Automatic music transcription for traditional woodwind instruments sopele

•Prospects of sopele woodwind instrument AMT are inspected on a newly acquired dataset.•Unwanted pitch variation is mitigated using DFT and supervised machine learning.•DFT-coupled RF and CNN models achieve F1=0.92 in the polyphonic setup.•A full-stack system for effortless music preservation of sop...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition letters Ročník 128; s. 340 - 347
Hlavní autoři: Skoki, Arian, Ljubic, Sandi, Lerga, Jonatan, Štajduhar, Ivan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.12.2019
Elsevier Science Ltd
Témata:
ISSN:0167-8655, 1872-7344
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Prospects of sopele woodwind instrument AMT are inspected on a newly acquired dataset.•Unwanted pitch variation is mitigated using DFT and supervised machine learning.•DFT-coupled RF and CNN models achieve F1=0.92 in the polyphonic setup.•A full-stack system for effortless music preservation of sopele pieces is presented.•The system performs reasonably well for transcribing sopele traditional music pieces. Sopela is a traditional hand-made woodwind instrument, commonly played in pair, characteristic to the Istrian peninsula in western Croatia. Its piercing sound, accompanied by two-part singing in the hexatonic Istrian scale, is registered in the UNESCO Representative List of the Intangible Cultural Heritage of Humanity. This paper presents an insight study of automatic music transcription (AMT) for sopele tunes. The process of converting audio inputs into human-readable musical scores involves multi-pitch detection and note tracking. The proposed solution supports this process by utilising frequency-feature extraction, supervised machine learning (ML) algorithms, and postprocessing heuristics. We determined the most favourable tone-predicting model by applying grid search for two state-of-the-art ML techniques, optionally coupled with frequency-feature extraction. The model achieved promising transcription accuracy for both monophonic and polyphonic music sources encompassed in the originally developed dataset. In addition, we developed a proof-of-concept AMT system, comprised of a client mobile application and a server-side API. While the mobile application records, tags and uploads audio sources, the back-end server applies the presented procedure for converting recorded music into a common notation to be delivered as a transcription result. We thus demonstrate how collecting and preserving traditional sopele music, performed in real-life occasions, can be effortlessly accomplished on-the-go.
AbstractList Sopela is a traditional hand-made woodwind instrument, commonly played in pair, characteristic to the Istrian peninsula in western Croatia. Its piercing sound, accompanied by two-part singing in the hexatonic Istrian scale, is registered in the UNESCO Representative List of the Intangible Cultural Heritage of Humanity. This paper presents an insight study of automatic music transcription (AMT) for sopele tunes. The process of converting audio inputs into human-readable musical scores involves multi-pitch detection and note tracking. The proposed solution supports this process by utilising frequency-feature extraction, supervised machine learning (ML) algorithms, and postprocessing heuristics. We determined the most favourable tone-predicting model by applying grid search for two state-of-the-art ML techniques, optionally coupled with frequency-feature extraction. The model achieved promising transcription accuracy for both monophonic and polyphonic music sources encompassed in the originally developed dataset. In addition, we developed a proof-of-concept AMT system, comprised of a client mobile application and a server-side API. While the mobile application records, tags and uploads audio sources, the back-end server applies the presented procedure for converting recorded music into a common notation to be delivered as a transcription result. We thus demonstrate how collecting and preserving traditional sopele music, performed in real-life occasions, can be effortlessly accomplished on-the-go.
•Prospects of sopele woodwind instrument AMT are inspected on a newly acquired dataset.•Unwanted pitch variation is mitigated using DFT and supervised machine learning.•DFT-coupled RF and CNN models achieve F1=0.92 in the polyphonic setup.•A full-stack system for effortless music preservation of sopele pieces is presented.•The system performs reasonably well for transcribing sopele traditional music pieces. Sopela is a traditional hand-made woodwind instrument, commonly played in pair, characteristic to the Istrian peninsula in western Croatia. Its piercing sound, accompanied by two-part singing in the hexatonic Istrian scale, is registered in the UNESCO Representative List of the Intangible Cultural Heritage of Humanity. This paper presents an insight study of automatic music transcription (AMT) for sopele tunes. The process of converting audio inputs into human-readable musical scores involves multi-pitch detection and note tracking. The proposed solution supports this process by utilising frequency-feature extraction, supervised machine learning (ML) algorithms, and postprocessing heuristics. We determined the most favourable tone-predicting model by applying grid search for two state-of-the-art ML techniques, optionally coupled with frequency-feature extraction. The model achieved promising transcription accuracy for both monophonic and polyphonic music sources encompassed in the originally developed dataset. In addition, we developed a proof-of-concept AMT system, comprised of a client mobile application and a server-side API. While the mobile application records, tags and uploads audio sources, the back-end server applies the presented procedure for converting recorded music into a common notation to be delivered as a transcription result. We thus demonstrate how collecting and preserving traditional sopele music, performed in real-life occasions, can be effortlessly accomplished on-the-go.
Author Lerga, Jonatan
Ljubic, Sandi
Štajduhar, Ivan
Skoki, Arian
Author_xml – sequence: 1
  givenname: Arian
  surname: Skoki
  fullname: Skoki, Arian
– sequence: 2
  givenname: Sandi
  surname: Ljubic
  fullname: Ljubic, Sandi
– sequence: 3
  givenname: Jonatan
  surname: Lerga
  fullname: Lerga, Jonatan
– sequence: 4
  givenname: Ivan
  orcidid: 0000-0003-4758-7972
  surname: Štajduhar
  fullname: Štajduhar, Ivan
  email: istajduh@riteh.hr
BookMark eNqFkE1LxDAQhoOs4K76DzwUPHfNV9vUg7AsfiwseNFzSPMBKW1Tk9TFf29KPXlQGGaY4XmHmXcDVoMbNAA3CG4RROVdux1F9FpuMUT1FqbA9AysEatwXhFKV2CdsCpnZVFcgE0ILYSwJDVbg8Nuiq4X0cqsn0LK0YshSG_HaN2QGefnibJzJ7rs5Jw62UFldgjRT70eYsiCG3Wnr8C5EV3Q1z_1Erw_Pb7tX_Lj6_NhvzvmkhAac2UEqhlsCqlooRvJqsYgg2pqWNPUsjKEUYhlWWiGG5UgbZiiTSlMjSuiEbkEt8ve0buPSYfIWzf5dFzgmOC6whCjMlF0oaR3IXht-OhtL_wXR5DPpvGWL6bx2TQOU2CaZPe_ZNJGMT-fXLDdf-KHRazT-59Wex6k1YPUyiY0cuXs3wu-AZrKj00
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3244620
crossref_primary_10_1007_s00034_025_03275_7
crossref_primary_10_1016_j_patrec_2020_06_018
crossref_primary_10_2478_amns_2023_2_01182
crossref_primary_10_1155_2022_5074829
crossref_primary_10_1016_j_dib_2019_104840
crossref_primary_10_1155_2021_8678853
crossref_primary_10_1007_s10639_023_12312_4
Cites_doi 10.1023/A:1010933404324
10.1109/TASL.2011.2174227
10.1016/j.ipm.2009.03.002
10.1007/s10844-013-0258-3
10.1109/TASLP.2016.2533858
10.1109/TASLP.2016.2515514
10.1109/TASLP.2014.2387388
10.1162/COMJ_a_00146
10.1109/TASL.2009.2034186
10.1109/TASLP.2018.2830113
10.1080/09298215.2018.1451546
10.1109/TASLP.2016.2598305
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Dec 1, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Dec 1, 2019
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2019.09.024
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 347
ExternalDocumentID 10_1016_j_patrec_2019_09_024
S0167865519302703
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
VOH
WUQ
Y6R
~HD
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-dfa1980b5cd45ebc87bf1f194f8bb9c7f38402c65e82bdcd4ef8d4b6af9273e13
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498398400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Sun Oct 05 00:25:00 EDT 2025
Tue Nov 18 22:10:18 EST 2025
Sat Nov 29 07:23:24 EST 2025
Fri Feb 23 02:24:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sopele
Traditional woodwind instrument
Automatic music transcription
Discrete Fourier transform
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-dfa1980b5cd45ebc87bf1f194f8bb9c7f38402c65e82bdcd4ef8d4b6af9273e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4758-7972
PQID 2329720216
PQPubID 2047552
PageCount 8
ParticipantIDs proquest_journals_2329720216
crossref_primary_10_1016_j_patrec_2019_09_024
crossref_citationtrail_10_1016_j_patrec_2019_09_024
elsevier_sciencedirect_doi_10_1016_j_patrec_2019_09_024
PublicationCentury 2000
PublicationDate 2019-12-01
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Sigtia, Benetos, Dixon (bib0021) 2016; 24
Krizhevsky, Sutskever, Hinton (bib0013) 2012; 25
Klapuri, Davy (bib0012) 2010
O’Hanlon, Nagano, Keriven, Plumbley (bib0017) 2016; 24
Alcabasa, Marcos (bib0001) 2012
Schramm, Benetos (bib0019) 2017
Breiman (bib0006) 2001; 45
Barbancho, Klapuri, Tardon, Barbancho (bib0003) 2012; 20
Cogliati, Duan, Wohlberg (bib0007) 2016; 24
Powers (bib0018) 2011; 2
Senac, Pellegrini, Mouret, Pinquier (bib0020) 2017
van Drongelen (bib0009) 2018
Dessein, Cont, Lemaitre (bib0008) 2010
Smaragdis, Brown (bib0022) 2003
Tan, Jiang (bib0024) 2019
Goodfellow, Bengio, Courville (bib0011) 2016
Valero-Mas, Benetos, Iñesta (bib0025) 2018; 47
Gajhede, Beck, Purwins (bib0010) 2016
Nakamura, Benetos, Yoshii, Dixon (bib0015) 2018
Nam, Ngiam, Lee, Slaney (bib0016) 2011
Sokolova, Lapalme (bib0023) 2009; 45
Kubera, Kursa, Rudnicki, Rudnicki, Wieczorkowska (bib0014) 2011
Wu, Dittmar, Southall, Vogl, Widmer, Hockman, Muller, Lerch (bib0027) 2018; 26
Arora, Behera (bib0002) 2015; 23
Vincent, Bertin, Badeau (bib0026) 2010; 18
Benetos, Dixon (bib0004) 2012; 36
Benetos, Dixon, Giannoulis, Kirchhoff, Klapuri (bib0005) 2013; 41
Alcabasa (10.1016/j.patrec.2019.09.024_bib0001) 2012
Cogliati (10.1016/j.patrec.2019.09.024_bib0007) 2016; 24
Sigtia (10.1016/j.patrec.2019.09.024_bib0021) 2016; 24
Powers (10.1016/j.patrec.2019.09.024_bib0018) 2011; 2
Dessein (10.1016/j.patrec.2019.09.024_bib0008) 2010
Gajhede (10.1016/j.patrec.2019.09.024_bib0010) 2016
van Drongelen (10.1016/j.patrec.2019.09.024_bib0009) 2018
Wu (10.1016/j.patrec.2019.09.024_bib0027) 2018; 26
Senac (10.1016/j.patrec.2019.09.024_bib0020) 2017
Benetos (10.1016/j.patrec.2019.09.024_bib0004) 2012; 36
Vincent (10.1016/j.patrec.2019.09.024_bib0026) 2010; 18
Nam (10.1016/j.patrec.2019.09.024_bib0016) 2011
Krizhevsky (10.1016/j.patrec.2019.09.024_bib0013) 2012; 25
Kubera (10.1016/j.patrec.2019.09.024_bib0014) 2011
Sokolova (10.1016/j.patrec.2019.09.024_bib0023) 2009; 45
Tan (10.1016/j.patrec.2019.09.024_bib0024) 2019
Nakamura (10.1016/j.patrec.2019.09.024_bib0015) 2018
Barbancho (10.1016/j.patrec.2019.09.024_bib0003) 2012; 20
Breiman (10.1016/j.patrec.2019.09.024_bib0006) 2001; 45
Smaragdis (10.1016/j.patrec.2019.09.024_bib0022) 2003
Schramm (10.1016/j.patrec.2019.09.024_bib0019) 2017
Klapuri (10.1016/j.patrec.2019.09.024_bib0012) 2010
Valero-Mas (10.1016/j.patrec.2019.09.024_bib0025) 2018; 47
Benetos (10.1016/j.patrec.2019.09.024_bib0005) 2013; 41
O’Hanlon (10.1016/j.patrec.2019.09.024_bib0017) 2016; 24
Arora (10.1016/j.patrec.2019.09.024_bib0002) 2015; 23
Goodfellow (10.1016/j.patrec.2019.09.024_bib0011) 2016
References_xml – start-page: 489
  year: 2010
  end-page: 494
  ident: bib0008
  article-title: Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence
  publication-title: Proceedings of the 11th International Society for Music Information Retrieval Conference, Utrecht, The Netherlands
– volume: 47
  start-page: 249
  year: 2018
  end-page: 263
  ident: bib0025
  article-title: A supervised classification approach for note tracking in polyphonic piano transcription
  publication-title: J. New Music Res.
– volume: 41
  start-page: 407
  year: 2013
  end-page: 434
  ident: bib0005
  article-title: Automatic music transcription: challenges and future directions
  publication-title: J. Intell. Inf. Syst.
– start-page: 197
  year: 2012
  end-page: 202
  ident: bib0001
  article-title: Automatic guitar music transcription
  publication-title: 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT)
– volume: 23
  start-page: 278
  year: 2015
  end-page: 287
  ident: bib0002
  article-title: Multiple f0 estimation and source clustering of polyphonic music audio using plca and hmrfs
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc.
– volume: 20
  start-page: 915
  year: 2012
  end-page: 921
  ident: bib0003
  article-title: Automatic transcription of guitar chords and fingering from audio
  publication-title: Trans. Audio Speech Lang. Proc.
– start-page: 111
  year: 2016
  end-page: 115
  ident: bib0010
  article-title: Convolutional neural networks with batch normalization for classifying hi-hat, snare, and bass percussion sound samples
  publication-title: Proceedings of the Audio Mostly 2016
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0006
  article-title: Random forests
  publication-title: Mach. Learn.
– start-page: 175
  year: 2011
  end-page: 180
  ident: bib0016
  article-title: A classification-based polyphonic piano transcription approach using learned feature representations
  publication-title: Proceedings of the 12th International Society for Music Information Retrieval Conference, ISMIR 2011, Miami, Florida, USA, October 24–28, 2011
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: bib0023
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
– volume: 24
  start-page: 927
  year: 2016
  end-page: 939
  ident: bib0021
  article-title: An end-to-end neural network for polyphonic piano music transcription
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc.
– start-page: 103
  year: 2018
  end-page: 118
  ident: bib0009
  article-title: Continuous, Discrete, and Fast Fourier Transform
  publication-title: Signal Processing for Neuroscientists
– volume: 24
  start-page: 2218
  year: 2016
  end-page: 2230
  ident: bib0007
  article-title: Context-dependent piano music transcription with convolutional sparse coding
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc.
– start-page: 101
  year: 2018
  end-page: 105
  ident: bib0015
  article-title: Towards complete polyphonic music transcription: Integrating multi-pitch detection and rhythm quantization
  publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 2
  start-page: 37
  year: 2011
  end-page: 63
  ident: bib0018
  article-title: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation
  publication-title: J. Mach. Learn. Technol.
– volume: 18
  start-page: 528
  year: 2010
  end-page: 537
  ident: bib0026
  article-title: Adaptive harmonic spectral decomposition for multiple pitch estimation
  publication-title: Trans. Audio Speech Lang. Proc.
– volume: 36
  start-page: 81
  year: 2012
  end-page: 94
  ident: bib0004
  article-title: A shift-invariant latent variable model for automatic music transcription
  publication-title: Comput. Music J.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0013
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances In Neural Information Processing Systems
– start-page: 543
  year: 2011
  end-page: 553
  ident: bib0014
  article-title: All that jazz in the random forest
  publication-title: Foundations of Intelligent Systems
– start-page: 19:1
  year: 2017
  end-page: 19:5
  ident: bib0020
  article-title: Music feature maps with convolutional neural networks for music genre classification
  publication-title: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing
– year: 2010
  ident: bib0012
  article-title: Signal Processing Methods for Music Transcription
– year: 2016
  ident: bib0011
  article-title: Deep Learning
– volume: 26
  start-page: 1457
  year: 2018
  end-page: 1483
  ident: bib0027
  article-title: A review of automatic drum transcription
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc.
– start-page: 91
  year: 2019
  end-page: 142
  ident: bib0024
  article-title: Discrete Fourier Transform and Signal Spectrum
  publication-title: Digital Signal Processing
– volume: 24
  start-page: 530
  year: 2016
  end-page: 542
  ident: bib0017
  article-title: Non-negative group sparsity with subspace note modelling for polyphonic transcription
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc.
– start-page: 1
  year: 2017
  end-page: 8
  ident: bib0019
  article-title: Automatic transcription of a cappella recordings from multiple singers
  publication-title: Audio Engineering Society Conference: 2017 AES International Conference on Semantic Audio
– start-page: 177
  year: 2003
  end-page: 180
  ident: bib0022
  article-title: Non-negative matrix factorization for polyphonic music transcription
  publication-title: Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
– start-page: 543
  year: 2011
  ident: 10.1016/j.patrec.2019.09.024_bib0014
  article-title: All that jazz in the random forest
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.patrec.2019.09.024_bib0006
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– start-page: 175
  year: 2011
  ident: 10.1016/j.patrec.2019.09.024_bib0016
  article-title: A classification-based polyphonic piano transcription approach using learned feature representations
– start-page: 111
  year: 2016
  ident: 10.1016/j.patrec.2019.09.024_bib0010
  article-title: Convolutional neural networks with batch normalization for classifying hi-hat, snare, and bass percussion sound samples
– start-page: 103
  year: 2018
  ident: 10.1016/j.patrec.2019.09.024_bib0009
  article-title: Continuous, Discrete, and Fast Fourier Transform
– start-page: 91
  year: 2019
  ident: 10.1016/j.patrec.2019.09.024_bib0024
  article-title: Discrete Fourier Transform and Signal Spectrum
– start-page: 197
  year: 2012
  ident: 10.1016/j.patrec.2019.09.024_bib0001
  article-title: Automatic guitar music transcription
– start-page: 177
  year: 2003
  ident: 10.1016/j.patrec.2019.09.024_bib0022
  article-title: Non-negative matrix factorization for polyphonic music transcription
– volume: 20
  start-page: 915
  issue: 3
  year: 2012
  ident: 10.1016/j.patrec.2019.09.024_bib0003
  article-title: Automatic transcription of guitar chords and fingering from audio
  publication-title: Trans. Audio Speech Lang. Proc.
  doi: 10.1109/TASL.2011.2174227
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.patrec.2019.09.024_bib0023
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2009.03.002
– year: 2010
  ident: 10.1016/j.patrec.2019.09.024_bib0012
– start-page: 101
  year: 2018
  ident: 10.1016/j.patrec.2019.09.024_bib0015
  article-title: Towards complete polyphonic music transcription: Integrating multi-pitch detection and rhythm quantization
– volume: 41
  start-page: 407
  issue: 3
  year: 2013
  ident: 10.1016/j.patrec.2019.09.024_bib0005
  article-title: Automatic music transcription: challenges and future directions
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-013-0258-3
– volume: 24
  start-page: 927
  issue: 5
  year: 2016
  ident: 10.1016/j.patrec.2019.09.024_bib0021
  article-title: An end-to-end neural network for polyphonic piano music transcription
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc.
  doi: 10.1109/TASLP.2016.2533858
– year: 2016
  ident: 10.1016/j.patrec.2019.09.024_bib0011
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.patrec.2019.09.024_bib0013
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances In Neural Information Processing Systems
– volume: 24
  start-page: 530
  issue: 3
  year: 2016
  ident: 10.1016/j.patrec.2019.09.024_bib0017
  article-title: Non-negative group sparsity with subspace note modelling for polyphonic transcription
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc.
  doi: 10.1109/TASLP.2016.2515514
– volume: 2
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.patrec.2019.09.024_bib0018
  article-title: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation
  publication-title: J. Mach. Learn. Technol.
– start-page: 19:1
  year: 2017
  ident: 10.1016/j.patrec.2019.09.024_bib0020
  article-title: Music feature maps with convolutional neural networks for music genre classification
– start-page: 489
  year: 2010
  ident: 10.1016/j.patrec.2019.09.024_bib0008
  article-title: Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence
– start-page: 1
  year: 2017
  ident: 10.1016/j.patrec.2019.09.024_bib0019
  article-title: Automatic transcription of a cappella recordings from multiple singers
– volume: 23
  start-page: 278
  issue: 2
  year: 2015
  ident: 10.1016/j.patrec.2019.09.024_bib0002
  article-title: Multiple f0 estimation and source clustering of polyphonic music audio using plca and hmrfs
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc.
  doi: 10.1109/TASLP.2014.2387388
– volume: 36
  start-page: 81
  issue: 4
  year: 2012
  ident: 10.1016/j.patrec.2019.09.024_bib0004
  article-title: A shift-invariant latent variable model for automatic music transcription
  publication-title: Comput. Music J.
  doi: 10.1162/COMJ_a_00146
– volume: 18
  start-page: 528
  issue: 3
  year: 2010
  ident: 10.1016/j.patrec.2019.09.024_bib0026
  article-title: Adaptive harmonic spectral decomposition for multiple pitch estimation
  publication-title: Trans. Audio Speech Lang. Proc.
  doi: 10.1109/TASL.2009.2034186
– volume: 26
  start-page: 1457
  issue: 9
  year: 2018
  ident: 10.1016/j.patrec.2019.09.024_bib0027
  article-title: A review of automatic drum transcription
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc.
  doi: 10.1109/TASLP.2018.2830113
– volume: 47
  start-page: 249
  issue: 3
  year: 2018
  ident: 10.1016/j.patrec.2019.09.024_bib0025
  article-title: A supervised classification approach for note tracking in polyphonic piano transcription
  publication-title: J. New Music Res.
  doi: 10.1080/09298215.2018.1451546
– volume: 24
  start-page: 2218
  issue: 12
  year: 2016
  ident: 10.1016/j.patrec.2019.09.024_bib0007
  article-title: Context-dependent piano music transcription with convolutional sparse coding
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Proc.
  doi: 10.1109/TASLP.2016.2598305
SSID ssj0006398
Score 2.3462148
Snippet •Prospects of sopele woodwind instrument AMT are inspected on a newly acquired dataset.•Unwanted pitch variation is mitigated using DFT and supervised machine...
Sopela is a traditional hand-made woodwind instrument, commonly played in pair, characteristic to the Istrian peninsula in western Croatia. Its piercing sound,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 340
SubjectTerms Algorithms
Applications programs
Automatic music transcription
Cultural heritage
Cultural resources
Discrete Fourier transform
Feature extraction
Frequency
Learning algorithms
Machine learning
Mobile computing
Model accuracy
Musical scores
Piercing
Pitch
Problem solving
Singing
Sopele
Traditional woodwind instrument
Transcription
Woodwind music
Title Automatic music transcription for traditional woodwind instruments sopele
URI https://dx.doi.org/10.1016/j.patrec.2019.09.024
https://www.proquest.com/docview/2329720216
Volume 128
WOSCitedRecordID wos000498398400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcChQQfYD2QI9GWT93j1bViqCqqkRBuVm7613hEJwoL3rqb-_sw47TCkoPSIllOeuVk_l2ZnYy8w1CHyMBViWVsDchZRrEWcQDITUPUgFriSiecsv2-f08u7igoxG77PVumlqY9SSra3p9zWb_VdRwDYRtSmcfIe52UrgA5yB0OILY4fhPgs9Xy6njYf1lejibJhD1RjfYrMI5LysfAzQpN78ry8BkqGRdwdtiOlOTrRyhS0vDaUpffL4RTDWxlUCtT_7159S1wM7nHcidj1eiki72XJfVJv9n7iK6Nnq_GX58khzngyUfl6sfLvV7uPaf-tAEYZ00Dx-tBC1sKl-31K0vBncKM3JkTd72Ro59855adxGG8Sfz_4AyxJOEWXZaV369zaJ9x7q1OYdNOtu4cLMUZpZiAK8wfoJ2wixhtI928uHp6Etry8F_ow07vPkiTfGlzRC8_zR_cm7umHnru1y9RLt-04FzB5ZXqKfqPfSiaeiBvX7fQ8877JSv0bBFErZIwltIwoAk3EESbpCEO0jCDklv0Lez06uTz4HvvBHIKIqXQak5YXQgElnGiRKSZkITTVisqRBMZjqi8SCUaaJoKEoYpDQtY5FyzcAdViR6i_r1tFbvEA51JhKtlAiFMt0PBCfKvOME9ALhah9FzU9WSE9Lb7qjTIq_CWwfBe1dM0fL8sD4rJFG4V1L5zIWALEH7jxqhFf4Vb4oYBvCshDc4_TgkQ9yiJ5tVsoR6oM81Hv0VK6X1WL-wcPvFm7ErJU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+music+transcription+for+traditional+woodwind+instruments+sopele&rft.jtitle=Pattern+recognition+letters&rft.au=Skoki%2C+Arian&rft.au=Ljubic%2C+Sandi&rft.au=Lerga%2C+Jonatan&rft.au=%C5%A0tajduhar%2C+Ivan&rft.date=2019-12-01&rft.issn=0167-8655&rft.volume=128&rft.spage=340&rft.epage=347&rft_id=info:doi/10.1016%2Fj.patrec.2019.09.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2019_09_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon