harry
  organization: Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD, USA 20705
– sequence: 8
  givenname: Steven
  surname: Mirsky
  fullname: Mirsky, Steven
  organization: Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD, USA 20705
– sequence: 9
  givenname: Wenguang
  surname: Sun
  fullname: Sun, Wenguang
  organization: Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA 80523
– sequence: 10
  givenname: Vangimalla
  surname: Reddy
  fullname: Reddy, Vangimalla
  organization: Adaptive Cropping System Laboratory, USDA-ARS, Beltsville, MD, USA 20705
– sequence: 11
  givenname: Robert
  surname: Horton
  fullname: Horton, Robert
  organization: Department of Agronomy, Iowa State University, Ames, IA, USA 50011
– sequence: 12
  givenname: Katherine
  surname: Tully
  fullname: Tully, Katherine
  organization: Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA 20742
BookMark eNp9kE1PwzAMhnMYEhvwDzjkyKUjadKvCxKa-JImwQHOUZq4JaNtRpJu2i_gb5OqnLnYsv36lf2s0GKwAyB0TcmaEprf7tbK9nvZrlOSZrFVVTlfoGUclQnNq-ocrbzfkVhXZbFEP2_OKvA-qaUHjQ_QQpDBHAC3zh7DJ-6thg431mEFDmSH3Qnw0QwBYscepujsHo_eDC229Q5USKwzEAUa751tnez7aSYHjTszfIFOOuMD1jJI7IMbVRgdXKKzRnYerv7yBfp4fHjfPCfb16eXzf02UYzxkACrNcuzRlFNOCl4UWZFSVLS8LpkDUvrOuMpI0rzqiYyg4KTstSVVmlWAqWUXaCb2Tee9j2CD6I3XkHXyQHs6AVLCUkLRvM8SvksjQ9676ARe2d66U6CEjGxFjsxsxYTazGzjmt38xrENw4GnPAq4lCgjYtwhLbmf4NfSsWQDg
Cites_doi 10.1016/S0304-3800(96)01926-6
10.13031/2013.39836
10.1017/S0021859600071483
10.1016/0304-3800(91)90156-U
10.1094/PDIS-07-16-1067-RE
10.1007/s11104-023-06431-7
10.1016/j.agwat.2021.107348
10.1111/j.1365-3040.1992.tb00974.x
10.2134/agronj2016.09.0557
10.1007/978-1-4612-1626-1_15
10.1016/j.agrformet.2006.06.002
10.1016/j.agsy.2021.103151
10.1002/agj2.20429
10.2136/sssaj1994.03615995005800050041x
10.1080/00224561.2001.12457370
10.1071/EA9830073
10.1111/1365-3040.ep11581834
10.1614/WT-D-12-00078.1
10.1093/aob/mcg080
10.1002/ael2.20121
10.1111/gfs.12645
10.1016/j.agwat.2021.106966
10.1016/j.eja.2021.126244
10.1002/agj2.21306
10.1016/j.agrformet.2021.108700
10.1007/978-94-017-0519-6_48
10.3390/agronomy12122927
10.2137/145960606777245542
10.2134/agronj14.0462
10.2134/agronj2016.05.0266
10.1002/agj2.21030
10.1038/s41598-023-34378-3
10.1016/j.agwat.2022.107862
10.2134/agronj1996.00021962008800020008x
10.1017/S1742170520000411
10.24266/0738-2898-16.2.90
10.1016/j.envsoft.2014.07.009
10.2134/jeq2006.0468
10.1029/2021WR030431
10.2134/agronj2015.0481
10.2489/jswc.73.2.164
10.1007/BF00386231
10.1094/PDIS-04-21-0836-RE
10.1007/BF02033664
10.1016/j.still.2018.03.004
10.2134/agronj2017.09.0544
10.1111/sum.12747
10.1002/agj2.21418
10.1111/j.1365-3040.1997.00094.x
10.1139/cjps-2021-0032
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2025.109964
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_compag_2025_109964
S0168169925000705
GeographicLocations Mid-Atlantic region
GeographicLocations_xml – name: Mid-Atlantic region
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACIWK
ACMHX
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADQTV
ADSLC
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AEXOQ
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWPP
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c334t-e3bd365fc1d0407478578020f4b83f32bb54230cd49b0a5e74088d9dc258e1113
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001421690000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Fri Nov 14 18:39:33 EST 2025
Sat Nov 29 07:44:01 EST 2025
Sat Aug 30 17:14:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cereal Rye Cover Crop
Tiller Hierarchy
Object-Oriented Programming
Crop Growth Model
Plant Botanical Structures
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-e3bd365fc1d0407478578020f4b83f32bb54230cd49b0a5e74088d9dc258e1113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4883-4664
OpenAccessLink https://dx.doi.org/10.1016/j.compag.2025.109964
PQID 3200273166
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3200273166
crossref_primary_10_1016_j_compag_2025_109964
elsevier_sciencedirect_doi_10_1016_j_compag_2025_109964
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ball, J.T., Woodrow, I.E., Berry, J.A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins, J. (eds) Progress in Photosynthesis Research. Springer, Dordrecht. doi: 10.1007/978-94-017-0519-6_48.
Keene, Curran, Wallace, Ryan, Mirsky, VanGessel, Barbercheck (b0120) 2017; 109
Huusela-veistola, Jalli, Salonen (b0105) 2006; 15
McMaster, Wilhelm, Morgan (b0160) 1992; 119
Wang, Z., Timlin, D., Thapa, R., Fleisher, D., Sun, W., Beegum, S., Lu, Y., Schomberg, H., Mirsky, S., Reberg-Horton, C., Zhang, X., Reddy, V.R., Horton, R., Tully, K. unpublished results. Modeling cover crop growth, cover crop residue mulch and residue decomposition in a “Cereal Rye-Residue Mulch” management during winter periods.
Wong, Griffiths, Moran, Johnston, Liu, Sellers, Topp (b0270) 2023; 500
Yanai (b0275) 1994; 58
Balkcom, Read, Gamble (b0020) 2023; 115
Fleisher, Timlin (b0060) 2006; 139
Sun, Fleisher, Timlin, Li, Wang, Reddy (b0205) 2022; 312
Wang, E. 2014. The APSIM-Wheat Module (7.5 R3008). In APSIM [Software documentation]. Retrieved from
Timlin, David, Green, Fleisher, Kim, Ahuja (b0220) 2016; 108
Qi, Helmers, Malone, Thorp (b0190) 2011; 54
Marcos, Acharya, Parvej, Robertson, Licht (b0145) 2023; 115
Mirsky, Spargo, Curran, Reberg-Horton, Ryan, Schomberg, Ackroyd (b0170) 2017; 109
Fournier, C., Andrieu, B., Ljutovac, S., Saint-Jean, S. 2002. Development of an architectural growth model for wheat. In book: Development of Vegetation Architectural Models for Remote Sensing Applications (pp 67-106). Final report of ESA Contract 14940. Chapter 6. Editors UCL.
Haruna, Nkongolo, Anderson, Eivazi, Zaibon (b0090) 2018; 73
Reed, Karsten (b0195) 2022; 114
Wang, Thapa, Timlin, Li, Sun, Beegum, Fleisher, Mirsky, Cabrera, Sauer, Reddy, Horton, Tully (b0250) 2021; 57
de Pury, Farquhar (b0045) 1997; 20
Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N,I., McLean, G., Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish, J.P.M. Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z., Thorhurn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E., Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van Rees, H., McClelland, T., Carberry, P.S., Hargreaves, J.N.G., MacLeod, N., McDonald, C., Harsdorf, J., Wedgwood, S., Keating, S.A. 2014. APSIM – Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327-350. doi: 10.1016/j.envsoft.2014.07.009.
Kim, Lieth (b0125) 2003; 91
Kaspar, Jaynes, Parkin, Moorman (b0115) 2007; 36
Marcillo, Mirsky, Poncet, Reberg-Horton, Timlin, Schomberg, Ramos (b0140) 2020; 112
Mwaja, Masiunas, Weston (b0175) 1995; 21
Vogeler, Jensen, Thomsen, Labouriau, Hansen (b0235) 2021; 124
Korucu, Shipitalo, Kaspar (b0130) 2018; 180
Acock, Reddy (b0010) 1997; 94
Gaimaro, Timlin, Tully (b0070) 2022; 261
Timlin, Fleisher, Tokay, Paff, Sun, Beegum, Li, Wang, Reddy (b0225) 2023; 5
Wang, Timlin, Li, Fleisher, Dathe, Luo, Dong, Reddy, Tully (b0255) 2021; 254
Gupta, Bhattarai, Coppess, Jeong, Ruffatti, Armstrong (b0080) 2022; 272
Vogeler, Thomsen, Taube, Poulsen, Loges, Hansen (b0240) 2022; 38
Poffenbarger, Mirsky, Weil, Maul, Kramer, Spargo, Cavigelli (b0180) 2015; 107
Timlin, Pachepsky, Acock (b0215) 1996; 88
Campbell, G.S., Norman, J.M. 1998. The light environment of plant canopies. In: An Introduction to Environmental Biophysics. Springer, New York, NY. doi: 10.1007/978-1-4612-1626-1_15.
Graham, Geytenbeek, Radcliffe (b0075) 1983; 23
(last accessed: 01/01/2025).
Thapa, Poffenbarger, Tully, Ackroyd, Kramer, Mirsky (b0210) 2018; 110
Beegum, Timlin, Reddy, Reddy, Sun, Wang, Fleisher, Ray (b0030) 2023; 13
Harley, Thomas, Reynolds, Strain (b0085) 1992; 15
Baker, Gallagher, Monteith (b0015) 1980; 3
Farzadfar, Knight, Congreves (b0055) 2021; 101
Sadeghpour, Adeyemi, Hunter, Luo, Armstrong (b0200) 2021; 36
McClelland, Paustian, Williams, Schipanski (b0150) 2021; 191
Acharya, Moorman, Kaspar, Lenssen, Gailans, Robertson (b0005) 2022; 106
Mirsky, Ryan, Teasdale, Curran, Reberg-Horton, Spargo, Wells, Keene, Moyer (b0165) 2013; 27
Li, Fleisher, Timlin, Barnaby, Sun, Wang, Reddy (b0135) 2022; 12
Kaspar, Radke, Laflen (b0110) 2001; 56
Huddell, Needelman, Law, Ackroyd, Bagavathiannan, Bradley, Davis, Evans, Everman, Flessner, Jordan, Schwartz-Lazaro, Leon, Lindquist, Norsworthy, Shergill, VanGessel, Mirsky (b0100) 2024; 9
McMaster, Klepper, Rickman, Wilhelm, Willis (b0155) 1991; 53
Calkins, Swanson (b0035) 1998; 16
Farquhar, von Caemmerer, Berry (b0050) 1980; 149
Vaughn, Adeyemi, Zandvakili, Battaglia, Babaei, Nair, Still, Burkett, Sadeghpour (b0230) 2024; 79
Prabhakara, Hively, McCarty (b0185) 2015; 39
Wen, Lee-Marzano, Ortiz-Ribbing, Gruver, Hartman, Eastburn (b0265) 2017; 101
Mirsky (10.1016/j.compag.2025.109964_b0170) 2017; 109
Qi (10.1016/j.compag.2025.109964_b0190) 2011; 54
Beegum (10.1016/j.compag.2025.109964_b0030) 2023; 13
Kim (10.1016/j.compag.2025.109964_b0125) 2003; 91
Haruna (10.1016/j.compag.2025.109964_b0090) 2018; 73
Poffenbarger (10.1016/j.compag.2025.109964_b0180) 2015; 107
Harley (10.1016/j.compag.2025.109964_b0085) 1992; 15
Sadeghpour (10.1016/j.compag.2025.109964_b0200) 2021; 36
Kaspar (10.1016/j.compag.2025.109964_b0115) 2007; 36
Marcos (10.1016/j.compag.2025.109964_b0145) 2023; 115
Vogeler (10.1016/j.compag.2025.109964_b0240) 2022; 38
Calkins (10.1016/j.compag.2025.109964_b0035) 1998; 16
Wang (10.1016/j.compag.2025.109964_b0250) 2021; 57
Sun (10.1016/j.compag.2025.109964_b0205) 2022; 312
10.1016/j.compag.2025.109964_b0040
Gaimaro (10.1016/j.compag.2025.109964_b0070) 2022; 261
10.1016/j.compag.2025.109964_b0245
Farzadfar (10.1016/j.compag.2025.109964_b0055) 2021; 101
Baker (10.1016/j.compag.2025.109964_b0015) 1980; 3
Mwaja (10.1016/j.compag.2025.109964_b0175) 1995; 21
Balkcom (10.1016/j.compag.2025.109964_b0020) 2023; 115
Vaughn (10.1016/j.compag.2025.109964_b0230) 2024; 79
Fleisher (10.1016/j.compag.2025.109964_b0060) 2006; 139
Kaspar (10.1016/j.compag.2025.109964_b0110) 2001; 56
Acharya (10.1016/j.compag.2025.109964_b0005) 2022; 106
McMaster (10.1016/j.compag.2025.109964_b0155) 1991; 53
Farquhar (10.1016/j.compag.2025.109964_b0050) 1980; 149
Yanai (10.1016/j.compag.2025.109964_b0275) 1994; 58
10.1016/j.compag.2025.109964_b0095
Gupta (10.1016/j.compag.2025.109964_b0080) 2022; 272
Huusela-veistola (10.1016/j.compag.2025.109964_b0105) 2006; 15
Prabhakara (10.1016/j.compag.2025.109964_b0185) 2015; 39
Mirsky (10.1016/j.compag.2025.109964_b0165) 2013; 27
de Pury (10.1016/j.compag.2025.109964_b0045) 1997; 20
Keene (10.1016/j.compag.2025.109964_b0120) 2017; 109
Timlin (10.1016/j.compag.2025.109964_b0220) 2016; 108
McClelland (10.1016/j.compag.2025.109964_b0150) 2021; 191
Huddell (10.1016/j.compag.2025.109964_b0100) 2024; 9
10.1016/j.compag.2025.109964_b0065
10.1016/j.compag.2025.109964_b0260
10.1016/j.compag.2025.109964_b0025
McMaster (10.1016/j.compag.2025.109964_b0160) 1992; 119
Timlin (10.1016/j.compag.2025.109964_b0215) 1996; 88
Timlin (10.1016/j.compag.2025.109964_b0225) 2023; 5
Wang (10.1016/j.compag.2025.109964_b0255) 2021; 254
Wong (10.1016/j.compag.2025.109964_b0270) 2023; 500
Korucu (10.1016/j.compag.2025.109964_b0130) 2018; 180
Wen (10.1016/j.compag.2025.109964_b0265) 2017; 101
Vogeler (10.1016/j.compag.2025.109964_b0235) 2021; 124
Li (10.1016/j.compag.2025.109964_b0135) 2022; 12
Thapa (10.1016/j.compag.2025.109964_b0210) 2018; 110
Graham (10.1016/j.compag.2025.109964_b0075) 1983; 23
Marcillo (10.1016/j.compag.2025.109964_b0140) 2020; 112
Reed (10.1016/j.compag.2025.109964_b0195) 2022; 114
Acock (10.1016/j.compag.2025.109964_b0010) 1997; 94
References_xml – volume: 88
  start-page: 162
  year: 1996
  end-page: 169
  ident: b0215
  article-title: A design for a modular, generic soil simulator to interface with plant models
  publication-title: Agron. J.
– reference: Campbell, G.S., Norman, J.M. 1998. The light environment of plant canopies. In: An Introduction to Environmental Biophysics. Springer, New York, NY. doi: 10.1007/978-1-4612-1626-1_15.
– volume: 16
  start-page: 90
  year: 1998
  end-page: 97
  ident: b0035
  article-title: Comparison of conventional and alternative nursery field management systems: soil physical properties
  publication-title: J. Environ. Hortic.
– volume: 191
  year: 2021
  ident: b0150
  article-title: Modeling cover crop biomass production and related emissions to improve farm-scale decision-support tools
  publication-title: Agric. Syst.
– volume: 312
  year: 2022
  ident: b0205
  article-title: Effects of elevated CO
  publication-title: Agric. For. Meteorol.
– volume: 109
  start-page: 272
  year: 2017
  end-page: 282
  ident: b0120
  article-title: Cover crop termination timing is critical in organic rotational no-till systems
  publication-title: Agron. J.
– reference: (last accessed: 01/01/2025).
– reference: Fournier, C., Andrieu, B., Ljutovac, S., Saint-Jean, S. 2002. Development of an architectural growth model for wheat. In book: Development of Vegetation Architectural Models for Remote Sensing Applications (pp 67-106). Final report of ESA Contract 14940. Chapter 6. Editors UCL.
– volume: 23
  start-page: 73
  year: 1983
  end-page: 79
  ident: b0075
  article-title: Responses of triticale, wheat, rye and barley to nitrogen fertilizer
  publication-title: Aust. J. Exp. Agric. Anim. Husb.
– volume: 115
  start-page: 1356
  year: 2023
  end-page: 1372
  ident: b0145
  article-title: Cereal rye cover crop seeding method, seeding rate, and termination timing effects corn development and seedling disease
  publication-title: Agron. J.
– volume: 91
  start-page: 771
  year: 2003
  end-page: 781
  ident: b0125
  article-title: A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (
  publication-title: Ann. Bot.
– volume: 101
  start-page: 1014
  year: 2021
  end-page: 1028
  ident: b0055
  article-title: Rye cover crop improves vegetable crop nitrogen use efficiency and yield in a short season growing region
  publication-title: Can. J. Plant Sci.
– volume: 36
  start-page: 328
  year: 2021
  end-page: 333
  ident: b0200
  article-title: Precision planting impacts on winter cereal rye growth, nutrient uptake, spring soil temperature and adoption cost
  publication-title: Renewable Agric. Food Syst.
– volume: 57
  year: 2021
  ident: b0250
  article-title: Simulations of water and thermal dynamics for soil surfaces with residue mulch and surface runoff
  publication-title: Water Resour. Res.
– volume: 124
  year: 2021
  ident: b0235
  article-title: Fertiliser N rates interact with sowing time and catch crops in cereals and affect yield and nitrate leaching
  publication-title: Eur. J. Agron.
– volume: 94
  start-page: 33
  year: 1997
  end-page: 44
  ident: b0010
  article-title: Designing an object-oriented structure for crop models
  publication-title: Ecol. Model.
– volume: 261
  year: 2022
  ident: b0070
  article-title: Comparison of cover crop monocultures and mixtures for suppressing nitrogen leaching losses
  publication-title: Agric. Water Manag.
– volume: 13
  start-page: 7314
  year: 2023
  ident: b0030
  article-title: Improving the cotton simulation model, GOSSYM, for soil, photosynthesis, and transpiration processes
  publication-title: Sci. Rep.
– volume: 5
  year: 2023
  ident: b0225
  article-title: CLASSIM: a relational database driven crop model interface
  publication-title: Smart Agr. Technol.
– volume: 3
  start-page: 285
  year: 1980
  end-page: 287
  ident: b0015
  article-title: Daylength change and leaf appearance in winter wheat
  publication-title: Plant Cell Environ.
– volume: 79
  start-page: 239
  year: 2024
  end-page: 253
  ident: b0230
  article-title: Nitrogen rate and harvesting time based on growing degree days influenced winter cereal rye morphological traits, forage yield, quality, and farm profit in poorly drained Alfisols
  publication-title: Grass Forage Sci.
– volume: 254
  year: 2021
  ident: b0255
  article-title: A diffusive model of maize root growth in MAIZSIM and its applications in Ridge-Furrow Rainfall Harvesting
  publication-title: Agric. Water Manag.
– volume: 9
  year: 2024
  ident: b0100
  article-title: Early-season biomass and weather enable robust cereal rye cover crop biomass predictions
  publication-title: Agric. Environ. Lett.
– volume: 53
  start-page: 189
  year: 1991
  end-page: 204
  ident: b0155
  article-title: Simulation of shoot vegetative development and growth of unstressed winter wheat
  publication-title: Ecol. Model.
– volume: 21
  start-page: 81
  year: 1995
  end-page: 96
  ident: b0175
  article-title: Effects of fertility on biomass, phytotoxicity, and allelochemical content of cereal rye
  publication-title: J. Chem. Ecol.
– volume: 58
  start-page: 1562
  year: 1994
  end-page: 1571
  ident: b0275
  article-title: A steady-state model of nutrient uptake accounting for newly grown roots
  publication-title: Soil Sci. Soc. Am. J.
– volume: 500
  start-page: 279
  year: 2023
  end-page: 296
  ident: b0270
  article-title: Cover crop cultivars and species differ in root traits potentially impacting their selection for ecosystem services
  publication-title: Plant Soil.
– volume: 38
  start-page: 663
  year: 2022
  end-page: 675
  ident: b0240
  article-title: Effect of winter cereal sowing time on yield and nitrogen leaching based on experiments and modelling
  publication-title: Soil Use Manag.
– reference: Wang, Z., Timlin, D., Thapa, R., Fleisher, D., Sun, W., Beegum, S., Lu, Y., Schomberg, H., Mirsky, S., Reberg-Horton, C., Zhang, X., Reddy, V.R., Horton, R., Tully, K. unpublished results. Modeling cover crop growth, cover crop residue mulch and residue decomposition in a “Cereal Rye-Residue Mulch” management during winter periods.
– reference: Wang, E. 2014. The APSIM-Wheat Module (7.5 R3008). In APSIM [Software documentation]. Retrieved from
– volume: 272
  year: 2022
  ident: b0080
  article-title: Modeling the impact of winter cover crop on tile drainage and nitrate loss using DSSAT model
  publication-title: Agric. Water Manag.
– volume: 56
  start-page: 160
  year: 2001
  end-page: 164
  ident: b0110
  article-title: Small grain cover crops and wheel traffic effects on infiltration, runoff, and erosion
  publication-title: J. Soil Water Conserv.
– volume: 27
  start-page: 193
  year: 2013
  end-page: 203
  ident: b0165
  article-title: Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the Eastern United States
  publication-title: Weed Technol.
– volume: 180
  start-page: 99
  year: 2018
  end-page: 106
  ident: b0130
  article-title: Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff
  publication-title: Soil Tillage Res.
– reference: Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N,I., McLean, G., Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish, J.P.M. Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z., Thorhurn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E., Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van Rees, H., McClelland, T., Carberry, P.S., Hargreaves, J.N.G., MacLeod, N., McDonald, C., Harsdorf, J., Wedgwood, S., Keating, S.A. 2014. APSIM – Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327-350. doi: 10.1016/j.envsoft.2014.07.009.
– volume: 15
  start-page: 271
  year: 1992
  end-page: 282
  ident: b0085
  article-title: Modelling photosynthesis of cotton grown in elevated CO
  publication-title: Plant Cell Environ.
– volume: 12
  start-page: 2927
  year: 2022
  ident: b0135
  article-title: Improving simulations of rice in response to temperature and CO
  publication-title: Agronomy
– volume: 73
  start-page: 164
  year: 2018
  end-page: 172
  ident: b0090
  article-title: In situ infiltration as influenced by cover crop and tillage management
  publication-title: J. Soil Water Conserv.
– volume: 15
  start-page: 43
  year: 2006
  end-page: 60
  ident: b0105
  article-title: Sowing time affects the abundance of pests and weeds in winter rye
  publication-title: Agric. Food Sci.
– volume: 109
  start-page: 1520
  year: 2017
  end-page: 1531
  ident: b0170
  article-title: Characterizing cereal rye biomass and allometric relationships across a range of fall available nitrogen rates in the eastern United States
  publication-title: Agron. J.
– volume: 54
  start-page: 1575
  year: 2011
  end-page: 1588
  ident: b0190
  article-title: Simulating long-term impacts of winter rye cover crop on hydrologic cycling and nitrogen dynamics for a corn-soybean crop system
  publication-title: Trans. ASABE
– volume: 115
  start-page: 2351
  year: 2023
  end-page: 2368
  ident: b0020
  article-title: Rye planting date impacts biomass production more than seeding rate and nitrogen fertilizer
  publication-title: Agron. J.
– volume: 107
  start-page: 2069
  year: 2015
  end-page: 2082
  ident: b0180
  article-title: Biomass and nitrogen content of hairy vetch–cereal rye cover crop mixtures as influenced by species proportions
  publication-title: Agron. J.
– volume: 110
  start-page: 1197
  year: 2018
  end-page: 1208
  ident: b0210
  article-title: Biomass production and nitrogen accumulation by hairy vetch–cereal rye mixtures: a meta-analysis
  publication-title: Agron. J.
– reference: Ball, J.T., Woodrow, I.E., Berry, J.A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins, J. (eds) Progress in Photosynthesis Research. Springer, Dordrecht. doi: 10.1007/978-94-017-0519-6_48.
– volume: 114
  start-page: 1311
  year: 2022
  end-page: 1323
  ident: b0195
  article-title: Does winter cereal rye seeding rate, termination time, and N rate impact no-till soybean?
  publication-title: Agron. J.
– volume: 108
  start-page: 1782
  year: 2016
  end-page: 1786
  ident: b0220
  article-title: Proposed standards for peer-reviewed publication of computer code
  publication-title: Agron. J.
– volume: 36
  start-page: 1503
  year: 2007
  end-page: 1511
  ident: b0115
  article-title: Rye cover crop and Gamagrass strip effects on NO
  publication-title: J. Environ. Qual.
– volume: 119
  start-page: 1
  year: 1992
  end-page: 12
  ident: b0160
  article-title: Simulating winter wheat shoot apex phenology
  publication-title: J. Agric. Sci.
– volume: 39
  start-page: 88
  year: 2015
  end-page: 102
  ident: b0185
  article-title: Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 149
  start-page: 78
  year: 1980
  end-page: 90
  ident: b0050
  article-title: A biochemical model of photosynthetic CO
  publication-title: Planta
– volume: 101
  start-page: 1918
  year: 2017
  end-page: 1928
  ident: b0265
  article-title: Suppression of soilborne diseases of soybean with cover crops
  publication-title: Plant Dis.
– volume: 112
  start-page: 4898
  year: 2020
  end-page: 4913
  ident: b0140
  article-title: Using statistical learning algorithms to predict cover crop biomass and cover crop nitrogen content
  publication-title: Agron. J.
– volume: 106
  start-page: 114
  year: 2022
  end-page: 120
  ident: b0005
  article-title: Effect of planting into a green winter cereal rye cover crop on growth and development, seedling disease, and yield of corn
  publication-title: Plant Dis.
– volume: 20
  start-page: 537
  year: 1997
  end-page: 557
  ident: b0045
  article-title: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models
  publication-title: Plant Cell Environ.
– volume: 139
  start-page: 84
  year: 2006
  end-page: 93
  ident: b0060
  article-title: Modeling expansion of individual leaves in the potato canopy
  publication-title: Agric. For. Meteorol.
– volume: 94
  start-page: 33
  issue: 1
  year: 1997
  ident: 10.1016/j.compag.2025.109964_b0010
  article-title: Designing an object-oriented structure for crop models
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(96)01926-6
– volume: 54
  start-page: 1575
  issue: 5
  year: 2011
  ident: 10.1016/j.compag.2025.109964_b0190
  article-title: Simulating long-term impacts of winter rye cover crop on hydrologic cycling and nitrogen dynamics for a corn-soybean crop system
  publication-title: Trans. ASABE
  doi: 10.13031/2013.39836
– volume: 119
  start-page: 1
  issue: 1
  year: 1992
  ident: 10.1016/j.compag.2025.109964_b0160
  article-title: Simulating winter wheat shoot apex phenology
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859600071483
– volume: 53
  start-page: 189
  year: 1991
  ident: 10.1016/j.compag.2025.109964_b0155
  article-title: Simulation of shoot vegetative development and growth of unstressed winter wheat
  publication-title: Ecol. Model.
  doi: 10.1016/0304-3800(91)90156-U
– volume: 101
  start-page: 1918
  issue: 11
  year: 2017
  ident: 10.1016/j.compag.2025.109964_b0265
  article-title: Suppression of soilborne diseases of soybean with cover crops
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-07-16-1067-RE
– volume: 500
  start-page: 279
  year: 2023
  ident: 10.1016/j.compag.2025.109964_b0270
  article-title: Cover crop cultivars and species differ in root traits potentially impacting their selection for ecosystem services
  publication-title: Plant Soil.
  doi: 10.1007/s11104-023-06431-7
– volume: 261
  year: 2022
  ident: 10.1016/j.compag.2025.109964_b0070
  article-title: Comparison of cover crop monocultures and mixtures for suppressing nitrogen leaching losses
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107348
– volume: 15
  start-page: 271
  issue: 3
  year: 1992
  ident: 10.1016/j.compag.2025.109964_b0085
  article-title: Modelling photosynthesis of cotton grown in elevated CO2
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1992.tb00974.x
– volume: 109
  start-page: 1520
  issue: 4
  year: 2017
  ident: 10.1016/j.compag.2025.109964_b0170
  article-title: Characterizing cereal rye biomass and allometric relationships across a range of fall available nitrogen rates in the eastern United States
  publication-title: Agron. J.
  doi: 10.2134/agronj2016.09.0557
– ident: 10.1016/j.compag.2025.109964_b0040
  doi: 10.1007/978-1-4612-1626-1_15
– volume: 139
  start-page: 84
  issue: 1–2
  year: 2006
  ident: 10.1016/j.compag.2025.109964_b0060
  article-title: Modeling expansion of individual leaves in the potato canopy
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.06.002
– volume: 191
  year: 2021
  ident: 10.1016/j.compag.2025.109964_b0150
  article-title: Modeling cover crop biomass production and related emissions to improve farm-scale decision-support tools
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2021.103151
– volume: 112
  start-page: 4898
  issue: 6
  year: 2020
  ident: 10.1016/j.compag.2025.109964_b0140
  article-title: Using statistical learning algorithms to predict cover crop biomass and cover crop nitrogen content
  publication-title: Agron. J.
  doi: 10.1002/agj2.20429
– volume: 58
  start-page: 1562
  issue: 5
  year: 1994
  ident: 10.1016/j.compag.2025.109964_b0275
  article-title: A steady-state model of nutrient uptake accounting for newly grown roots
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1994.03615995005800050041x
– volume: 56
  start-page: 160
  issue: 2
  year: 2001
  ident: 10.1016/j.compag.2025.109964_b0110
  article-title: Small grain cover crops and wheel traffic effects on infiltration, runoff, and erosion
  publication-title: J. Soil Water Conserv.
  doi: 10.1080/00224561.2001.12457370
– volume: 5
  year: 2023
  ident: 10.1016/j.compag.2025.109964_b0225
  article-title: CLASSIM: a relational database driven crop model interface
  publication-title: Smart Agr. Technol.
– volume: 23
  start-page: 73
  issue: 120
  year: 1983
  ident: 10.1016/j.compag.2025.109964_b0075
  article-title: Responses of triticale, wheat, rye and barley to nitrogen fertilizer
  publication-title: Aust. J. Exp. Agric. Anim. Husb.
  doi: 10.1071/EA9830073
– volume: 3
  start-page: 285
  year: 1980
  ident: 10.1016/j.compag.2025.109964_b0015
  article-title: Daylength change and leaf appearance in winter wheat
  publication-title: Plant Cell Environ.
  doi: 10.1111/1365-3040.ep11581834
– volume: 27
  start-page: 193
  issue: 1
  year: 2013
  ident: 10.1016/j.compag.2025.109964_b0165
  article-title: Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the Eastern United States
  publication-title: Weed Technol.
  doi: 10.1614/WT-D-12-00078.1
– volume: 91
  start-page: 771
  issue: 7
  year: 2003
  ident: 10.1016/j.compag.2025.109964_b0125
  article-title: A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.)
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcg080
– volume: 9
  issue: 1
  year: 2024
  ident: 10.1016/j.compag.2025.109964_b0100
  article-title: Early-season biomass and weather enable robust cereal rye cover crop biomass predictions
  publication-title: Agric. Environ. Lett.
  doi: 10.1002/ael2.20121
– volume: 79
  start-page: 239
  issue: 2
  year: 2024
  ident: 10.1016/j.compag.2025.109964_b0230
  article-title: Nitrogen rate and harvesting time based on growing degree days influenced winter cereal rye morphological traits, forage yield, quality, and farm profit in poorly drained Alfisols
  publication-title: Grass Forage Sci.
  doi: 10.1111/gfs.12645
– volume: 254
  year: 2021
  ident: 10.1016/j.compag.2025.109964_b0255
  article-title: A diffusive model of maize root growth in MAIZSIM and its applications in Ridge-Furrow Rainfall Harvesting
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.106966
– volume: 124
  year: 2021
  ident: 10.1016/j.compag.2025.109964_b0235
  article-title: Fertiliser N rates interact with sowing time and catch crops in cereals and affect yield and nitrate leaching
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2021.126244
– volume: 115
  start-page: 1356
  issue: 3
  year: 2023
  ident: 10.1016/j.compag.2025.109964_b0145
  article-title: Cereal rye cover crop seeding method, seeding rate, and termination timing effects corn development and seedling disease
  publication-title: Agron. J.
  doi: 10.1002/agj2.21306
– volume: 312
  year: 2022
  ident: 10.1016/j.compag.2025.109964_b0205
  article-title: Effects of elevated CO2 and temperature on soybean growth and gas exchange rates: a modified GLYCIM model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108700
– ident: 10.1016/j.compag.2025.109964_b0025
  doi: 10.1007/978-94-017-0519-6_48
– volume: 12
  start-page: 2927
  issue: 12
  year: 2022
  ident: 10.1016/j.compag.2025.109964_b0135
  article-title: Improving simulations of rice in response to temperature and CO2
  publication-title: Agronomy
  doi: 10.3390/agronomy12122927
– ident: 10.1016/j.compag.2025.109964_b0245
– ident: 10.1016/j.compag.2025.109964_b0065
– volume: 15
  start-page: 43
  issue: 1
  year: 2006
  ident: 10.1016/j.compag.2025.109964_b0105
  article-title: Sowing time affects the abundance of pests and weeds in winter rye
  publication-title: Agric. Food Sci.
  doi: 10.2137/145960606777245542
– volume: 107
  start-page: 2069
  issue: 6
  year: 2015
  ident: 10.1016/j.compag.2025.109964_b0180
  article-title: Biomass and nitrogen content of hairy vetch–cereal rye cover crop mixtures as influenced by species proportions
  publication-title: Agron. J.
  doi: 10.2134/agronj14.0462
– volume: 109
  start-page: 272
  issue: 1
  year: 2017
  ident: 10.1016/j.compag.2025.109964_b0120
  article-title: Cover crop termination timing is critical in organic rotational no-till systems
  publication-title: Agron. J.
  doi: 10.2134/agronj2016.05.0266
– volume: 114
  start-page: 1311
  issue: 2
  year: 2022
  ident: 10.1016/j.compag.2025.109964_b0195
  article-title: Does winter cereal rye seeding rate, termination time, and N rate impact no-till soybean?
  publication-title: Agron. J.
  doi: 10.1002/agj2.21030
– volume: 13
  start-page: 7314
  year: 2023
  ident: 10.1016/j.compag.2025.109964_b0030
  article-title: Improving the cotton simulation model, GOSSYM, for soil, photosynthesis, and transpiration processes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34378-3
– volume: 272
  year: 2022
  ident: 10.1016/j.compag.2025.109964_b0080
  article-title: Modeling the impact of winter cover crop on tile drainage and nitrate loss using DSSAT model
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2022.107862
– volume: 39
  start-page: 88
  year: 2015
  ident: 10.1016/j.compag.2025.109964_b0185
  article-title: Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 88
  start-page: 162
  issue: 2
  year: 1996
  ident: 10.1016/j.compag.2025.109964_b0215
  article-title: A design for a modular, generic soil simulator to interface with plant models
  publication-title: Agron. J.
  doi: 10.2134/agronj1996.00021962008800020008x
– volume: 36
  start-page: 328
  issue: 4
  year: 2021
  ident: 10.1016/j.compag.2025.109964_b0200
  article-title: Precision planting impacts on winter cereal rye growth, nutrient uptake, spring soil temperature and adoption cost
  publication-title: Renewable Agric. Food Syst.
  doi: 10.1017/S1742170520000411
– volume: 16
  start-page: 90
  issue: 2
  year: 1998
  ident: 10.1016/j.compag.2025.109964_b0035
  article-title: Comparison of conventional and alternative nursery field management systems: soil physical properties
  publication-title: J. Environ. Hortic.
  doi: 10.24266/0738-2898-16.2.90
– ident: 10.1016/j.compag.2025.109964_b0095
  doi: 10.1016/j.envsoft.2014.07.009
– volume: 36
  start-page: 1503
  issue: 5
  year: 2007
  ident: 10.1016/j.compag.2025.109964_b0115
  article-title: Rye cover crop and Gamagrass strip effects on NO3 concentration and load in tile drainage
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2006.0468
– volume: 57
  year: 2021
  ident: 10.1016/j.compag.2025.109964_b0250
  article-title: Simulations of water and thermal dynamics for soil surfaces with residue mulch and surface runoff
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR030431
– volume: 108
  start-page: 1782
  issue: 5
  year: 2016
  ident: 10.1016/j.compag.2025.109964_b0220
  article-title: Proposed standards for peer-reviewed publication of computer code
  publication-title: Agron. J.
  doi: 10.2134/agronj2015.0481
– volume: 73
  start-page: 164
  issue: 3
  year: 2018
  ident: 10.1016/j.compag.2025.109964_b0090
  article-title: In situ infiltration as influenced by cover crop and tillage management
  publication-title: J. Soil Water Conserv.
  doi: 10.2489/jswc.73.2.164
– volume: 149
  start-page: 78
  year: 1980
  ident: 10.1016/j.compag.2025.109964_b0050
  article-title: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species
  publication-title: Planta
  doi: 10.1007/BF00386231
– volume: 106
  start-page: 114
  issue: 1
  year: 2022
  ident: 10.1016/j.compag.2025.109964_b0005
  article-title: Effect of planting into a green winter cereal rye cover crop on growth and development, seedling disease, and yield of corn
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-04-21-0836-RE
– volume: 21
  start-page: 81
  issue: 1
  year: 1995
  ident: 10.1016/j.compag.2025.109964_b0175
  article-title: Effects of fertility on biomass, phytotoxicity, and allelochemical content of cereal rye
  publication-title: J. Chem. Ecol.
  doi: 10.1007/BF02033664
– volume: 180
  start-page: 99
  year: 2018
  ident: 10.1016/j.compag.2025.109964_b0130
  article-title: Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.03.004
– volume: 110
  start-page: 1197
  issue: 4
  year: 2018
  ident: 10.1016/j.compag.2025.109964_b0210
  article-title: Biomass production and nitrogen accumulation by hairy vetch–cereal rye mixtures: a meta-analysis
  publication-title: Agron. J.
  doi: 10.2134/agronj2017.09.0544
– volume: 38
  start-page: 663
  issue: 1
  year: 2022
  ident: 10.1016/j.compag.2025.109964_b0240
  article-title: Effect of winter cereal sowing time on yield and nitrogen leaching based on experiments and modelling
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12747
– ident: 10.1016/j.compag.2025.109964_b0260
– volume: 115
  start-page: 2351
  issue: 5
  year: 2023
  ident: 10.1016/j.compag.2025.109964_b0020
  article-title: Rye planting date impacts biomass production more than seeding rate and nitrogen fertilizer
  publication-title: Agron. J.
  doi: 10.1002/agj2.21418
– volume: 20
  start-page: 537
  issue: 5
  year: 1997
  ident: 10.1016/j.compag.2025.109964_b0045
  article-title: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1997.00094.x
– volume: 101
  start-page: 1014
  issue: 6
  year: 2021
  ident: 10.1016/j.compag.2025.109964_b0055
  article-title: Rye cover crop improves vegetable crop nitrogen use efficiency and yield in a short season growing region
  publication-title: Can. J. Plant Sci.
  doi: 10.1139/cjps-2021-0032
SSID ssj0016987
Score 2.4278157
Snippet •A cereal rye cover crop model is developed using object-oriented programming.•Organs are assembled based on a tiller hierarchy as the entire plant...
Cereal rye (Secale cereale L.) has been extensively studied as a winter cover crop in conservation agriculture using experimental and modeling approaches....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 109964
SubjectTerms aboveground biomass
agricultural conservation practice
agriculture
carbon dioxide fixation
cash crops
Cereal Rye Cover Crop
cover crops
Crop Growth Model
crop models
electronics
Mid-Atlantic region
nitrogen
Object-Oriented Programming
photosynthesis
plant architecture
Plant Botanical Structures
rye
Secale cereale
soil
Tiller Hierarchy
transpiration
vegetative growth
Title Process-based vegetative growth model for cereal rye winter cover crop using object-oriented programming and linked-list data structure
URI https://dx.doi.org/10.1016/j.compag.2025.109964
https://www.proquest.com/docview/3200273166
Volume 231
WOSCitedRecordID wos001421690000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016987
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ7a5SUjIS5RqiZ2XscKugJUFQ5dVHGxkthJW23T0hf7D_gR_FlmbCcpC4jlwCWKrCSt_H3yjGc-zxDy0vPysOCedGUKMHCZFm6cSlQAxEke5GAwdfu2T8NoNIonk-Rjp_O9Pguzv4iqKr68TFb_FWoYA7Dx6Ow_wN18FAbgHkCHK8AO12sBb6X_Lton6exVqQWFe-WUsOPeTk3vG60uzNUaywqD1-18xbIRMIKCTge7ejk7HURYZhincZdYDRl9UyvnWtRHGzH_q6R7AWRxUGzqmHq0tkxJUwLBto4w9aDbzjtai5uWa1v_o00T2SD25-kO7uazJrwwW9j-8m-6raIFzL0hymaaLg742DR1b3X7NrzhBweqGBvxDGGbG5ouSvWSDU6ps8JKWEnI3d8aAhOTmHe1kr_s4pft863hq5P9ow_i7Hw4FOPBZPxq9QXntMTUve3PcoMc-1GQwJJ53H83mLxvklRhEpvT-PYf1icztXzw1x_-k-dzxQfQjs34LrljdyS0b5h0j3RUdZ_c7reoPCDffuIUbTlFDaeo5hQFTlHDKQqcooZTVHOKIqeo5hS9wil6wCkK_KAHnKLIKdpw6iE5PxuMX791bQcPN2eMb13FMsnCoMg9CcYCWzWAgYANSsGzmBXMz7IA3PleLnmS9dJARRyMnkxk7gexAivMHpGjalmpE0KjtCdl4EvJe5Jn3IvhdVhZFPNYIZXHTolbz65YmUItolYwzoVBQyAawqBxSqIaAmGdTeNECqDQX958USMmYC3GBFtaqeVuI5ivy0N5Yfj4Gs88Ibdawj8lRzCX6hm5me-3s836uSXbDz4PtEw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process-based+vegetative+growth+model+for+cereal+rye+winter+cover+crop+using+object-oriented+programming+and+linked-list+data+structure&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Wang%2C+Zhuangji&rft.au=Timlin%2C+D.&rft.au=Thapa%2C+Resham&rft.au=Fleisher%2C+David&rft.date=2025-04-01&rft.issn=0168-1699&rft.volume=231+p.109964-&rft_id=info:doi/10.1016%2Fj.compag.2025.109964&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon