A MapReduce-based artificial bee colony for large-scale data clustering
•A MapReduce-Based ABC for Large Scale Data Clustering.•Implementing based on the MapReduce model in the Hadoop framework.•Optimizing the assignment of large data instances to clusters.•The performance in dealing with massive data is improved.•The quality level of the clustering results is still mai...
Uloženo v:
| Vydáno v: | Pattern recognition letters Ročník 93; s. 78 - 84 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.07.2017
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0167-8655, 1872-7344 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A MapReduce-Based ABC for Large Scale Data Clustering.•Implementing based on the MapReduce model in the Hadoop framework.•Optimizing the assignment of large data instances to clusters.•The performance in dealing with massive data is improved.•The quality level of the clustering results is still maintained.
The progress of technology has been a significant factor in increasing the growth of digital data. Therefore, good data analysis is a necessity for making better decisions. Clustering is one of the most important elements in the field of data analysis. However, the clustering of very large datasets is considered a primary concern. The improvement of computational models along with the ability to cluster huge volumes of data within a reasonable amount of time is thus required. MapReduce is a powerful programming model and an associated implement for processing large datasets with a parallel, distributed algorithm in a computing cluster. In this paper, a MapReduce-based artificial bee colony called MR-ABC is proposed for data clustering. The ABC is implemented based on the MapReduce model in the Hadoop framework and utilized to optimize the assignment of the large data instances to clusters with the objective of minimizing the sum of the squared Euclidean distance between each data instance and the centroid of the cluster to which it belongs. The experimental results demonstrate that our proposed algorithm is well-suited for dealing with massive amounts of data, while the quality level of the clustering results is still maintained. |
|---|---|
| AbstractList | •A MapReduce-Based ABC for Large Scale Data Clustering.•Implementing based on the MapReduce model in the Hadoop framework.•Optimizing the assignment of large data instances to clusters.•The performance in dealing with massive data is improved.•The quality level of the clustering results is still maintained.
The progress of technology has been a significant factor in increasing the growth of digital data. Therefore, good data analysis is a necessity for making better decisions. Clustering is one of the most important elements in the field of data analysis. However, the clustering of very large datasets is considered a primary concern. The improvement of computational models along with the ability to cluster huge volumes of data within a reasonable amount of time is thus required. MapReduce is a powerful programming model and an associated implement for processing large datasets with a parallel, distributed algorithm in a computing cluster. In this paper, a MapReduce-based artificial bee colony called MR-ABC is proposed for data clustering. The ABC is implemented based on the MapReduce model in the Hadoop framework and utilized to optimize the assignment of the large data instances to clusters with the objective of minimizing the sum of the squared Euclidean distance between each data instance and the centroid of the cluster to which it belongs. The experimental results demonstrate that our proposed algorithm is well-suited for dealing with massive amounts of data, while the quality level of the clustering results is still maintained. The progress of technology has been a significant factor in increasing the growth of digital data. Therefore, good data analysis is a necessity for making better decisions. Clustering is one of the most important elements in the field of data analysis. However, the clustering of very large datasets is considered a primary concern. The improvement of computational models along with the ability to cluster huge volumes of data within a reasonable amount of time is thus required. MapReduce is a powerful programming model and an associated implement for processing large datasets with a parallel, distributed algorithm in a computing cluster. In this paper, a MapReduce-based artificial bee colony called MR-ABC is proposed for data clustering. The ABC is implemented based on the MapReduce model in the Hadoop framework and utilized to optimize the assignment of the large data instances to clusters with the objective of minimizing the sum of the squared Euclidean distance between each data instance and the centroid of the cluster to which it belongs. The experimental results demonstrate that our proposed algorithm is well-suited for dealing with massive amounts of data, while the quality level of the clustering results is still maintained. |
| Author | Banharnsakun, Anan |
| Author_xml | – sequence: 1 givenname: Anan orcidid: 0000-0003-2004-4070 surname: Banharnsakun fullname: Banharnsakun, Anan email: ananb@ieee.org, anan@eng.src.ku.ac.th organization: Computational Intelligence Research Laboratory (CIRLab), Department of Computer Engineering, Faculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand |
| BookMark | eNqFkMFKxDAQhoMouKu-gYeC59ZpkzapB2FZdBUUQfQcpslUstRmTbLCvr2V9eRBT8Mw_zfDfHN2OPqRGDsvoSihbC7XxQZTIFNUU1eALKCSB2xWKlnlkgtxyGbTQOaqqetjNo9xDQANb9WMrRbZI26eyW4N5R1GshmG5HpnHA5ZR5QZP_hxl_U-ZAOGN8qjwYEyiwkzM2xjouDGt1N21OMQ6eynnrDX25uX5V3-8LS6Xy4ecsO5SLntW6pr6CyIxore1rwFU1vVo-yaCkm1KIWEmleiF5YjKjCqM6rsZG0rAn7CLvZ7N8F_bCkmvfbbME4ndQWqlZWCkk-pq33KBB9joF4blzA5P6aAbtAl6G9xeq334vS3OA1ST-ImWPyCN8G9Y9j9h13vMZre_3QUdDSORkPWTdGkrXd_L_gCxZSLuQ |
| CitedBy_id | crossref_primary_10_1007_s10462_020_09918_2 crossref_primary_10_1007_s10489_017_1089_7 crossref_primary_10_3233_IDT_230123 crossref_primary_10_1002_cpe_4872 crossref_primary_10_3389_fninf_2021_727859 crossref_primary_10_1007_s11042_018_5933_5 crossref_primary_10_1007_s11042_020_09714_8 crossref_primary_10_1007_s12065_022_00794_z crossref_primary_10_1007_s42979_025_03990_7 crossref_primary_10_1080_00051144_2021_1938477 crossref_primary_10_3390_info13110530 crossref_primary_10_1111_coin_12275 crossref_primary_10_1155_2018_2634861 crossref_primary_10_1007_s00521_023_08415_1 crossref_primary_10_1007_s40747_020_00200_0 crossref_primary_10_1016_j_engappai_2019_01_006 crossref_primary_10_1002_cpe_5451 crossref_primary_10_1016_j_procs_2022_12_011 crossref_primary_10_1016_j_cosrev_2018_01_003 crossref_primary_10_1016_j_jocs_2019_101065 crossref_primary_10_4018_IJISP_201907010107 crossref_primary_10_1007_s10462_024_10920_1 crossref_primary_10_1007_s11042_020_09639_2 crossref_primary_10_1007_s13369_020_04875_y crossref_primary_10_7717_peerj_cs_416 crossref_primary_10_4018_IJSSMET_2020040105 crossref_primary_10_1016_j_bdr_2018_05_002 crossref_primary_10_1109_TII_2020_2995680 crossref_primary_10_1016_j_engappai_2019_04_007 crossref_primary_10_1007_s11227_017_2182_8 crossref_primary_10_1109_TEM_2021_3073018 crossref_primary_10_1016_j_asoc_2021_108058 |
| Cites_doi | 10.1080/0951192X.2011.579170 10.1016/j.eswa.2011.07.123 10.1109/TSMCA.2007.909595 10.1109/TNN.2005.845141 10.1016/S0031-3203(99)00137-5 10.1109/TKDE.2013.109 10.1016/j.aca.2003.12.032 10.1145/1327452.1327492 10.1197/jamia.M1733 10.1007/s10462-012-9328-0 10.1016/j.neucom.2012.02.047 10.1145/331499.331504 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. Copyright Elsevier Science Ltd. Jul 1, 2017 |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jul 1, 2017 |
| DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.patrec.2016.07.027 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1872-7344 |
| EndPage | 84 |
| ExternalDocumentID | 10_1016_j_patrec_2016_07_027 S0167865516302069 |
| GroupedDBID | --M .DC .~1 0R~ 123 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K TN5 UNMZH WH7 XPP ZMT ~G- --K 1B1 29O 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADMXK ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ IHE R2- RPZ SBC SDS SEW VOH WUQ Y6R ~HD 7SC 7TK 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-df9e550bd046d4fd5390c5d8fa7b62ae89a74705324f4d3aa80c8bc81b75d2e03 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404204100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-8655 |
| IngestDate | Sun Nov 09 06:40:58 EST 2025 Sat Nov 29 03:58:41 EST 2025 Tue Nov 18 21:51:59 EST 2025 Fri Feb 23 02:26:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data mining Clustering Distributed computing Artificial Bee Colony (ABC) Hadoop MapReduce |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-df9e550bd046d4fd5390c5d8fa7b62ae89a74705324f4d3aa80c8bc81b75d2e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2004-4070 |
| PQID | 2089728013 |
| PQPubID | 2047552 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2089728013 crossref_citationtrail_10_1016_j_patrec_2016_07_027 crossref_primary_10_1016_j_patrec_2016_07_027 elsevier_sciencedirect_doi_10_1016_j_patrec_2016_07_027 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 2017-07-00 20170701 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Pattern recognition letters |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Shelokar, Jayaraman, Kulkarni (bib0005) 2004; 509 Jain, Murty, Flynn (bib0012) 1999; 31 Wu, Zhu, Wu, Ding (bib0001) 2014; 26 Maulik, Bandyopadhyay (bib0003) 2000; 33 Wang, Yuan, Jiang (bib0009) 2012 Shvachko, Kuang, Radia, Chansler (bib0015) 2010 Cura (bib0006) 2012; 39 C.L. Blake, C.J. Merz, UCI repository of machine learning databases [Online], Available Anchalia, Roy (bib0011) 2014 1998. Zhao, Ma, He (bib0008) 2009; 5931 Taetragool, Achalakul (bib0018) 2011; 24 Banharnsakun, Sirinaovakul, Achalakul (bib0013) 2013; 116 Aljarah, Ludwig (bib0010) 2012 Karaboga, Gorkemli, Ozturk, Karaboga (bib0014) 2014; 42 Grama, Gupta, Karypis, Kumar (bib0020) 2003 Hripcsak, Rothschild (bib0019) 2005; 12 Xu, Wunsch (bib0002) 2005; 16 Das, Abraham, Konar (bib0004) 2008; 38 Verma, Llora, Goldberg, Campbell (bib0007) 2009 Dean, Ghemawat (bib0016) 2008; 51 Das (10.1016/j.patrec.2016.07.027_bib0004) 2008; 38 Maulik (10.1016/j.patrec.2016.07.027_bib0003) 2000; 33 Aljarah (10.1016/j.patrec.2016.07.027_bib0010) 2012 10.1016/j.patrec.2016.07.027_bib0017 Verma (10.1016/j.patrec.2016.07.027_bib0007) 2009 Hripcsak (10.1016/j.patrec.2016.07.027_bib0019) 2005; 12 Cura (10.1016/j.patrec.2016.07.027_bib0006) 2012; 39 Xu (10.1016/j.patrec.2016.07.027_bib0002) 2005; 16 Wang (10.1016/j.patrec.2016.07.027_bib0009) 2012 Taetragool (10.1016/j.patrec.2016.07.027_bib0018) 2011; 24 Dean (10.1016/j.patrec.2016.07.027_bib0016) 2008; 51 Wu (10.1016/j.patrec.2016.07.027_bib0001) 2014; 26 Shelokar (10.1016/j.patrec.2016.07.027_bib0005) 2004; 509 Grama (10.1016/j.patrec.2016.07.027_bib0020) 2003 Jain (10.1016/j.patrec.2016.07.027_bib0012) 1999; 31 Zhao (10.1016/j.patrec.2016.07.027_bib0008) 2009; 5931 Karaboga (10.1016/j.patrec.2016.07.027_bib0014) 2014; 42 Anchalia (10.1016/j.patrec.2016.07.027_bib0011) 2014 Shvachko (10.1016/j.patrec.2016.07.027_bib0015) 2010 Banharnsakun (10.1016/j.patrec.2016.07.027_bib0013) 2013; 116 |
| References_xml | – volume: 116 start-page: 355 year: 2013 end-page: 366 ident: bib0013 article-title: The best-so-far ABC with multiple patrilines for clustering problems publication-title: Neurocomputing – volume: 51 start-page: 107 year: 2008 end-page: 113 ident: bib0016 article-title: MapReduce: simplified data processing on large clusters publication-title: Commun. ACM – volume: 42 start-page: 21 year: 2014 end-page: 57 ident: bib0014 article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. – volume: 26 start-page: 97 year: 2014 end-page: 107 ident: bib0001 article-title: Data mining with big data publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 13 year: 2009 end-page: 18 ident: bib0007 article-title: Scaling genetic algorithms using MapReduce publication-title: Proceedings of 9th International Conference on Intelligent Systems Design and Applications – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: bib0002 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. – volume: 509 start-page: 187 year: 2004 end-page: 195 ident: bib0005 article-title: An ant colony approach for clustering publication-title: Anal. Chim. Acta – reference: C.L. Blake, C.J. Merz, UCI repository of machine learning databases [Online], Available: – volume: 38 start-page: 218 year: 2008 end-page: 237 ident: bib0004 article-title: Automatic clustering using an improved differential evolution algorithm publication-title: IEEE Trans. Syst., Man Cybern., Part A: Syst. Hum. – year: 2003 ident: bib0020 article-title: Introduction to parallel Computing – volume: 33 start-page: 1455 year: 2000 end-page: 1465 ident: bib0003 article-title: Genetic algorithm-based clustering technique publication-title: Pattern Recogn. – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: bib0012 article-title: Data clustering: a review publication-title: ACM Comput. Surv. – volume: 5931 start-page: 674 year: 2009 end-page: 679 ident: bib0008 article-title: Parallel k-means clustering based on MapReduce publication-title: CloudCom 2009 – start-page: 1203 year: 2012 end-page: 1208 ident: bib0009 article-title: Parallel K-PSO based on map reduce publication-title: Proceedings of IEEE 14th International Conference on Communication Technology (ICCT) – reference: . 1998. – volume: 24 start-page: 834 year: 2011 end-page: 846 ident: bib0018 article-title: Method for failure pattern analysis in disk drive manufacturing publication-title: Int. J. Comput. Integr. Manuf. – start-page: 104 year: 2012 end-page: 111 ident: bib0010 article-title: Parallel particle swarm optimization clustering algorithm based on MapReduce methodology publication-title: Proceedings of 4th World Congress on Nature and Biologically Inspired Computing (NaBIC) – volume: 12 start-page: 296 year: 2005 end-page: 298 ident: bib0019 article-title: Agreement, the F-measure, and reliability in information retrieval publication-title: J. Am. Med. Inform. Assoc. – start-page: 513 year: 2014 end-page: 518 ident: bib0011 article-title: The k-nearest neighbor algorithm using MapReduce paradigm publication-title: Proceedings of 5th International Conference on Intelligent Systems, Modelling and Simulation – start-page: 1 year: 2010 end-page: 10 ident: bib0015 article-title: The hadoop distributed file system publication-title: Proceedings of the IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST) – volume: 39 start-page: 1582 year: 2012 end-page: 1588 ident: bib0006 article-title: A particle swarm optimization approach to clustering publication-title: Expert Syst. Appl. – volume: 24 start-page: 834 year: 2011 ident: 10.1016/j.patrec.2016.07.027_bib0018 article-title: Method for failure pattern analysis in disk drive manufacturing publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2011.579170 – volume: 39 start-page: 1582 year: 2012 ident: 10.1016/j.patrec.2016.07.027_bib0006 article-title: A particle swarm optimization approach to clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.123 – start-page: 13 year: 2009 ident: 10.1016/j.patrec.2016.07.027_bib0007 article-title: Scaling genetic algorithms using MapReduce – start-page: 1 year: 2010 ident: 10.1016/j.patrec.2016.07.027_bib0015 article-title: The hadoop distributed file system – ident: 10.1016/j.patrec.2016.07.027_bib0017 – year: 2003 ident: 10.1016/j.patrec.2016.07.027_bib0020 – volume: 38 start-page: 218 year: 2008 ident: 10.1016/j.patrec.2016.07.027_bib0004 article-title: Automatic clustering using an improved differential evolution algorithm publication-title: IEEE Trans. Syst., Man Cybern., Part A: Syst. Hum. doi: 10.1109/TSMCA.2007.909595 – start-page: 1203 year: 2012 ident: 10.1016/j.patrec.2016.07.027_bib0009 article-title: Parallel K-PSO based on map reduce – volume: 16 start-page: 645 year: 2005 ident: 10.1016/j.patrec.2016.07.027_bib0002 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 33 start-page: 1455 year: 2000 ident: 10.1016/j.patrec.2016.07.027_bib0003 article-title: Genetic algorithm-based clustering technique publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(99)00137-5 – start-page: 513 year: 2014 ident: 10.1016/j.patrec.2016.07.027_bib0011 article-title: The k-nearest neighbor algorithm using MapReduce paradigm – volume: 26 start-page: 97 year: 2014 ident: 10.1016/j.patrec.2016.07.027_bib0001 article-title: Data mining with big data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.109 – volume: 509 start-page: 187 year: 2004 ident: 10.1016/j.patrec.2016.07.027_bib0005 article-title: An ant colony approach for clustering publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2003.12.032 – volume: 5931 start-page: 674 year: 2009 ident: 10.1016/j.patrec.2016.07.027_bib0008 article-title: Parallel k-means clustering based on MapReduce – volume: 51 start-page: 107 year: 2008 ident: 10.1016/j.patrec.2016.07.027_bib0016 article-title: MapReduce: simplified data processing on large clusters publication-title: Commun. ACM doi: 10.1145/1327452.1327492 – volume: 12 start-page: 296 year: 2005 ident: 10.1016/j.patrec.2016.07.027_bib0019 article-title: Agreement, the F-measure, and reliability in information retrieval publication-title: J. Am. Med. Inform. Assoc. doi: 10.1197/jamia.M1733 – volume: 42 start-page: 21 year: 2014 ident: 10.1016/j.patrec.2016.07.027_bib0014 article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9328-0 – volume: 116 start-page: 355 year: 2013 ident: 10.1016/j.patrec.2016.07.027_bib0013 article-title: The best-so-far ABC with multiple patrilines for clustering problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.047 – start-page: 104 year: 2012 ident: 10.1016/j.patrec.2016.07.027_bib0010 article-title: Parallel particle swarm optimization clustering algorithm based on MapReduce methodology – volume: 31 start-page: 264 year: 1999 ident: 10.1016/j.patrec.2016.07.027_bib0012 article-title: Data clustering: a review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 |
| SSID | ssj0006398 |
| Score | 2.3945982 |
| Snippet | •A MapReduce-Based ABC for Large Scale Data Clustering.•Implementing based on the MapReduce model in the Hadoop framework.•Optimizing the assignment of large... The progress of technology has been a significant factor in increasing the growth of digital data. Therefore, good data analysis is a necessity for making... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 78 |
| SubjectTerms | Algorithms Artificial Bee Colony (ABC) Clustering Computer applications Data analysis Data mining Data processing Datasets Decision analysis Digital data Distributed computing Distributed processing Euclidean geometry Hadoop MapReduce Mathematical models Swarm intelligence |
| Title | A MapReduce-based artificial bee colony for large-scale data clustering |
| URI | https://dx.doi.org/10.1016/j.patrec.2016.07.027 https://www.proquest.com/docview/2089728013 |
| Volume | 93 |
| WOSCitedRecordID | wos000404204100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5ByoEeeBQQhYL2wC0ycrz2Po4RKi-JqoIi5bZa765Fi2WiOKn685nx7iZRCiogcbEiJ3asnc-z34xmviHkFXJ8oBVNxj3HbJXKs1rUBQpBcumKWhU8DJsQJydyNlOncdBlP4wTEF0nr67U_L-aGs6BsbF19i_Mvb4pnIDPYHQ4gtnh-EeGn44_mflnVGT1Ge5RDnWMzqNQRO2xOr2FkH-oL2yxDjzrwU5-jLWiY9uuUDkh7WeRtZ4OIpzY-BKrjQAy7dAHtEmym-6bWXS9-b6KogQRdjGjMBHr6tOY5rrW6hIyj-BRsYs1bBzBW0oB9JwFAcfkThXb8odhPE_aWctf-uyQPrh4jcl_j6qSk6CnGjQDdtSwv-Bz4GMAjwSmy9VtsleISskR2Zt-OJ59XG_DQL1kEnbHC1Lf5FDcd_2_fsdLdnbogXacPSD3YrxAp8HOD8kt3x2Q-2kWB42u-YDsbwlLPiLvpnQHBHQDAgogoAEEFEBAt0BAEQR0A4LH5Ovb47M377M4MiOzjJXLzDXKQ8xZu7zkrmxcxVRuKycbI2peGC-VgfgRp4GUTemYMTK3srYQu4jKFT5nT8io-9H5p4RyN2mA24qGK6D9jTSw4qbyEK5bW3nrDwlLC6Zt1JPHsSatToWDFzoss8Zl1rnQsMyHJFtfNQ96Kjf8XiRb6MgJA9fTAJ8brjxKptPx9ezhe6lwINuEPfvnGz8ndzdvzREZLRcr_4LcsZfL837xMsLwJwMWkPs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+MapReduce-based+artificial+bee+colony+for+large-scale+data+clustering&rft.jtitle=Pattern+recognition+letters&rft.au=Banharnsakun%2C+Anan&rft.date=2017-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=93&rft.spage=78&rft.epage=84&rft_id=info:doi/10.1016%2Fj.patrec.2016.07.027&rft.externalDocID=S0167865516302069 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |