Large group activity security risk assessment and risk early warning based on random forest algorithm
•With the continuous development of artificial intelligence, machine learning, as an indispensable means to realize artificial intelligence, is constantly improving, and deep learning is one of the contents. This article aims to evaluate and warn the security risks of large-scale group activities ba...
Saved in:
| Published in: | Pattern recognition letters Vol. 144; pp. 1 - 5 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.04.2021
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0167-8655, 1872-7344 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •With the continuous development of artificial intelligence, machine learning, as an indispensable means to realize artificial intelligence, is constantly improving, and deep learning is one of the contents. This article aims to evaluate and warn the security risks of large-scale group activities based on the random forest algorithm.•In this paper, the computational random forest algorithm is used to calculate the importance of variables and the security risk index weight, and combined with the model parameters of the random forest algorithm, optimization experiments and random forest model training experiments are carried out respectively. At the same time, an international youth environmental protection festival is taken as an example to analyze, which has verified the feasibility and effectiveness of this article.•This article mainly evaluates the risks in large-scale group activities, but it can be further improved in future applications. On the basis of it, if the activities want to achieve better results, they must also satisfy the people who participate in the activities. Thereby, it can better help resolve some unnecessary risks and ensure the safety of people in their activities.
With the continuous development of artificial intelligence, machine learning, the necessary way to achieve artificial intelligence, is also constantly improving, of which deep learning is one of the contents. The purpose of this paper is to evaluate and warn the security risk of large-scale group activities based on the random forest algorithm. This paper uses the methods of calculating the importance of the random forest algorithm to variables and the calculation formula of the weight of the security risk index, and combining the model parameters of the random forest algorithm The optimization experiment and the random forest model training experiment are used for risk analysis, and the classification accuracy rate reaches a maximum of 0.86, which leads to the conclusion that the random forest algorithm has good predictive ability in the risk assessment of large-scale group activities. This article takes a certain international youth environmental protection festival as an example for analysis, and better verifies the feasibility and effectiveness of this article. |
|---|---|
| AbstractList | With the continuous development of artificial intelligence, machine learning, the necessary way to achieve artificial intelligence, is also constantly improving, of which deep learning is one of the contents. The purpose of this paper is to evaluate and warn the security risk of large-scale group activities based on the random forest algorithm. This paper uses the methods of calculating the importance of the random forest algorithm to variables and the calculation formula of the weight of the security risk index, and combining the model parameters of the random forest algorithm The optimization experiment and the random forest model training experiment are used for risk analysis, and the classification accuracy rate reaches a maximum of 0.86, which leads to the conclusion that the random forest algorithm has good predictive ability in the risk assessment of large-scale group activities. This article takes a certain international youth environmental protection festival as an example for analysis, and better verifies the feasibility and effectiveness of this article. •With the continuous development of artificial intelligence, machine learning, as an indispensable means to realize artificial intelligence, is constantly improving, and deep learning is one of the contents. This article aims to evaluate and warn the security risks of large-scale group activities based on the random forest algorithm.•In this paper, the computational random forest algorithm is used to calculate the importance of variables and the security risk index weight, and combined with the model parameters of the random forest algorithm, optimization experiments and random forest model training experiments are carried out respectively. At the same time, an international youth environmental protection festival is taken as an example to analyze, which has verified the feasibility and effectiveness of this article.•This article mainly evaluates the risks in large-scale group activities, but it can be further improved in future applications. On the basis of it, if the activities want to achieve better results, they must also satisfy the people who participate in the activities. Thereby, it can better help resolve some unnecessary risks and ensure the safety of people in their activities. With the continuous development of artificial intelligence, machine learning, the necessary way to achieve artificial intelligence, is also constantly improving, of which deep learning is one of the contents. The purpose of this paper is to evaluate and warn the security risk of large-scale group activities based on the random forest algorithm. This paper uses the methods of calculating the importance of the random forest algorithm to variables and the calculation formula of the weight of the security risk index, and combining the model parameters of the random forest algorithm The optimization experiment and the random forest model training experiment are used for risk analysis, and the classification accuracy rate reaches a maximum of 0.86, which leads to the conclusion that the random forest algorithm has good predictive ability in the risk assessment of large-scale group activities. This article takes a certain international youth environmental protection festival as an example for analysis, and better verifies the feasibility and effectiveness of this article. |
| Author | Zheng, Wenzhe Chen, Yanyu Huang, Yimiao Li, Wenbo |
| Author_xml | – sequence: 1 givenname: Yanyu surname: Chen fullname: Chen, Yanyu email: cyy100628@126.com organization: College of Economics and Management, Zhejiang Normal University, Jinhua 321004, Zhejiang, China – sequence: 2 givenname: Wenzhe surname: Zheng fullname: Zheng, Wenzhe email: zwzzjnu@sina.com organization: College of Economics and Management, Zhejiang Normal University, Jinhua 321004, Zhejiang, China – sequence: 3 givenname: Wenbo surname: Li fullname: Li, Wenbo email: 420612906@qq.com organization: College of Economics and Management, Zhejiang Normal University, Jinhua 321004, Zhejiang, China – sequence: 4 givenname: Yimiao surname: Huang fullname: Huang, Yimiao email: 236285736@qq.com organization: School of Public Administration, Changchun University of Technology, Changchun 130012, Jilin, China |
| BookMark | eNqFkF9LYzEQxYO4YO3uN9iHgM-3O2nuXx8EKeoKBV_c55CbzK2pbVInaaXfflOuTz4oDMwQfudM5lyycx88MvZbwEyAqP-sZzudCM1sDnMxg1zQnrGJaJt50ciyPGeTjDVFW1fVBbuMcQ0AtezaCcOlphXyFYX9jmuT3MGlI49o9nQayMVXrmPEGLfoE9fejm-oaXPk75q88yve64iWB88pA2HLh0AYM71ZhWzzsv3Jfgx6E_HXR5-yf_d3z4u_xfLp4XFxuyyMlGUqUMpuGGxf20Z0Q133WvbGmhqFBN0O0PWDbEVpjTTCNAbA2HxFmWWAfSUqOWVXo--Owts-f0Gtw558XqnmFVSlKKHpMlWOlKEQI-GgduS2mo5KgDoFqtZqDFSdAlWQC9osu_4kMy7p5IJPpN3mO_HNKMZ8_sEhqWgceoPWZTQpG9zXBv8BjlWYUQ |
| CitedBy_id | crossref_primary_10_1155_2021_8914304 crossref_primary_10_1155_2022_9903364 crossref_primary_10_3389_fpubh_2022_882811 crossref_primary_10_1155_2021_6214036 crossref_primary_10_32604_cmc_2022_027212 crossref_primary_10_1016_j_cose_2023_103627 crossref_primary_10_3390_coatings11121458 crossref_primary_10_1155_2021_6668885 crossref_primary_10_1016_j_ecoinf_2021_101432 crossref_primary_10_1155_2021_5553211 crossref_primary_10_1109_ACCESS_2025_3594171 crossref_primary_10_3390_buildings13112700 crossref_primary_10_3233_JCM_225984 crossref_primary_10_1007_s11356_024_34716_6 crossref_primary_10_1515_geo_2022_0436 crossref_primary_10_32604_cmes_2022_018699 crossref_primary_10_1109_TETCI_2024_3353592 crossref_primary_10_1016_j_ceramint_2024_01_298 crossref_primary_10_3390_su14127307 crossref_primary_10_1007_s42154_023_00245_0 crossref_primary_10_1155_2021_6678454 crossref_primary_10_1155_2021_6691258 crossref_primary_10_3390_en16135206 crossref_primary_10_1016_j_engfracmech_2024_109961 crossref_primary_10_1140_epjp_s13360_021_01545_2 crossref_primary_10_1007_s11277_021_08759_8 crossref_primary_10_1016_j_flowmeasinst_2024_102609 crossref_primary_10_3390_genes13101916 crossref_primary_10_1007_s12145_025_01782_4 crossref_primary_10_1016_j_tranpol_2023_06_015 crossref_primary_10_1007_s11760_025_04230_4 crossref_primary_10_1016_j_ress_2023_109659 crossref_primary_10_1049_cit2_12241 crossref_primary_10_3389_fpls_2024_1376915 crossref_primary_10_1109_TGRS_2023_3347745 crossref_primary_10_1016_j_ijdrr_2023_103659 crossref_primary_10_2147_RMHP_S351821 crossref_primary_10_1155_2022_5488103 crossref_primary_10_1016_j_jhazmat_2023_130879 crossref_primary_10_1016_j_tws_2023_110670 crossref_primary_10_3390_rs15153826 crossref_primary_10_1051_shsconf_202316303037 crossref_primary_10_1111_1541_4337_13296 crossref_primary_10_1109_ACCESS_2022_3229008 crossref_primary_10_1186_s13638_021_01984_6 crossref_primary_10_1007_s00366_021_01442_3 crossref_primary_10_1007_s10661_022_09934_5 crossref_primary_10_3390_ijgi10060382 crossref_primary_10_1057_s41260_022_00302_z crossref_primary_10_1155_2022_1718773 crossref_primary_10_1155_2022_8606624 crossref_primary_10_3233_JCM_247192 crossref_primary_10_1155_2021_9943067 crossref_primary_10_2478_amns_2023_2_00055 crossref_primary_10_3389_fpls_2024_1458978 crossref_primary_10_1007_s11709_022_0831_3 crossref_primary_10_1016_j_eswa_2021_115082 crossref_primary_10_3390_atmos13060960 crossref_primary_10_1155_2021_5582906 crossref_primary_10_3390_cancers15123237 crossref_primary_10_1002_dac_4899 crossref_primary_10_3390_su13169058 crossref_primary_10_1080_00396265_2022_2160691 crossref_primary_10_1016_j_matpr_2022_04_984 crossref_primary_10_1016_j_egyr_2021_06_064 crossref_primary_10_1016_j_ijepes_2023_109579 crossref_primary_10_1016_j_measurement_2022_111403 crossref_primary_10_1155_2021_6670718 crossref_primary_10_3233_IDT_240041 crossref_primary_10_1016_j_eswa_2021_115079 crossref_primary_10_3390_sym13061082 crossref_primary_10_1007_s00366_021_01450_3 crossref_primary_10_1016_j_irfa_2024_103162 crossref_primary_10_7717_peerj_cs_534 crossref_primary_10_3390_f14040704 crossref_primary_10_1002_for_3008 crossref_primary_10_1049_ell2_13109 crossref_primary_10_1080_14498596_2024_2378362 crossref_primary_10_1049_ise2_12112 crossref_primary_10_1080_15389588_2025_2530074 crossref_primary_10_3233_JIFS_211561 crossref_primary_10_1007_s00366_021_01391_x crossref_primary_10_1016_j_heliyon_2024_e37789 crossref_primary_10_1038_s41598_023_40106_8 crossref_primary_10_1155_2021_3133065 crossref_primary_10_1016_j_applthermaleng_2021_117339 crossref_primary_10_1155_2022_5490758 crossref_primary_10_1155_2023_7798674 crossref_primary_10_1016_j_patrec_2022_02_003 crossref_primary_10_1007_s00477_021_02103_z crossref_primary_10_1007_s11831_025_10293_w crossref_primary_10_1007_s10586_022_03659_3 crossref_primary_10_3390_math10081298 crossref_primary_10_1108_IJIEOM_05_2023_0047 crossref_primary_10_1155_2021_3896130 crossref_primary_10_1155_2021_5569833 crossref_primary_10_1155_2021_9951742 crossref_primary_10_1016_j_ast_2021_106841 crossref_primary_10_1155_2021_5536997 crossref_primary_10_1007_s11356_022_20498_2 crossref_primary_10_1155_2021_5587027 crossref_primary_10_1155_2022_8259909 crossref_primary_10_1016_j_energy_2021_122073 crossref_primary_10_1155_2021_9976001 crossref_primary_10_1016_j_asoc_2023_110362 crossref_primary_10_3390_ijms23063044 crossref_primary_10_1080_17455030_2021_1926572 crossref_primary_10_1016_j_enbuild_2024_114000 crossref_primary_10_1186_s13638_021_02025_y crossref_primary_10_1155_2022_6457286 crossref_primary_10_1016_j_pan_2024_02_002 crossref_primary_10_1016_j_ecolind_2024_111648 crossref_primary_10_1109_TII_2022_3165085 crossref_primary_10_1016_j_seps_2021_101043 crossref_primary_10_1016_j_measurement_2024_114391 crossref_primary_10_1038_s41598_022_22011_8 crossref_primary_10_1016_j_molliq_2021_116190 crossref_primary_10_3389_frsen_2025_1583560 crossref_primary_10_1109_LGRS_2022_3225215 crossref_primary_10_1016_j_compbiomed_2021_104427 crossref_primary_10_1155_2021_7734080 crossref_primary_10_3390_app11094143 crossref_primary_10_1155_2022_8951961 crossref_primary_10_1155_2022_5790185 crossref_primary_10_5194_soil_10_61_2024 crossref_primary_10_1155_2021_5566691 crossref_primary_10_1155_2021_3092197 crossref_primary_10_7717_peerj_cs_712 crossref_primary_10_1057_s41599_025_05278_w crossref_primary_10_1016_j_compbiomed_2023_107776 crossref_primary_10_1007_s00366_021_01399_3 crossref_primary_10_1016_j_enconman_2021_114484 crossref_primary_10_1080_10106049_2021_1926558 crossref_primary_10_1155_2022_5489118 crossref_primary_10_1016_j_ijepes_2022_108243 crossref_primary_10_1016_j_indcrop_2024_118434 crossref_primary_10_1080_0951192X_2023_2204486 crossref_primary_10_1155_2021_9838477 crossref_primary_10_1007_s12652_022_04493_6 crossref_primary_10_1007_s00366_021_01440_5 crossref_primary_10_3233_JIFS_202805 crossref_primary_10_1088_1361_6501_ac4a18 crossref_primary_10_1520_JTE20210435 crossref_primary_10_1016_j_jobe_2023_107387 crossref_primary_10_1016_j_measurement_2022_112149 crossref_primary_10_1016_j_jhazmat_2024_135695 crossref_primary_10_1155_2021_3686692 crossref_primary_10_1016_j_jhydrol_2024_130742 crossref_primary_10_3390_su14169870 crossref_primary_10_1007_s10064_021_02523_9 crossref_primary_10_1155_2021_5525560 crossref_primary_10_1155_2022_4964368 crossref_primary_10_3390_rs14164052 crossref_primary_10_1155_2021_5579547 crossref_primary_10_3390_info12080286 crossref_primary_10_1016_j_eswa_2023_122544 crossref_primary_10_32604_cmc_2022_025763 crossref_primary_10_1155_2021_9048808 crossref_primary_10_1016_j_jestch_2024_101699 crossref_primary_10_1155_2021_6359296 crossref_primary_10_3233_JIFS_219112 crossref_primary_10_1155_2022_4606905 crossref_primary_10_1007_s00500_021_05932_w crossref_primary_10_3389_fphy_2025_1553640 crossref_primary_10_1007_s00366_021_01479_4 crossref_primary_10_1155_2022_6469054 crossref_primary_10_1155_2022_9487978 crossref_primary_10_1016_j_energy_2024_131317 crossref_primary_10_1016_j_jobe_2025_112344 crossref_primary_10_1016_j_marpol_2023_105547 crossref_primary_10_1016_j_jlp_2025_105755 crossref_primary_10_1109_ACCESS_2025_3595456 crossref_primary_10_1155_2022_2653279 crossref_primary_10_1007_s11356_021_14304_8 crossref_primary_10_1109_ACCESS_2021_3077616 crossref_primary_10_1155_2021_9914790 crossref_primary_10_1016_j_enconman_2021_114223 crossref_primary_10_1080_1064119X_2024_2449235 crossref_primary_10_1155_2022_8112212 crossref_primary_10_1002_ese3_1911 crossref_primary_10_1016_j_eswa_2024_123381 crossref_primary_10_1177_14727978251365096 crossref_primary_10_1155_2021_6679732 |
| Cites_doi | 10.5271/sjweh.3697 10.1097/ALN.0000000000001052 10.1186/s12859-017-1960-x 10.1016/j.jse.2017.10.035 10.1080/19440049.2016.1138547 10.1109/JSTARS.2015.2416255 10.4236/jbise.2016.95019 10.3847/1538-4357/aa789b |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier Science Ltd. Apr 2021 |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Science Ltd. Apr 2021 |
| DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.patrec.2021.01.008 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1872-7344 |
| EndPage | 5 |
| ExternalDocumentID | 10_1016_j_patrec_2021_01_008 S0167865521000192 |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TK 8FD AGCQF JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-e339ffdb6d719f66ba3bcdc6e130a8f09bf3814dc3c1c7c00cd6394e330eb5153 |
| ISICitedReferencesCount | 184 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624287500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-8655 |
| IngestDate | Sun Sep 07 03:28:04 EDT 2025 Sat Nov 29 07:24:14 EST 2025 Tue Nov 18 21:53:52 EST 2025 Fri Feb 23 02:40:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Security risk assessment Random forest algorithm Risk warning Large-scale group activities |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-e339ffdb6d719f66ba3bcdc6e130a8f09bf3814dc3c1c7c00cd6394e330eb5153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2505414079 |
| PQPubID | 2047552 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2505414079 crossref_primary_10_1016_j_patrec_2021_01_008 crossref_citationtrail_10_1016_j_patrec_2021_01_008 elsevier_sciencedirect_doi_10_1016_j_patrec_2021_01_008 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Pattern recognition letters |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Lee, Park, Lee (bib0019) 2017; 11 Manessa, Kanno, Sekine (bib0018) 2016; 3 Wang, Jablonski (bib0006) 2016; 33 Kien, Nadine, Anita (bib0003) 2016; 59 Jiang, Shaw (bib0009) 2016; 124 Tzacheva, Bagavathi (bib0020) 2016; 6 Tanner, Simon, Sellers (bib0016) 2018; 27 Nevler, Shabtai, Rosin (bib0011) 2016; 18 Li, Yang, Liu (bib0023) 2016; 33 (bib0015) 2016; 16 Grabowska, Ścisło, Pietruszka (bib0002) 2017; 42 Hu, Zhang (bib0014) 2017; 20 Lee, Lee, Kim (bib0021) 2017; 18 Hou, Yang, Ye (bib0012) 2017; 20 Amato, Minozzi, Mitrova (bib0013) 2017; 41 Dong, Du, Zhang (bib0001) 2017; 8 Ontario (bib0004) 2017; 17 Verma, Dong (bib0025) 2016; 09 Guogyte, Plieskienė, Ladygienė (bib0008) 2017; 8 Liu, Deng, Wang (bib0017) 2017; 843 Omidianidost, Ghasemkhani, Kakooei (bib0007) 2016; 45 Song, Yang, Gao (bib0022) 2018; 53 Shiri (bib0005) 2017; 44 Hasan, Nasser, Ahmad (bib0024) 2016; 07 Voiculeț, Zară, Bogeanu (bib0010) 2016; 9 Manessa (10.1016/j.patrec.2021.01.008_bib0018) 2016; 3 Tanner (10.1016/j.patrec.2021.01.008_bib0016) 2018; 27 Lee (10.1016/j.patrec.2021.01.008_bib0019) 2017; 11 Voiculeț (10.1016/j.patrec.2021.01.008_bib0010) 2016; 9 Hou (10.1016/j.patrec.2021.01.008_bib0012) 2017; 20 Grabowska (10.1016/j.patrec.2021.01.008_bib0002) 2017; 42 Wang (10.1016/j.patrec.2021.01.008_bib0006) 2016; 33 Lee (10.1016/j.patrec.2021.01.008_bib0021) 2017; 18 Amato (10.1016/j.patrec.2021.01.008_bib0013) 2017; 41 (10.1016/j.patrec.2021.01.008_bib0015) 2016; 16 Verma (10.1016/j.patrec.2021.01.008_bib0025) 2016; 09 Hu (10.1016/j.patrec.2021.01.008_bib0014) 2017; 20 Kien (10.1016/j.patrec.2021.01.008_bib0003) 2016; 59 Dong (10.1016/j.patrec.2021.01.008_bib0001) 2017; 8 Guogyte (10.1016/j.patrec.2021.01.008_bib0008) 2017; 8 Ontario (10.1016/j.patrec.2021.01.008_bib0004) 2017; 17 Song (10.1016/j.patrec.2021.01.008_bib0022) 2018; 53 Shiri (10.1016/j.patrec.2021.01.008_bib0005) 2017; 44 Tzacheva (10.1016/j.patrec.2021.01.008_bib0020) 2016; 6 Omidianidost (10.1016/j.patrec.2021.01.008_bib0007) 2016; 45 Li (10.1016/j.patrec.2021.01.008_bib0023) 2016; 33 Hasan (10.1016/j.patrec.2021.01.008_bib0024) 2016; 07 Liu (10.1016/j.patrec.2021.01.008_bib0017) 2017; 843 Jiang (10.1016/j.patrec.2021.01.008_bib0009) 2016; 124 Nevler (10.1016/j.patrec.2021.01.008_bib0011) 2016; 18 |
| References_xml | – volume: 41 start-page: 279 year: 2017 end-page: 293 ident: bib0013 article-title: Systematic review of safeness and therapeutic efficacy of cannabis in patients with multiple sclerosis, neuropathic pain, and in oncological patients treated with chemotherapy publication-title: Epidemiol. Prev. – volume: 59 start-page: 31 year: 2016 end-page: 32 ident: bib0003 article-title: Acupuncture for neck disorders publication-title: Cochrane Database Syst. Rev. – volume: 45 start-page: 70 year: 2016 end-page: 75 ident: bib0007 article-title: Risk assessment of occupational exposure to crystalline silica in small foundries in pakdasht, Iran publication-title: Iran. J. Public Health – volume: 27 start-page: 794 year: 2018 end-page: 800 ident: bib0016 article-title: Total shoulder arthroplasty with minimum 5-year follow-up: does the presence of subchondral cysts in the glenoid increase risk of failure? publication-title: J. Shoulder Elb. Surg. – volume: 20 start-page: 378 year: 2017 ident: bib0012 article-title: Effectiveness of pharmacist-led anticoagulation management on clinical outcomes: a systematic review and meta-analysis publication-title: J. Pharm. Pharmaceut. Sci. – volume: 42 start-page: 151 year: 2017 end-page: 157 ident: bib0002 article-title: The model of perioperative risk assessment in elderly patients - interim analysis publication-title: Polski. Merkur. Lek. Organ Polski. Tow. Lek. – volume: 8 start-page: 1830 year: 2017 end-page: 1838 ident: bib0001 article-title: Target detection based on random forest metric learning publication-title: IEEE J. Select Top. Appl. Earth Observat. Remote Sens. – volume: 11 start-page: 5132 year: 2017 end-page: 5148 ident: bib0019 article-title: Feature selection algorithm for intrusions detection system using sequential forward search and random forest classifier publication-title: KSII Trans. Intern. Inf. Syst. – volume: 33 start-page: 1053 year: 2016 end-page: 1059 ident: bib0023 article-title: Research on diagnosis algorithm of Parkinson's disease based on speech sample multi-edit and Random Forest publication-title: Shengwu Yixue Gongchengxue Zazhi – volume: 16 start-page: 1 year: 2016 end-page: 94 ident: bib0015 article-title: Transcatheter aortic valve implantation for treatment of aortic valve stenosis: a health technology assessment publication-title: Ontario Health Technol. Assess. Ser. – volume: 18 start-page: 567 year: 2017 ident: bib0021 article-title: Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server publication-title: BMC Bioinform. – volume: 18 start-page: 32 year: 2016 end-page: 35 ident: bib0011 article-title: Mammographic breast density as a predictor of radiological findings requiring further investigation publication-title: Israel Med. Assoc. J. IMAJ – volume: 20 start-page: 129 year: 2017 ident: bib0014 article-title: Diagnosis and risk assessment of postoperative complications of gastric cancer in Japan and Korea publication-title: Zhonghua wei chang wai ke za zhi = Chinese J. Gastrointest. Surg. – volume: 8 start-page: 1 year: 2017 ident: bib0008 article-title: Assessment of correlation between chromosomal radiosensitivity of peripheral blood lymphocytes after in vitro irradiation and normal tissue side effects for cancer patients undergoing radiotherapy publication-title: Genome Integr. – volume: 6 start-page: 15 year: 2016 end-page: 30 ident: bib0020 article-title: Ganesan P.D. Mr – random forest algorithm for distributed action rules discovery publication-title: Data Min. Knowl. Discov. – volume: 843 start-page: 104 year: 2017 ident: bib0017 article-title: Predicting solar flares using SDO /HMI vector magnetic data products and the random forest algorithm publication-title: Astrophys. J. – volume: 07 start-page: 129 year: 2016 end-page: 140 ident: bib0024 article-title: Feature selection for intrusion detection using Random Forest publication-title: J. Inf. Sec. – volume: 17 start-page: 1 year: 2017 end-page: 75 ident: bib0004 article-title: Prolaris cell cycle progression test for localized prostate cancer: a health technology assessment publication-title: Ontario Health Technol. Assess. Ser. – volume: 09 start-page: 259 year: 2016 end-page: 268 ident: bib0025 article-title: Detection of ventricular fibrillation using Random Forest Classifier publication-title: J. Biomed. Sci. Eng. – volume: 44 start-page: 106 year: 2017 end-page: 107 ident: bib0005 article-title: Suicide among agricultural, forestry, and fishery workers publication-title: Scand. J. Work. Environ. Health – volume: 3 start-page: 117 year: 2016 ident: bib0018 article-title: Satellite-derived bathymetry using random forest algorithm and worldview-2 imagery publication-title: Geoplanning – volume: 33 start-page: 560 year: 2016 end-page: 573 ident: bib0006 article-title: Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics publication-title: Food Addit. Contam. Part A Chem. Anal. Control Exp. Risk Assess. – volume: 9 start-page: 449 year: 2016 end-page: 454 ident: bib0010 article-title: The role of oral sodium bicarbonate supplementation in maintaining acid-base balance and its influence on the cardiovascular system in chronic hemodialysis patients – results of a prospective study publication-title: J. Med. Life – volume: 124 start-page: 983 year: 2016 ident: bib0009 article-title: Albumin supplementation as a therapeutic strategy in cardiac surgery: useful tool or expensive hobby? publication-title: Anesthesiology – volume: 53 start-page: 954 year: 2018 end-page: 960 ident: bib0022 article-title: Strong tolerance random forest algorithm in seismic reservoir prediction publication-title: Shiyou Diqiu Wuli Kantan/Oil Geophys. Prospect. – volume: 33 start-page: 1053 issue: 6 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0023 article-title: Research on diagnosis algorithm of Parkinson's disease based on speech sample multi-edit and Random Forest publication-title: Shengwu Yixue Gongchengxue Zazhi – volume: 42 start-page: 151 issue: 250 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0002 article-title: The model of perioperative risk assessment in elderly patients - interim analysis publication-title: Polski. Merkur. Lek. Organ Polski. Tow. Lek. – volume: 45 start-page: 70 issue: 1 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0007 article-title: Risk assessment of occupational exposure to crystalline silica in small foundries in pakdasht, Iran publication-title: Iran. J. Public Health – volume: 07 start-page: 129 issue: 3 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0024 article-title: Feature selection for intrusion detection using Random Forest publication-title: J. Inf. Sec. – volume: 20 start-page: 129 issue: 2 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0014 article-title: Diagnosis and risk assessment of postoperative complications of gastric cancer in Japan and Korea publication-title: Zhonghua wei chang wai ke za zhi = Chinese J. Gastrointest. Surg. – volume: 44 start-page: 106 issue: 1 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0005 article-title: Suicide among agricultural, forestry, and fishery workers publication-title: Scand. J. Work. Environ. Health doi: 10.5271/sjweh.3697 – volume: 11 start-page: 5132 issue: 10 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0019 article-title: Feature selection algorithm for intrusions detection system using sequential forward search and random forest classifier publication-title: KSII Trans. Intern. Inf. Syst. – volume: 124 start-page: 983 issue: 5 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0009 article-title: Albumin supplementation as a therapeutic strategy in cardiac surgery: useful tool or expensive hobby? publication-title: Anesthesiology doi: 10.1097/ALN.0000000000001052 – volume: 18 start-page: 567 issue: 16 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0021 article-title: Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server publication-title: BMC Bioinform. doi: 10.1186/s12859-017-1960-x – volume: 6 start-page: 15 issue: 5 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0020 article-title: Ganesan P.D. Mr – random forest algorithm for distributed action rules discovery publication-title: Data Min. Knowl. Discov. – volume: 17 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0004 article-title: Prolaris cell cycle progression test for localized prostate cancer: a health technology assessment publication-title: Ontario Health Technol. Assess. Ser. – volume: 27 start-page: 794 issue: 5 year: 2018 ident: 10.1016/j.patrec.2021.01.008_bib0016 article-title: Total shoulder arthroplasty with minimum 5-year follow-up: does the presence of subchondral cysts in the glenoid increase risk of failure? publication-title: J. Shoulder Elb. Surg. doi: 10.1016/j.jse.2017.10.035 – volume: 33 start-page: 560 issue: 3 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0006 article-title: Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics publication-title: Food Addit. Contam. Part A Chem. Anal. Control Exp. Risk Assess. doi: 10.1080/19440049.2016.1138547 – volume: 20 start-page: 378 issue: 1 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0012 article-title: Effectiveness of pharmacist-led anticoagulation management on clinical outcomes: a systematic review and meta-analysis publication-title: J. Pharm. Pharmaceut. Sci. – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0008 article-title: Assessment of correlation between chromosomal radiosensitivity of peripheral blood lymphocytes after in vitro irradiation and normal tissue side effects for cancer patients undergoing radiotherapy publication-title: Genome Integr. – volume: 8 start-page: 1830 issue: 4 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0001 article-title: Target detection based on random forest metric learning publication-title: IEEE J. Select Top. Appl. Earth Observat. Remote Sens. doi: 10.1109/JSTARS.2015.2416255 – volume: 16 start-page: 1 issue: 19 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0015 article-title: Transcatheter aortic valve implantation for treatment of aortic valve stenosis: a health technology assessment publication-title: Ontario Health Technol. Assess. Ser. – volume: 09 start-page: 259 issue: 5 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0025 article-title: Detection of ventricular fibrillation using Random Forest Classifier publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2016.95019 – volume: 53 start-page: 954 issue: 5 year: 2018 ident: 10.1016/j.patrec.2021.01.008_bib0022 article-title: Strong tolerance random forest algorithm in seismic reservoir prediction publication-title: Shiyou Diqiu Wuli Kantan/Oil Geophys. Prospect. – volume: 41 start-page: 279 issue: 5-6 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0013 article-title: Systematic review of safeness and therapeutic efficacy of cannabis in patients with multiple sclerosis, neuropathic pain, and in oncological patients treated with chemotherapy publication-title: Epidemiol. Prev. – volume: 18 start-page: 32 issue: 1 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0011 article-title: Mammographic breast density as a predictor of radiological findings requiring further investigation publication-title: Israel Med. Assoc. J. IMAJ – volume: 9 start-page: 449 issue: 4 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0010 article-title: The role of oral sodium bicarbonate supplementation in maintaining acid-base balance and its influence on the cardiovascular system in chronic hemodialysis patients – results of a prospective study publication-title: J. Med. Life – volume: 843 start-page: 104 issue: 2 year: 2017 ident: 10.1016/j.patrec.2021.01.008_bib0017 article-title: Predicting solar flares using SDO /HMI vector magnetic data products and the random forest algorithm publication-title: Astrophys. J. doi: 10.3847/1538-4357/aa789b – volume: 3 start-page: 117 issue: 2 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0018 article-title: Satellite-derived bathymetry using random forest algorithm and worldview-2 imagery publication-title: Geoplanning – volume: 59 start-page: 31 issue: 4 year: 2016 ident: 10.1016/j.patrec.2021.01.008_bib0003 article-title: Acupuncture for neck disorders publication-title: Cochrane Database Syst. Rev. |
| SSID | ssj0006398 |
| Score | 2.659569 |
| Snippet | •With the continuous development of artificial intelligence, machine learning, as an indispensable means to realize artificial intelligence, is constantly... With the continuous development of artificial intelligence, machine learning, the necessary way to achieve artificial intelligence, is also constantly... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial intelligence Deep learning Environmental protection Forest management Large-scale group activities Learning algorithms Machine learning Optimization Random forest algorithm Random variables Risk analysis Risk assessment Risk warning Security Security risk assessment |
| Title | Large group activity security risk assessment and risk early warning based on random forest algorithm |
| URI | https://dx.doi.org/10.1016/j.patrec.2021.01.008 https://www.proquest.com/docview/2505414079 |
| Volume | 144 |
| WOSCitedRecordID | wos000624287500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMceBQQLQXtAXGpjGyv48exqlIBikIPKaSnlXd33KZK7NCkD_FP-LfMvuyIV-GAFFnxJruJPJ9nPs_Og5DXITCIFaR4iysRJBX0gzzO0kAAi_sK8qgy-RWfhtlolE8mxVGv983nwlzNsrrOb26KxX8VNY6hsHXq7D-Iu10UB_A9Ch2PKHY8_pXghzq2e89ka5hKGaY5xNK1qbOh5GVbjrMLLwdT6fjaOUq0cVN6IwFNmWrmOhgRzcdeOTttcJmz-TqnPTIlOnVajItFwmkzkyXU8vUDlwNygqrnsvNVg1U0n6H-etYCbDh1Y6LpMOe82ifT-bRs1j0VcbQW4GLcZz6FxmutLm7JeDZRY-ssWWuYrDbOM6T_zBaIbNW1O7UKN_qlGbAeifO3ej8BdKHKODLFWcO8M3t-q3_0kR8eD4d8PJiM3yy-BLohmd64d91Z7pDNOOsXqDA3998PJh9aM4_ULveF4_X_9nmZJnjw5x_-He_5gQEYWjN-RB645xG6b3H0mPSg3iIPfa8P6i7iFrm_VrjyCQEDMmpARj3IqAcZ1YCiHcgoYsiOGZBRBzJqQEabmlqQUQsy2oLsKTk-HIwP3gWuYUcgGUtWATBWVJUSqcqiokpTUTIhlUwBiVKZV2EhKiSIiZJMRjKTYSgVXsUEp4UgkFizZ2Sjbmp4TmgkhUxZIuK0gkRAJKqwZLgcxFIoCdE2Yf5ycumq2eumKjPuwxbPuRUC10LgIb7CfJsE7ayFreZyy_czLynuGKllmhyRdsvMXS9Y7pTDkuvHjSRKwqzY-fPHL8i97gbaJRuri0t4Se7Kq9V0efHKIfE701O8ZA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+group+activity+security+risk+assessment+and+risk+early+warning+based+on+random+forest+algorithm&rft.jtitle=Pattern+recognition+letters&rft.au=Chen%2C+Yanyu&rft.au=Zheng%2C+Wenzhe&rft.au=Li%2C+Wenbo&rft.au=Huang%2C+Yimiao&rft.date=2021-04-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=144&rft.spage=1&rft_id=info:doi/10.1016%2Fj.patrec.2021.01.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |