Large group activity security risk assessment and risk early warning based on random forest algorithm

•With the continuous development of artificial intelligence, machine learning, as an indispensable means to realize artificial intelligence, is constantly improving, and deep learning is one of the contents. This article aims to evaluate and warn the security risks of large-scale group activities ba...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition letters Vol. 144; pp. 1 - 5
Main Authors: Chen, Yanyu, Zheng, Wenzhe, Li, Wenbo, Huang, Yimiao
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.04.2021
Elsevier Science Ltd
Subjects:
ISSN:0167-8655, 1872-7344
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •With the continuous development of artificial intelligence, machine learning, as an indispensable means to realize artificial intelligence, is constantly improving, and deep learning is one of the contents. This article aims to evaluate and warn the security risks of large-scale group activities based on the random forest algorithm.•In this paper, the computational random forest algorithm is used to calculate the importance of variables and the security risk index weight, and combined with the model parameters of the random forest algorithm, optimization experiments and random forest model training experiments are carried out respectively. At the same time, an international youth environmental protection festival is taken as an example to analyze, which has verified the feasibility and effectiveness of this article.•This article mainly evaluates the risks in large-scale group activities, but it can be further improved in future applications. On the basis of it, if the activities want to achieve better results, they must also satisfy the people who participate in the activities. Thereby, it can better help resolve some unnecessary risks and ensure the safety of people in their activities. With the continuous development of artificial intelligence, machine learning, the necessary way to achieve artificial intelligence, is also constantly improving, of which deep learning is one of the contents. The purpose of this paper is to evaluate and warn the security risk of large-scale group activities based on the random forest algorithm. This paper uses the methods of calculating the importance of the random forest algorithm to variables and the calculation formula of the weight of the security risk index, and combining the model parameters of the random forest algorithm The optimization experiment and the random forest model training experiment are used for risk analysis, and the classification accuracy rate reaches a maximum of 0.86, which leads to the conclusion that the random forest algorithm has good predictive ability in the risk assessment of large-scale group activities. This article takes a certain international youth environmental protection festival as an example for analysis, and better verifies the feasibility and effectiveness of this article.
AbstractList With the continuous development of artificial intelligence, machine learning, the necessary way to achieve artificial intelligence, is also constantly improving, of which deep learning is one of the contents. The purpose of this paper is to evaluate and warn the security risk of large-scale group activities based on the random forest algorithm. This paper uses the methods of calculating the importance of the random forest algorithm to variables and the calculation formula of the weight of the security risk index, and combining the model parameters of the random forest algorithm The optimization experiment and the random forest model training experiment are used for risk analysis, and the classification accuracy rate reaches a maximum of 0.86, which leads to the conclusion that the random forest algorithm has good predictive ability in the risk assessment of large-scale group activities. This article takes a certain international youth environmental protection festival as an example for analysis, and better verifies the feasibility and effectiveness of this article.
•With the continuous development of artificial intelligence, machine learning, as an indispensable means to realize artificial intelligence, is constantly improving, and deep learning is one of the contents. This article aims to evaluate and warn the security risks of large-scale group activities based on the random forest algorithm.•In this paper, the computational random forest algorithm is used to calculate the importance of variables and the security risk index weight, and combined with the model parameters of the random forest algorithm, optimization experiments and random forest model training experiments are carried out respectively. At the same time, an international youth environmental protection festival is taken as an example to analyze, which has verified the feasibility and effectiveness of this article.•This article mainly evaluates the risks in large-scale group activities, but it can be further improved in future applications. On the basis of it, if the activities want to achieve better results, they must also satisfy the people who participate in the activities. Thereby, it can better help resolve some unnecessary risks and ensure the safety of people in their activities. With the continuous development of artificial intelligence, machine learning, the necessary way to achieve artificial intelligence, is also constantly improving, of which deep learning is one of the contents. The purpose of this paper is to evaluate and warn the security risk of large-scale group activities based on the random forest algorithm. This paper uses the methods of calculating the importance of the random forest algorithm to variables and the calculation formula of the weight of the security risk index, and combining the model parameters of the random forest algorithm The optimization experiment and the random forest model training experiment are used for risk analysis, and the classification accuracy rate reaches a maximum of 0.86, which leads to the conclusion that the random forest algorithm has good predictive ability in the risk assessment of large-scale group activities. This article takes a certain international youth environmental protection festival as an example for analysis, and better verifies the feasibility and effectiveness of this article.
Author Zheng, Wenzhe
Chen, Yanyu
Huang, Yimiao
Li, Wenbo
Author_xml – sequence: 1
  givenname: Yanyu
  surname: Chen
  fullname: Chen, Yanyu
  email: cyy100628@126.com
  organization: College of Economics and Management, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
– sequence: 2
  givenname: Wenzhe
  surname: Zheng
  fullname: Zheng, Wenzhe
  email: zwzzjnu@sina.com
  organization: College of Economics and Management, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
– sequence: 3
  givenname: Wenbo
  surname: Li
  fullname: Li, Wenbo
  email: 420612906@qq.com
  organization: College of Economics and Management, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
– sequence: 4
  givenname: Yimiao
  surname: Huang
  fullname: Huang, Yimiao
  email: 236285736@qq.com
  organization: School of Public Administration, Changchun University of Technology, Changchun 130012, Jilin, China
BookMark eNqFkF9LYzEQxYO4YO3uN9iHgM-3O2nuXx8EKeoKBV_c55CbzK2pbVInaaXfflOuTz4oDMwQfudM5lyycx88MvZbwEyAqP-sZzudCM1sDnMxg1zQnrGJaJt50ciyPGeTjDVFW1fVBbuMcQ0AtezaCcOlphXyFYX9jmuT3MGlI49o9nQayMVXrmPEGLfoE9fejm-oaXPk75q88yve64iWB88pA2HLh0AYM71ZhWzzsv3Jfgx6E_HXR5-yf_d3z4u_xfLp4XFxuyyMlGUqUMpuGGxf20Z0Q133WvbGmhqFBN0O0PWDbEVpjTTCNAbA2HxFmWWAfSUqOWVXo--Owts-f0Gtw558XqnmFVSlKKHpMlWOlKEQI-GgduS2mo5KgDoFqtZqDFSdAlWQC9osu_4kMy7p5IJPpN3mO_HNKMZ8_sEhqWgceoPWZTQpG9zXBv8BjlWYUQ
CitedBy_id crossref_primary_10_1155_2021_8914304
crossref_primary_10_1155_2022_9903364
crossref_primary_10_3389_fpubh_2022_882811
crossref_primary_10_1155_2021_6214036
crossref_primary_10_32604_cmc_2022_027212
crossref_primary_10_1016_j_cose_2023_103627
crossref_primary_10_3390_coatings11121458
crossref_primary_10_1155_2021_6668885
crossref_primary_10_1016_j_ecoinf_2021_101432
crossref_primary_10_1155_2021_5553211
crossref_primary_10_1109_ACCESS_2025_3594171
crossref_primary_10_3390_buildings13112700
crossref_primary_10_3233_JCM_225984
crossref_primary_10_1007_s11356_024_34716_6
crossref_primary_10_1515_geo_2022_0436
crossref_primary_10_32604_cmes_2022_018699
crossref_primary_10_1109_TETCI_2024_3353592
crossref_primary_10_1016_j_ceramint_2024_01_298
crossref_primary_10_3390_su14127307
crossref_primary_10_1007_s42154_023_00245_0
crossref_primary_10_1155_2021_6678454
crossref_primary_10_1155_2021_6691258
crossref_primary_10_3390_en16135206
crossref_primary_10_1016_j_engfracmech_2024_109961
crossref_primary_10_1140_epjp_s13360_021_01545_2
crossref_primary_10_1007_s11277_021_08759_8
crossref_primary_10_1016_j_flowmeasinst_2024_102609
crossref_primary_10_3390_genes13101916
crossref_primary_10_1007_s12145_025_01782_4
crossref_primary_10_1016_j_tranpol_2023_06_015
crossref_primary_10_1007_s11760_025_04230_4
crossref_primary_10_1016_j_ress_2023_109659
crossref_primary_10_1049_cit2_12241
crossref_primary_10_3389_fpls_2024_1376915
crossref_primary_10_1109_TGRS_2023_3347745
crossref_primary_10_1016_j_ijdrr_2023_103659
crossref_primary_10_2147_RMHP_S351821
crossref_primary_10_1155_2022_5488103
crossref_primary_10_1016_j_jhazmat_2023_130879
crossref_primary_10_1016_j_tws_2023_110670
crossref_primary_10_3390_rs15153826
crossref_primary_10_1051_shsconf_202316303037
crossref_primary_10_1111_1541_4337_13296
crossref_primary_10_1109_ACCESS_2022_3229008
crossref_primary_10_1186_s13638_021_01984_6
crossref_primary_10_1007_s00366_021_01442_3
crossref_primary_10_1007_s10661_022_09934_5
crossref_primary_10_3390_ijgi10060382
crossref_primary_10_1057_s41260_022_00302_z
crossref_primary_10_1155_2022_1718773
crossref_primary_10_1155_2022_8606624
crossref_primary_10_3233_JCM_247192
crossref_primary_10_1155_2021_9943067
crossref_primary_10_2478_amns_2023_2_00055
crossref_primary_10_3389_fpls_2024_1458978
crossref_primary_10_1007_s11709_022_0831_3
crossref_primary_10_1016_j_eswa_2021_115082
crossref_primary_10_3390_atmos13060960
crossref_primary_10_1155_2021_5582906
crossref_primary_10_3390_cancers15123237
crossref_primary_10_1002_dac_4899
crossref_primary_10_3390_su13169058
crossref_primary_10_1080_00396265_2022_2160691
crossref_primary_10_1016_j_matpr_2022_04_984
crossref_primary_10_1016_j_egyr_2021_06_064
crossref_primary_10_1016_j_ijepes_2023_109579
crossref_primary_10_1016_j_measurement_2022_111403
crossref_primary_10_1155_2021_6670718
crossref_primary_10_3233_IDT_240041
crossref_primary_10_1016_j_eswa_2021_115079
crossref_primary_10_3390_sym13061082
crossref_primary_10_1007_s00366_021_01450_3
crossref_primary_10_1016_j_irfa_2024_103162
crossref_primary_10_7717_peerj_cs_534
crossref_primary_10_3390_f14040704
crossref_primary_10_1002_for_3008
crossref_primary_10_1049_ell2_13109
crossref_primary_10_1080_14498596_2024_2378362
crossref_primary_10_1049_ise2_12112
crossref_primary_10_1080_15389588_2025_2530074
crossref_primary_10_3233_JIFS_211561
crossref_primary_10_1007_s00366_021_01391_x
crossref_primary_10_1016_j_heliyon_2024_e37789
crossref_primary_10_1038_s41598_023_40106_8
crossref_primary_10_1155_2021_3133065
crossref_primary_10_1016_j_applthermaleng_2021_117339
crossref_primary_10_1155_2022_5490758
crossref_primary_10_1155_2023_7798674
crossref_primary_10_1016_j_patrec_2022_02_003
crossref_primary_10_1007_s00477_021_02103_z
crossref_primary_10_1007_s11831_025_10293_w
crossref_primary_10_1007_s10586_022_03659_3
crossref_primary_10_3390_math10081298
crossref_primary_10_1108_IJIEOM_05_2023_0047
crossref_primary_10_1155_2021_3896130
crossref_primary_10_1155_2021_5569833
crossref_primary_10_1155_2021_9951742
crossref_primary_10_1016_j_ast_2021_106841
crossref_primary_10_1155_2021_5536997
crossref_primary_10_1007_s11356_022_20498_2
crossref_primary_10_1155_2021_5587027
crossref_primary_10_1155_2022_8259909
crossref_primary_10_1016_j_energy_2021_122073
crossref_primary_10_1155_2021_9976001
crossref_primary_10_1016_j_asoc_2023_110362
crossref_primary_10_3390_ijms23063044
crossref_primary_10_1080_17455030_2021_1926572
crossref_primary_10_1016_j_enbuild_2024_114000
crossref_primary_10_1186_s13638_021_02025_y
crossref_primary_10_1155_2022_6457286
crossref_primary_10_1016_j_pan_2024_02_002
crossref_primary_10_1016_j_ecolind_2024_111648
crossref_primary_10_1109_TII_2022_3165085
crossref_primary_10_1016_j_seps_2021_101043
crossref_primary_10_1016_j_measurement_2024_114391
crossref_primary_10_1038_s41598_022_22011_8
crossref_primary_10_1016_j_molliq_2021_116190
crossref_primary_10_3389_frsen_2025_1583560
crossref_primary_10_1109_LGRS_2022_3225215
crossref_primary_10_1016_j_compbiomed_2021_104427
crossref_primary_10_1155_2021_7734080
crossref_primary_10_3390_app11094143
crossref_primary_10_1155_2022_8951961
crossref_primary_10_1155_2022_5790185
crossref_primary_10_5194_soil_10_61_2024
crossref_primary_10_1155_2021_5566691
crossref_primary_10_1155_2021_3092197
crossref_primary_10_7717_peerj_cs_712
crossref_primary_10_1057_s41599_025_05278_w
crossref_primary_10_1016_j_compbiomed_2023_107776
crossref_primary_10_1007_s00366_021_01399_3
crossref_primary_10_1016_j_enconman_2021_114484
crossref_primary_10_1080_10106049_2021_1926558
crossref_primary_10_1155_2022_5489118
crossref_primary_10_1016_j_ijepes_2022_108243
crossref_primary_10_1016_j_indcrop_2024_118434
crossref_primary_10_1080_0951192X_2023_2204486
crossref_primary_10_1155_2021_9838477
crossref_primary_10_1007_s12652_022_04493_6
crossref_primary_10_1007_s00366_021_01440_5
crossref_primary_10_3233_JIFS_202805
crossref_primary_10_1088_1361_6501_ac4a18
crossref_primary_10_1520_JTE20210435
crossref_primary_10_1016_j_jobe_2023_107387
crossref_primary_10_1016_j_measurement_2022_112149
crossref_primary_10_1016_j_jhazmat_2024_135695
crossref_primary_10_1155_2021_3686692
crossref_primary_10_1016_j_jhydrol_2024_130742
crossref_primary_10_3390_su14169870
crossref_primary_10_1007_s10064_021_02523_9
crossref_primary_10_1155_2021_5525560
crossref_primary_10_1155_2022_4964368
crossref_primary_10_3390_rs14164052
crossref_primary_10_1155_2021_5579547
crossref_primary_10_3390_info12080286
crossref_primary_10_1016_j_eswa_2023_122544
crossref_primary_10_32604_cmc_2022_025763
crossref_primary_10_1155_2021_9048808
crossref_primary_10_1016_j_jestch_2024_101699
crossref_primary_10_1155_2021_6359296
crossref_primary_10_3233_JIFS_219112
crossref_primary_10_1155_2022_4606905
crossref_primary_10_1007_s00500_021_05932_w
crossref_primary_10_3389_fphy_2025_1553640
crossref_primary_10_1007_s00366_021_01479_4
crossref_primary_10_1155_2022_6469054
crossref_primary_10_1155_2022_9487978
crossref_primary_10_1016_j_energy_2024_131317
crossref_primary_10_1016_j_jobe_2025_112344
crossref_primary_10_1016_j_marpol_2023_105547
crossref_primary_10_1016_j_jlp_2025_105755
crossref_primary_10_1109_ACCESS_2025_3595456
crossref_primary_10_1155_2022_2653279
crossref_primary_10_1007_s11356_021_14304_8
crossref_primary_10_1109_ACCESS_2021_3077616
crossref_primary_10_1155_2021_9914790
crossref_primary_10_1016_j_enconman_2021_114223
crossref_primary_10_1080_1064119X_2024_2449235
crossref_primary_10_1155_2022_8112212
crossref_primary_10_1002_ese3_1911
crossref_primary_10_1016_j_eswa_2024_123381
crossref_primary_10_1177_14727978251365096
crossref_primary_10_1155_2021_6679732
Cites_doi 10.5271/sjweh.3697
10.1097/ALN.0000000000001052
10.1186/s12859-017-1960-x
10.1016/j.jse.2017.10.035
10.1080/19440049.2016.1138547
10.1109/JSTARS.2015.2416255
10.4236/jbise.2016.95019
10.3847/1538-4357/aa789b
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Apr 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Apr 2021
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2021.01.008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 5
ExternalDocumentID 10_1016_j_patrec_2021_01_008
S0167865521000192
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TK
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-e339ffdb6d719f66ba3bcdc6e130a8f09bf3814dc3c1c7c00cd6394e330eb5153
ISICitedReferencesCount 184
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624287500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Sun Sep 07 03:28:04 EDT 2025
Sat Nov 29 07:24:14 EST 2025
Tue Nov 18 21:53:52 EST 2025
Fri Feb 23 02:40:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Security risk assessment
Random forest algorithm
Risk warning
Large-scale group activities
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-e339ffdb6d719f66ba3bcdc6e130a8f09bf3814dc3c1c7c00cd6394e330eb5153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2505414079
PQPubID 2047552
PageCount 5
ParticipantIDs proquest_journals_2505414079
crossref_primary_10_1016_j_patrec_2021_01_008
crossref_citationtrail_10_1016_j_patrec_2021_01_008
elsevier_sciencedirect_doi_10_1016_j_patrec_2021_01_008
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Lee, Park, Lee (bib0019) 2017; 11
Manessa, Kanno, Sekine (bib0018) 2016; 3
Wang, Jablonski (bib0006) 2016; 33
Kien, Nadine, Anita (bib0003) 2016; 59
Jiang, Shaw (bib0009) 2016; 124
Tzacheva, Bagavathi (bib0020) 2016; 6
Tanner, Simon, Sellers (bib0016) 2018; 27
Nevler, Shabtai, Rosin (bib0011) 2016; 18
Li, Yang, Liu (bib0023) 2016; 33
(bib0015) 2016; 16
Grabowska, Ścisło, Pietruszka (bib0002) 2017; 42
Hu, Zhang (bib0014) 2017; 20
Lee, Lee, Kim (bib0021) 2017; 18
Hou, Yang, Ye (bib0012) 2017; 20
Amato, Minozzi, Mitrova (bib0013) 2017; 41
Dong, Du, Zhang (bib0001) 2017; 8
Ontario (bib0004) 2017; 17
Verma, Dong (bib0025) 2016; 09
Guogyte, Plieskienė, Ladygienė (bib0008) 2017; 8
Liu, Deng, Wang (bib0017) 2017; 843
Omidianidost, Ghasemkhani, Kakooei (bib0007) 2016; 45
Song, Yang, Gao (bib0022) 2018; 53
Shiri (bib0005) 2017; 44
Hasan, Nasser, Ahmad (bib0024) 2016; 07
Voiculeț, Zară, Bogeanu (bib0010) 2016; 9
Manessa (10.1016/j.patrec.2021.01.008_bib0018) 2016; 3
Tanner (10.1016/j.patrec.2021.01.008_bib0016) 2018; 27
Lee (10.1016/j.patrec.2021.01.008_bib0019) 2017; 11
Voiculeț (10.1016/j.patrec.2021.01.008_bib0010) 2016; 9
Hou (10.1016/j.patrec.2021.01.008_bib0012) 2017; 20
Grabowska (10.1016/j.patrec.2021.01.008_bib0002) 2017; 42
Wang (10.1016/j.patrec.2021.01.008_bib0006) 2016; 33
Lee (10.1016/j.patrec.2021.01.008_bib0021) 2017; 18
Amato (10.1016/j.patrec.2021.01.008_bib0013) 2017; 41
(10.1016/j.patrec.2021.01.008_bib0015) 2016; 16
Verma (10.1016/j.patrec.2021.01.008_bib0025) 2016; 09
Hu (10.1016/j.patrec.2021.01.008_bib0014) 2017; 20
Kien (10.1016/j.patrec.2021.01.008_bib0003) 2016; 59
Dong (10.1016/j.patrec.2021.01.008_bib0001) 2017; 8
Guogyte (10.1016/j.patrec.2021.01.008_bib0008) 2017; 8
Ontario (10.1016/j.patrec.2021.01.008_bib0004) 2017; 17
Song (10.1016/j.patrec.2021.01.008_bib0022) 2018; 53
Shiri (10.1016/j.patrec.2021.01.008_bib0005) 2017; 44
Tzacheva (10.1016/j.patrec.2021.01.008_bib0020) 2016; 6
Omidianidost (10.1016/j.patrec.2021.01.008_bib0007) 2016; 45
Li (10.1016/j.patrec.2021.01.008_bib0023) 2016; 33
Hasan (10.1016/j.patrec.2021.01.008_bib0024) 2016; 07
Liu (10.1016/j.patrec.2021.01.008_bib0017) 2017; 843
Jiang (10.1016/j.patrec.2021.01.008_bib0009) 2016; 124
Nevler (10.1016/j.patrec.2021.01.008_bib0011) 2016; 18
References_xml – volume: 41
  start-page: 279
  year: 2017
  end-page: 293
  ident: bib0013
  article-title: Systematic review of safeness and therapeutic efficacy of cannabis in patients with multiple sclerosis, neuropathic pain, and in oncological patients treated with chemotherapy
  publication-title: Epidemiol. Prev.
– volume: 59
  start-page: 31
  year: 2016
  end-page: 32
  ident: bib0003
  article-title: Acupuncture for neck disorders
  publication-title: Cochrane Database Syst. Rev.
– volume: 45
  start-page: 70
  year: 2016
  end-page: 75
  ident: bib0007
  article-title: Risk assessment of occupational exposure to crystalline silica in small foundries in pakdasht, Iran
  publication-title: Iran. J. Public Health
– volume: 27
  start-page: 794
  year: 2018
  end-page: 800
  ident: bib0016
  article-title: Total shoulder arthroplasty with minimum 5-year follow-up: does the presence of subchondral cysts in the glenoid increase risk of failure?
  publication-title: J. Shoulder Elb. Surg.
– volume: 20
  start-page: 378
  year: 2017
  ident: bib0012
  article-title: Effectiveness of pharmacist-led anticoagulation management on clinical outcomes: a systematic review and meta-analysis
  publication-title: J. Pharm. Pharmaceut. Sci.
– volume: 42
  start-page: 151
  year: 2017
  end-page: 157
  ident: bib0002
  article-title: The model of perioperative risk assessment in elderly patients - interim analysis
  publication-title: Polski. Merkur. Lek. Organ Polski. Tow. Lek.
– volume: 8
  start-page: 1830
  year: 2017
  end-page: 1838
  ident: bib0001
  article-title: Target detection based on random forest metric learning
  publication-title: IEEE J. Select Top. Appl. Earth Observat. Remote Sens.
– volume: 11
  start-page: 5132
  year: 2017
  end-page: 5148
  ident: bib0019
  article-title: Feature selection algorithm for intrusions detection system using sequential forward search and random forest classifier
  publication-title: KSII Trans. Intern. Inf. Syst.
– volume: 33
  start-page: 1053
  year: 2016
  end-page: 1059
  ident: bib0023
  article-title: Research on diagnosis algorithm of Parkinson's disease based on speech sample multi-edit and Random Forest
  publication-title: Shengwu Yixue Gongchengxue Zazhi
– volume: 16
  start-page: 1
  year: 2016
  end-page: 94
  ident: bib0015
  article-title: Transcatheter aortic valve implantation for treatment of aortic valve stenosis: a health technology assessment
  publication-title: Ontario Health Technol. Assess. Ser.
– volume: 18
  start-page: 567
  year: 2017
  ident: bib0021
  article-title: Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server
  publication-title: BMC Bioinform.
– volume: 18
  start-page: 32
  year: 2016
  end-page: 35
  ident: bib0011
  article-title: Mammographic breast density as a predictor of radiological findings requiring further investigation
  publication-title: Israel Med. Assoc. J. IMAJ
– volume: 20
  start-page: 129
  year: 2017
  ident: bib0014
  article-title: Diagnosis and risk assessment of postoperative complications of gastric cancer in Japan and Korea
  publication-title: Zhonghua wei chang wai ke za zhi = Chinese J. Gastrointest. Surg.
– volume: 8
  start-page: 1
  year: 2017
  ident: bib0008
  article-title: Assessment of correlation between chromosomal radiosensitivity of peripheral blood lymphocytes after in vitro irradiation and normal tissue side effects for cancer patients undergoing radiotherapy
  publication-title: Genome Integr.
– volume: 6
  start-page: 15
  year: 2016
  end-page: 30
  ident: bib0020
  article-title: Ganesan P.D. Mr – random forest algorithm for distributed action rules discovery
  publication-title: Data Min. Knowl. Discov.
– volume: 843
  start-page: 104
  year: 2017
  ident: bib0017
  article-title: Predicting solar flares using SDO /HMI vector magnetic data products and the random forest algorithm
  publication-title: Astrophys. J.
– volume: 07
  start-page: 129
  year: 2016
  end-page: 140
  ident: bib0024
  article-title: Feature selection for intrusion detection using Random Forest
  publication-title: J. Inf. Sec.
– volume: 17
  start-page: 1
  year: 2017
  end-page: 75
  ident: bib0004
  article-title: Prolaris cell cycle progression test for localized prostate cancer: a health technology assessment
  publication-title: Ontario Health Technol. Assess. Ser.
– volume: 09
  start-page: 259
  year: 2016
  end-page: 268
  ident: bib0025
  article-title: Detection of ventricular fibrillation using Random Forest Classifier
  publication-title: J. Biomed. Sci. Eng.
– volume: 44
  start-page: 106
  year: 2017
  end-page: 107
  ident: bib0005
  article-title: Suicide among agricultural, forestry, and fishery workers
  publication-title: Scand. J. Work. Environ. Health
– volume: 3
  start-page: 117
  year: 2016
  ident: bib0018
  article-title: Satellite-derived bathymetry using random forest algorithm and worldview-2 imagery
  publication-title: Geoplanning
– volume: 33
  start-page: 560
  year: 2016
  end-page: 573
  ident: bib0006
  article-title: Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics
  publication-title: Food Addit. Contam. Part A Chem. Anal. Control Exp. Risk Assess.
– volume: 9
  start-page: 449
  year: 2016
  end-page: 454
  ident: bib0010
  article-title: The role of oral sodium bicarbonate supplementation in maintaining acid-base balance and its influence on the cardiovascular system in chronic hemodialysis patients – results of a prospective study
  publication-title: J. Med. Life
– volume: 124
  start-page: 983
  year: 2016
  ident: bib0009
  article-title: Albumin supplementation as a therapeutic strategy in cardiac surgery: useful tool or expensive hobby?
  publication-title: Anesthesiology
– volume: 53
  start-page: 954
  year: 2018
  end-page: 960
  ident: bib0022
  article-title: Strong tolerance random forest algorithm in seismic reservoir prediction
  publication-title: Shiyou Diqiu Wuli Kantan/Oil Geophys. Prospect.
– volume: 33
  start-page: 1053
  issue: 6
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0023
  article-title: Research on diagnosis algorithm of Parkinson's disease based on speech sample multi-edit and Random Forest
  publication-title: Shengwu Yixue Gongchengxue Zazhi
– volume: 42
  start-page: 151
  issue: 250
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0002
  article-title: The model of perioperative risk assessment in elderly patients - interim analysis
  publication-title: Polski. Merkur. Lek. Organ Polski. Tow. Lek.
– volume: 45
  start-page: 70
  issue: 1
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0007
  article-title: Risk assessment of occupational exposure to crystalline silica in small foundries in pakdasht, Iran
  publication-title: Iran. J. Public Health
– volume: 07
  start-page: 129
  issue: 3
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0024
  article-title: Feature selection for intrusion detection using Random Forest
  publication-title: J. Inf. Sec.
– volume: 20
  start-page: 129
  issue: 2
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0014
  article-title: Diagnosis and risk assessment of postoperative complications of gastric cancer in Japan and Korea
  publication-title: Zhonghua wei chang wai ke za zhi = Chinese J. Gastrointest. Surg.
– volume: 44
  start-page: 106
  issue: 1
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0005
  article-title: Suicide among agricultural, forestry, and fishery workers
  publication-title: Scand. J. Work. Environ. Health
  doi: 10.5271/sjweh.3697
– volume: 11
  start-page: 5132
  issue: 10
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0019
  article-title: Feature selection algorithm for intrusions detection system using sequential forward search and random forest classifier
  publication-title: KSII Trans. Intern. Inf. Syst.
– volume: 124
  start-page: 983
  issue: 5
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0009
  article-title: Albumin supplementation as a therapeutic strategy in cardiac surgery: useful tool or expensive hobby?
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000001052
– volume: 18
  start-page: 567
  issue: 16
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0021
  article-title: Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-017-1960-x
– volume: 6
  start-page: 15
  issue: 5
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0020
  article-title: Ganesan P.D. Mr – random forest algorithm for distributed action rules discovery
  publication-title: Data Min. Knowl. Discov.
– volume: 17
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0004
  article-title: Prolaris cell cycle progression test for localized prostate cancer: a health technology assessment
  publication-title: Ontario Health Technol. Assess. Ser.
– volume: 27
  start-page: 794
  issue: 5
  year: 2018
  ident: 10.1016/j.patrec.2021.01.008_bib0016
  article-title: Total shoulder arthroplasty with minimum 5-year follow-up: does the presence of subchondral cysts in the glenoid increase risk of failure?
  publication-title: J. Shoulder Elb. Surg.
  doi: 10.1016/j.jse.2017.10.035
– volume: 33
  start-page: 560
  issue: 3
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0006
  article-title: Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics
  publication-title: Food Addit. Contam. Part A Chem. Anal. Control Exp. Risk Assess.
  doi: 10.1080/19440049.2016.1138547
– volume: 20
  start-page: 378
  issue: 1
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0012
  article-title: Effectiveness of pharmacist-led anticoagulation management on clinical outcomes: a systematic review and meta-analysis
  publication-title: J. Pharm. Pharmaceut. Sci.
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0008
  article-title: Assessment of correlation between chromosomal radiosensitivity of peripheral blood lymphocytes after in vitro irradiation and normal tissue side effects for cancer patients undergoing radiotherapy
  publication-title: Genome Integr.
– volume: 8
  start-page: 1830
  issue: 4
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0001
  article-title: Target detection based on random forest metric learning
  publication-title: IEEE J. Select Top. Appl. Earth Observat. Remote Sens.
  doi: 10.1109/JSTARS.2015.2416255
– volume: 16
  start-page: 1
  issue: 19
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0015
  article-title: Transcatheter aortic valve implantation for treatment of aortic valve stenosis: a health technology assessment
  publication-title: Ontario Health Technol. Assess. Ser.
– volume: 09
  start-page: 259
  issue: 5
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0025
  article-title: Detection of ventricular fibrillation using Random Forest Classifier
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2016.95019
– volume: 53
  start-page: 954
  issue: 5
  year: 2018
  ident: 10.1016/j.patrec.2021.01.008_bib0022
  article-title: Strong tolerance random forest algorithm in seismic reservoir prediction
  publication-title: Shiyou Diqiu Wuli Kantan/Oil Geophys. Prospect.
– volume: 41
  start-page: 279
  issue: 5-6
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0013
  article-title: Systematic review of safeness and therapeutic efficacy of cannabis in patients with multiple sclerosis, neuropathic pain, and in oncological patients treated with chemotherapy
  publication-title: Epidemiol. Prev.
– volume: 18
  start-page: 32
  issue: 1
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0011
  article-title: Mammographic breast density as a predictor of radiological findings requiring further investigation
  publication-title: Israel Med. Assoc. J. IMAJ
– volume: 9
  start-page: 449
  issue: 4
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0010
  article-title: The role of oral sodium bicarbonate supplementation in maintaining acid-base balance and its influence on the cardiovascular system in chronic hemodialysis patients – results of a prospective study
  publication-title: J. Med. Life
– volume: 843
  start-page: 104
  issue: 2
  year: 2017
  ident: 10.1016/j.patrec.2021.01.008_bib0017
  article-title: Predicting solar flares using SDO /HMI vector magnetic data products and the random forest algorithm
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aa789b
– volume: 3
  start-page: 117
  issue: 2
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0018
  article-title: Satellite-derived bathymetry using random forest algorithm and worldview-2 imagery
  publication-title: Geoplanning
– volume: 59
  start-page: 31
  issue: 4
  year: 2016
  ident: 10.1016/j.patrec.2021.01.008_bib0003
  article-title: Acupuncture for neck disorders
  publication-title: Cochrane Database Syst. Rev.
SSID ssj0006398
Score 2.659569
Snippet •With the continuous development of artificial intelligence, machine learning, as an indispensable means to realize artificial intelligence, is constantly...
With the continuous development of artificial intelligence, machine learning, the necessary way to achieve artificial intelligence, is also constantly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial intelligence
Deep learning
Environmental protection
Forest management
Large-scale group activities
Learning algorithms
Machine learning
Optimization
Random forest algorithm
Random variables
Risk analysis
Risk assessment
Risk warning
Security
Security risk assessment
Title Large group activity security risk assessment and risk early warning based on random forest algorithm
URI https://dx.doi.org/10.1016/j.patrec.2021.01.008
https://www.proquest.com/docview/2505414079
Volume 144
WOSCitedRecordID wos000624287500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMceBQQLQXtAXGpjGyv48exqlIBikIPKaSnlXd33KZK7NCkD_FP-LfMvuyIV-GAFFnxJruJPJ9nPs_Og5DXITCIFaR4iysRJBX0gzzO0kAAi_sK8qgy-RWfhtlolE8mxVGv983nwlzNsrrOb26KxX8VNY6hsHXq7D-Iu10UB_A9Ch2PKHY8_pXghzq2e89ka5hKGaY5xNK1qbOh5GVbjrMLLwdT6fjaOUq0cVN6IwFNmWrmOhgRzcdeOTttcJmz-TqnPTIlOnVajItFwmkzkyXU8vUDlwNygqrnsvNVg1U0n6H-etYCbDh1Y6LpMOe82ifT-bRs1j0VcbQW4GLcZz6FxmutLm7JeDZRY-ssWWuYrDbOM6T_zBaIbNW1O7UKN_qlGbAeifO3ej8BdKHKODLFWcO8M3t-q3_0kR8eD4d8PJiM3yy-BLohmd64d91Z7pDNOOsXqDA3998PJh9aM4_ULveF4_X_9nmZJnjw5x_-He_5gQEYWjN-RB645xG6b3H0mPSg3iIPfa8P6i7iFrm_VrjyCQEDMmpARj3IqAcZ1YCiHcgoYsiOGZBRBzJqQEabmlqQUQsy2oLsKTk-HIwP3gWuYUcgGUtWATBWVJUSqcqiokpTUTIhlUwBiVKZV2EhKiSIiZJMRjKTYSgVXsUEp4UgkFizZ2Sjbmp4TmgkhUxZIuK0gkRAJKqwZLgcxFIoCdE2Yf5ycumq2eumKjPuwxbPuRUC10LgIb7CfJsE7ayFreZyy_czLynuGKllmhyRdsvMXS9Y7pTDkuvHjSRKwqzY-fPHL8i97gbaJRuri0t4Se7Kq9V0efHKIfE701O8ZA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+group+activity+security+risk+assessment+and+risk+early+warning+based+on+random+forest+algorithm&rft.jtitle=Pattern+recognition+letters&rft.au=Chen%2C+Yanyu&rft.au=Zheng%2C+Wenzhe&rft.au=Li%2C+Wenbo&rft.au=Huang%2C+Yimiao&rft.date=2021-04-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=144&rft.spage=1&rft_id=info:doi/10.1016%2Fj.patrec.2021.01.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon