Automatic music transcription for traditional woodwind instruments sopele
•Prospects of sopele woodwind instrument AMT are inspected on a newly acquired dataset.•Unwanted pitch variation is mitigated using DFT and supervised machine learning.•DFT-coupled RF and CNN models achieve F1=0.92 in the polyphonic setup.•A full-stack system for effortless music preservation of sop...
Saved in:
| Published in: | Pattern recognition letters Vol. 128; pp. 340 - 347 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.12.2019
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0167-8655, 1872-7344 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Prospects of sopele woodwind instrument AMT are inspected on a newly acquired dataset.•Unwanted pitch variation is mitigated using DFT and supervised machine learning.•DFT-coupled RF and CNN models achieve F1=0.92 in the polyphonic setup.•A full-stack system for effortless music preservation of sopele pieces is presented.•The system performs reasonably well for transcribing sopele traditional music pieces.
Sopela is a traditional hand-made woodwind instrument, commonly played in pair, characteristic to the Istrian peninsula in western Croatia. Its piercing sound, accompanied by two-part singing in the hexatonic Istrian scale, is registered in the UNESCO Representative List of the Intangible Cultural Heritage of Humanity. This paper presents an insight study of automatic music transcription (AMT) for sopele tunes. The process of converting audio inputs into human-readable musical scores involves multi-pitch detection and note tracking. The proposed solution supports this process by utilising frequency-feature extraction, supervised machine learning (ML) algorithms, and postprocessing heuristics. We determined the most favourable tone-predicting model by applying grid search for two state-of-the-art ML techniques, optionally coupled with frequency-feature extraction. The model achieved promising transcription accuracy for both monophonic and polyphonic music sources encompassed in the originally developed dataset. In addition, we developed a proof-of-concept AMT system, comprised of a client mobile application and a server-side API. While the mobile application records, tags and uploads audio sources, the back-end server applies the presented procedure for converting recorded music into a common notation to be delivered as a transcription result. We thus demonstrate how collecting and preserving traditional sopele music, performed in real-life occasions, can be effortlessly accomplished on-the-go. |
|---|---|
| AbstractList | Sopela is a traditional hand-made woodwind instrument, commonly played in pair, characteristic to the Istrian peninsula in western Croatia. Its piercing sound, accompanied by two-part singing in the hexatonic Istrian scale, is registered in the UNESCO Representative List of the Intangible Cultural Heritage of Humanity. This paper presents an insight study of automatic music transcription (AMT) for sopele tunes. The process of converting audio inputs into human-readable musical scores involves multi-pitch detection and note tracking. The proposed solution supports this process by utilising frequency-feature extraction, supervised machine learning (ML) algorithms, and postprocessing heuristics. We determined the most favourable tone-predicting model by applying grid search for two state-of-the-art ML techniques, optionally coupled with frequency-feature extraction. The model achieved promising transcription accuracy for both monophonic and polyphonic music sources encompassed in the originally developed dataset. In addition, we developed a proof-of-concept AMT system, comprised of a client mobile application and a server-side API. While the mobile application records, tags and uploads audio sources, the back-end server applies the presented procedure for converting recorded music into a common notation to be delivered as a transcription result. We thus demonstrate how collecting and preserving traditional sopele music, performed in real-life occasions, can be effortlessly accomplished on-the-go. •Prospects of sopele woodwind instrument AMT are inspected on a newly acquired dataset.•Unwanted pitch variation is mitigated using DFT and supervised machine learning.•DFT-coupled RF and CNN models achieve F1=0.92 in the polyphonic setup.•A full-stack system for effortless music preservation of sopele pieces is presented.•The system performs reasonably well for transcribing sopele traditional music pieces. Sopela is a traditional hand-made woodwind instrument, commonly played in pair, characteristic to the Istrian peninsula in western Croatia. Its piercing sound, accompanied by two-part singing in the hexatonic Istrian scale, is registered in the UNESCO Representative List of the Intangible Cultural Heritage of Humanity. This paper presents an insight study of automatic music transcription (AMT) for sopele tunes. The process of converting audio inputs into human-readable musical scores involves multi-pitch detection and note tracking. The proposed solution supports this process by utilising frequency-feature extraction, supervised machine learning (ML) algorithms, and postprocessing heuristics. We determined the most favourable tone-predicting model by applying grid search for two state-of-the-art ML techniques, optionally coupled with frequency-feature extraction. The model achieved promising transcription accuracy for both monophonic and polyphonic music sources encompassed in the originally developed dataset. In addition, we developed a proof-of-concept AMT system, comprised of a client mobile application and a server-side API. While the mobile application records, tags and uploads audio sources, the back-end server applies the presented procedure for converting recorded music into a common notation to be delivered as a transcription result. We thus demonstrate how collecting and preserving traditional sopele music, performed in real-life occasions, can be effortlessly accomplished on-the-go. |
| Author | Lerga, Jonatan Ljubic, Sandi Štajduhar, Ivan Skoki, Arian |
| Author_xml | – sequence: 1 givenname: Arian surname: Skoki fullname: Skoki, Arian – sequence: 2 givenname: Sandi surname: Ljubic fullname: Ljubic, Sandi – sequence: 3 givenname: Jonatan surname: Lerga fullname: Lerga, Jonatan – sequence: 4 givenname: Ivan orcidid: 0000-0003-4758-7972 surname: Štajduhar fullname: Štajduhar, Ivan email: istajduh@riteh.hr |
| BookMark | eNqFkE1LxDAQhoOs4K76DzwUPHfNV9vUg7AsfiwseNFzSPMBKW1Tk9TFf29KPXlQGGaY4XmHmXcDVoMbNAA3CG4RROVdux1F9FpuMUT1FqbA9AysEatwXhFKV2CdsCpnZVFcgE0ILYSwJDVbg8Nuiq4X0cqsn0LK0YshSG_HaN2QGefnibJzJ7rs5Jw62UFldgjRT70eYsiCG3Wnr8C5EV3Q1z_1Erw_Pb7tX_Lj6_NhvzvmkhAac2UEqhlsCqlooRvJqsYgg2pqWNPUsjKEUYhlWWiGG5UgbZiiTSlMjSuiEbkEt8ve0buPSYfIWzf5dFzgmOC6whCjMlF0oaR3IXht-OhtL_wXR5DPpvGWL6bx2TQOU2CaZPe_ZNJGMT-fXLDdf-KHRazT-59Wex6k1YPUyiY0cuXs3wu-AZrKj00 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3244620 crossref_primary_10_1007_s00034_025_03275_7 crossref_primary_10_1016_j_patrec_2020_06_018 crossref_primary_10_2478_amns_2023_2_01182 crossref_primary_10_1155_2022_5074829 crossref_primary_10_1016_j_dib_2019_104840 crossref_primary_10_1155_2021_8678853 crossref_primary_10_1007_s10639_023_12312_4 |
| Cites_doi | 10.1023/A:1010933404324 10.1109/TASL.2011.2174227 10.1016/j.ipm.2009.03.002 10.1007/s10844-013-0258-3 10.1109/TASLP.2016.2533858 10.1109/TASLP.2016.2515514 10.1109/TASLP.2014.2387388 10.1162/COMJ_a_00146 10.1109/TASL.2009.2034186 10.1109/TASLP.2018.2830113 10.1080/09298215.2018.1451546 10.1109/TASLP.2016.2598305 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Dec 1, 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Dec 1, 2019 |
| DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.patrec.2019.09.024 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1872-7344 |
| EndPage | 347 |
| ExternalDocumentID | 10_1016_j_patrec_2019_09_024 S0167865519302703 |
| GroupedDBID | --M .DC .~1 0R~ 123 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K TN5 UNMZH WH7 XPP ZMT ~G- --K 1B1 29O 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADMXK ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ IHE R2- RPZ SBC SDS SEW VOH WUQ Y6R ~HD 7SC 7TK 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-dfa1980b5cd45ebc87bf1f194f8bb9c7f38402c65e82bdcd4ef8d4b6af9273e13 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498398400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-8655 |
| IngestDate | Sun Oct 05 00:25:00 EDT 2025 Tue Nov 18 22:10:18 EST 2025 Sat Nov 29 07:23:24 EST 2025 Fri Feb 23 02:24:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sopele Traditional woodwind instrument Automatic music transcription Discrete Fourier transform Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-dfa1980b5cd45ebc87bf1f194f8bb9c7f38402c65e82bdcd4ef8d4b6af9273e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4758-7972 |
| PQID | 2329720216 |
| PQPubID | 2047552 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2329720216 crossref_primary_10_1016_j_patrec_2019_09_024 crossref_citationtrail_10_1016_j_patrec_2019_09_024 elsevier_sciencedirect_doi_10_1016_j_patrec_2019_09_024 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 2019-12-00 20191201 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Pattern recognition letters |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Sigtia, Benetos, Dixon (bib0021) 2016; 24 Krizhevsky, Sutskever, Hinton (bib0013) 2012; 25 Klapuri, Davy (bib0012) 2010 O’Hanlon, Nagano, Keriven, Plumbley (bib0017) 2016; 24 Alcabasa, Marcos (bib0001) 2012 Schramm, Benetos (bib0019) 2017 Breiman (bib0006) 2001; 45 Barbancho, Klapuri, Tardon, Barbancho (bib0003) 2012; 20 Cogliati, Duan, Wohlberg (bib0007) 2016; 24 Powers (bib0018) 2011; 2 Senac, Pellegrini, Mouret, Pinquier (bib0020) 2017 van Drongelen (bib0009) 2018 Dessein, Cont, Lemaitre (bib0008) 2010 Smaragdis, Brown (bib0022) 2003 Tan, Jiang (bib0024) 2019 Goodfellow, Bengio, Courville (bib0011) 2016 Valero-Mas, Benetos, Iñesta (bib0025) 2018; 47 Gajhede, Beck, Purwins (bib0010) 2016 Nakamura, Benetos, Yoshii, Dixon (bib0015) 2018 Nam, Ngiam, Lee, Slaney (bib0016) 2011 Sokolova, Lapalme (bib0023) 2009; 45 Kubera, Kursa, Rudnicki, Rudnicki, Wieczorkowska (bib0014) 2011 Wu, Dittmar, Southall, Vogl, Widmer, Hockman, Muller, Lerch (bib0027) 2018; 26 Arora, Behera (bib0002) 2015; 23 Vincent, Bertin, Badeau (bib0026) 2010; 18 Benetos, Dixon (bib0004) 2012; 36 Benetos, Dixon, Giannoulis, Kirchhoff, Klapuri (bib0005) 2013; 41 Alcabasa (10.1016/j.patrec.2019.09.024_bib0001) 2012 Cogliati (10.1016/j.patrec.2019.09.024_bib0007) 2016; 24 Sigtia (10.1016/j.patrec.2019.09.024_bib0021) 2016; 24 Powers (10.1016/j.patrec.2019.09.024_bib0018) 2011; 2 Dessein (10.1016/j.patrec.2019.09.024_bib0008) 2010 Gajhede (10.1016/j.patrec.2019.09.024_bib0010) 2016 van Drongelen (10.1016/j.patrec.2019.09.024_bib0009) 2018 Wu (10.1016/j.patrec.2019.09.024_bib0027) 2018; 26 Senac (10.1016/j.patrec.2019.09.024_bib0020) 2017 Benetos (10.1016/j.patrec.2019.09.024_bib0004) 2012; 36 Vincent (10.1016/j.patrec.2019.09.024_bib0026) 2010; 18 Nam (10.1016/j.patrec.2019.09.024_bib0016) 2011 Krizhevsky (10.1016/j.patrec.2019.09.024_bib0013) 2012; 25 Kubera (10.1016/j.patrec.2019.09.024_bib0014) 2011 Sokolova (10.1016/j.patrec.2019.09.024_bib0023) 2009; 45 Tan (10.1016/j.patrec.2019.09.024_bib0024) 2019 Nakamura (10.1016/j.patrec.2019.09.024_bib0015) 2018 Barbancho (10.1016/j.patrec.2019.09.024_bib0003) 2012; 20 Breiman (10.1016/j.patrec.2019.09.024_bib0006) 2001; 45 Smaragdis (10.1016/j.patrec.2019.09.024_bib0022) 2003 Schramm (10.1016/j.patrec.2019.09.024_bib0019) 2017 Klapuri (10.1016/j.patrec.2019.09.024_bib0012) 2010 Valero-Mas (10.1016/j.patrec.2019.09.024_bib0025) 2018; 47 Benetos (10.1016/j.patrec.2019.09.024_bib0005) 2013; 41 O’Hanlon (10.1016/j.patrec.2019.09.024_bib0017) 2016; 24 Arora (10.1016/j.patrec.2019.09.024_bib0002) 2015; 23 Goodfellow (10.1016/j.patrec.2019.09.024_bib0011) 2016 |
| References_xml | – start-page: 489 year: 2010 end-page: 494 ident: bib0008 article-title: Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence publication-title: Proceedings of the 11th International Society for Music Information Retrieval Conference, Utrecht, The Netherlands – volume: 47 start-page: 249 year: 2018 end-page: 263 ident: bib0025 article-title: A supervised classification approach for note tracking in polyphonic piano transcription publication-title: J. New Music Res. – volume: 41 start-page: 407 year: 2013 end-page: 434 ident: bib0005 article-title: Automatic music transcription: challenges and future directions publication-title: J. Intell. Inf. Syst. – start-page: 197 year: 2012 end-page: 202 ident: bib0001 article-title: Automatic guitar music transcription publication-title: 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT) – volume: 23 start-page: 278 year: 2015 end-page: 287 ident: bib0002 article-title: Multiple f0 estimation and source clustering of polyphonic music audio using plca and hmrfs publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc. – volume: 20 start-page: 915 year: 2012 end-page: 921 ident: bib0003 article-title: Automatic transcription of guitar chords and fingering from audio publication-title: Trans. Audio Speech Lang. Proc. – start-page: 111 year: 2016 end-page: 115 ident: bib0010 article-title: Convolutional neural networks with batch normalization for classifying hi-hat, snare, and bass percussion sound samples publication-title: Proceedings of the Audio Mostly 2016 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0006 article-title: Random forests publication-title: Mach. Learn. – start-page: 175 year: 2011 end-page: 180 ident: bib0016 article-title: A classification-based polyphonic piano transcription approach using learned feature representations publication-title: Proceedings of the 12th International Society for Music Information Retrieval Conference, ISMIR 2011, Miami, Florida, USA, October 24–28, 2011 – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: bib0023 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. – volume: 24 start-page: 927 year: 2016 end-page: 939 ident: bib0021 article-title: An end-to-end neural network for polyphonic piano music transcription publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc. – start-page: 103 year: 2018 end-page: 118 ident: bib0009 article-title: Continuous, Discrete, and Fast Fourier Transform publication-title: Signal Processing for Neuroscientists – volume: 24 start-page: 2218 year: 2016 end-page: 2230 ident: bib0007 article-title: Context-dependent piano music transcription with convolutional sparse coding publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc. – start-page: 101 year: 2018 end-page: 105 ident: bib0015 article-title: Towards complete polyphonic music transcription: Integrating multi-pitch detection and rhythm quantization publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 2 start-page: 37 year: 2011 end-page: 63 ident: bib0018 article-title: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation publication-title: J. Mach. Learn. Technol. – volume: 18 start-page: 528 year: 2010 end-page: 537 ident: bib0026 article-title: Adaptive harmonic spectral decomposition for multiple pitch estimation publication-title: Trans. Audio Speech Lang. Proc. – volume: 36 start-page: 81 year: 2012 end-page: 94 ident: bib0004 article-title: A shift-invariant latent variable model for automatic music transcription publication-title: Comput. Music J. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: bib0013 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances In Neural Information Processing Systems – start-page: 543 year: 2011 end-page: 553 ident: bib0014 article-title: All that jazz in the random forest publication-title: Foundations of Intelligent Systems – start-page: 19:1 year: 2017 end-page: 19:5 ident: bib0020 article-title: Music feature maps with convolutional neural networks for music genre classification publication-title: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing – year: 2010 ident: bib0012 article-title: Signal Processing Methods for Music Transcription – year: 2016 ident: bib0011 article-title: Deep Learning – volume: 26 start-page: 1457 year: 2018 end-page: 1483 ident: bib0027 article-title: A review of automatic drum transcription publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc. – start-page: 91 year: 2019 end-page: 142 ident: bib0024 article-title: Discrete Fourier Transform and Signal Spectrum publication-title: Digital Signal Processing – volume: 24 start-page: 530 year: 2016 end-page: 542 ident: bib0017 article-title: Non-negative group sparsity with subspace note modelling for polyphonic transcription publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc. – start-page: 1 year: 2017 end-page: 8 ident: bib0019 article-title: Automatic transcription of a cappella recordings from multiple singers publication-title: Audio Engineering Society Conference: 2017 AES International Conference on Semantic Audio – start-page: 177 year: 2003 end-page: 180 ident: bib0022 article-title: Non-negative matrix factorization for polyphonic music transcription publication-title: Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics – start-page: 543 year: 2011 ident: 10.1016/j.patrec.2019.09.024_bib0014 article-title: All that jazz in the random forest – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.patrec.2019.09.024_bib0006 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – start-page: 175 year: 2011 ident: 10.1016/j.patrec.2019.09.024_bib0016 article-title: A classification-based polyphonic piano transcription approach using learned feature representations – start-page: 111 year: 2016 ident: 10.1016/j.patrec.2019.09.024_bib0010 article-title: Convolutional neural networks with batch normalization for classifying hi-hat, snare, and bass percussion sound samples – start-page: 103 year: 2018 ident: 10.1016/j.patrec.2019.09.024_bib0009 article-title: Continuous, Discrete, and Fast Fourier Transform – start-page: 91 year: 2019 ident: 10.1016/j.patrec.2019.09.024_bib0024 article-title: Discrete Fourier Transform and Signal Spectrum – start-page: 197 year: 2012 ident: 10.1016/j.patrec.2019.09.024_bib0001 article-title: Automatic guitar music transcription – start-page: 177 year: 2003 ident: 10.1016/j.patrec.2019.09.024_bib0022 article-title: Non-negative matrix factorization for polyphonic music transcription – volume: 20 start-page: 915 issue: 3 year: 2012 ident: 10.1016/j.patrec.2019.09.024_bib0003 article-title: Automatic transcription of guitar chords and fingering from audio publication-title: Trans. Audio Speech Lang. Proc. doi: 10.1109/TASL.2011.2174227 – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.patrec.2019.09.024_bib0023 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2009.03.002 – year: 2010 ident: 10.1016/j.patrec.2019.09.024_bib0012 – start-page: 101 year: 2018 ident: 10.1016/j.patrec.2019.09.024_bib0015 article-title: Towards complete polyphonic music transcription: Integrating multi-pitch detection and rhythm quantization – volume: 41 start-page: 407 issue: 3 year: 2013 ident: 10.1016/j.patrec.2019.09.024_bib0005 article-title: Automatic music transcription: challenges and future directions publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-013-0258-3 – volume: 24 start-page: 927 issue: 5 year: 2016 ident: 10.1016/j.patrec.2019.09.024_bib0021 article-title: An end-to-end neural network for polyphonic piano music transcription publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc. doi: 10.1109/TASLP.2016.2533858 – year: 2016 ident: 10.1016/j.patrec.2019.09.024_bib0011 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.patrec.2019.09.024_bib0013 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances In Neural Information Processing Systems – volume: 24 start-page: 530 issue: 3 year: 2016 ident: 10.1016/j.patrec.2019.09.024_bib0017 article-title: Non-negative group sparsity with subspace note modelling for polyphonic transcription publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc. doi: 10.1109/TASLP.2016.2515514 – volume: 2 start-page: 37 issue: 1 year: 2011 ident: 10.1016/j.patrec.2019.09.024_bib0018 article-title: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation publication-title: J. Mach. Learn. Technol. – start-page: 19:1 year: 2017 ident: 10.1016/j.patrec.2019.09.024_bib0020 article-title: Music feature maps with convolutional neural networks for music genre classification – start-page: 489 year: 2010 ident: 10.1016/j.patrec.2019.09.024_bib0008 article-title: Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence – start-page: 1 year: 2017 ident: 10.1016/j.patrec.2019.09.024_bib0019 article-title: Automatic transcription of a cappella recordings from multiple singers – volume: 23 start-page: 278 issue: 2 year: 2015 ident: 10.1016/j.patrec.2019.09.024_bib0002 article-title: Multiple f0 estimation and source clustering of polyphonic music audio using plca and hmrfs publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc. doi: 10.1109/TASLP.2014.2387388 – volume: 36 start-page: 81 issue: 4 year: 2012 ident: 10.1016/j.patrec.2019.09.024_bib0004 article-title: A shift-invariant latent variable model for automatic music transcription publication-title: Comput. Music J. doi: 10.1162/COMJ_a_00146 – volume: 18 start-page: 528 issue: 3 year: 2010 ident: 10.1016/j.patrec.2019.09.024_bib0026 article-title: Adaptive harmonic spectral decomposition for multiple pitch estimation publication-title: Trans. Audio Speech Lang. Proc. doi: 10.1109/TASL.2009.2034186 – volume: 26 start-page: 1457 issue: 9 year: 2018 ident: 10.1016/j.patrec.2019.09.024_bib0027 article-title: A review of automatic drum transcription publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc. doi: 10.1109/TASLP.2018.2830113 – volume: 47 start-page: 249 issue: 3 year: 2018 ident: 10.1016/j.patrec.2019.09.024_bib0025 article-title: A supervised classification approach for note tracking in polyphonic piano transcription publication-title: J. New Music Res. doi: 10.1080/09298215.2018.1451546 – volume: 24 start-page: 2218 issue: 12 year: 2016 ident: 10.1016/j.patrec.2019.09.024_bib0007 article-title: Context-dependent piano music transcription with convolutional sparse coding publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc. doi: 10.1109/TASLP.2016.2598305 |
| SSID | ssj0006398 |
| Score | 2.346306 |
| Snippet | •Prospects of sopele woodwind instrument AMT are inspected on a newly acquired dataset.•Unwanted pitch variation is mitigated using DFT and supervised machine... Sopela is a traditional hand-made woodwind instrument, commonly played in pair, characteristic to the Istrian peninsula in western Croatia. Its piercing sound,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 340 |
| SubjectTerms | Algorithms Applications programs Automatic music transcription Cultural heritage Cultural resources Discrete Fourier transform Feature extraction Frequency Learning algorithms Machine learning Mobile computing Model accuracy Musical scores Piercing Pitch Problem solving Singing Sopele Traditional woodwind instrument Transcription Woodwind music |
| Title | Automatic music transcription for traditional woodwind instruments sopele |
| URI | https://dx.doi.org/10.1016/j.patrec.2019.09.024 https://www.proquest.com/docview/2329720216 |
| Volume | 128 |
| WOSCitedRecordID | wos000498398400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBch3cP2sI9uY-26oYf10cMfciw9mtKxjFIK7SBvRrIl5ixzQr7Wf6D_90462UkTRrfBwBjjSLLR_Xw6Xe5-R8iHUJq44rIMwLSOA8ZMGkijLBehDLnJpAqN45m9yC4v-Wgkrnq9uzYXZj3Jmobf3orZfxU13ANh29TZvxB3NyjcgGsQOpxB7HD-I8Hnq-UUeVh_2BrOtghEs9ENLqpwLqva-wBtyM3P2jEwWSpZTHhbTGd6ci9G6MrRcNrUFx9vBENNXCZQZ5Nff59iCex8vgW5i_FK1SX6npuq3sT_zNGj67z3m-anZ-lpHi7luFp9w9Dv4dr_6l0TkdgJ89jPmUEXJqhmmw6LKxCqXZ6BnZ8gE2Snl33WOGrWBFmd_CKdIE3nnv5HV8T4o_0jQVuGykg4GlvM095h1r62r2LfBIxY2J1bztiDOEsF75ODfHg--tIt6WDG8ZYk3nZoczBdoOD-s35n4-ys9s6EuXlOnvq9B80RMy9ITzeH5Flb14N6NX9InmyRVL4kww5Q1AGK3gMUBUDRLUDRFlB0C1AUAfWKfP10fnP2OfAFOIIySdgyqIyMBA9VWlYs1arkmTKRiQQzXClRZibhLIzLQap5rCpopA2vmBpII8Aq1lHymvSbaaPfEBoq2JuqSFv-RQabaBmF2lTcKJmmKmH8iCTtlBWlZ6e3RVImRRuGOC5wogs70UUIR8yOSND1miE7ywPts1Yahbcw0XIsAEAP9DxphVf4j31RwG5EZDFYyYPjfx74LXm8-XROSB8ko9-RR-V6WS_m7z0QfwHVULA7 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+music+transcription+for+traditional+woodwind+instruments+sopele&rft.jtitle=Pattern+recognition+letters&rft.au=Skoki%2C+Arian&rft.au=Ljubic%2C+Sandi&rft.au=Lerga%2C+Jonatan&rft.au=%C5%A0tajduhar%2C+Ivan&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=128&rft.spage=340&rft.epage=347&rft_id=info:doi/10.1016%2Fj.patrec.2019.09.024&rft.externalDocID=S0167865519302703 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |