A MapReduce-based artificial bee colony for large-scale data clustering

•A MapReduce-Based ABC for Large Scale Data Clustering.•Implementing based on the MapReduce model in the Hadoop framework.•Optimizing the assignment of large data instances to clusters.•The performance in dealing with massive data is improved.•The quality level of the clustering results is still mai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition letters Ročník 93; s. 78 - 84
Hlavní autor: Banharnsakun, Anan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.07.2017
Elsevier Science Ltd
Témata:
ISSN:0167-8655, 1872-7344
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A MapReduce-Based ABC for Large Scale Data Clustering.•Implementing based on the MapReduce model in the Hadoop framework.•Optimizing the assignment of large data instances to clusters.•The performance in dealing with massive data is improved.•The quality level of the clustering results is still maintained. The progress of technology has been a significant factor in increasing the growth of digital data. Therefore, good data analysis is a necessity for making better decisions. Clustering is one of the most important elements in the field of data analysis. However, the clustering of very large datasets is considered a primary concern. The improvement of computational models along with the ability to cluster huge volumes of data within a reasonable amount of time is thus required. MapReduce is a powerful programming model and an associated implement for processing large datasets with a parallel, distributed algorithm in a computing cluster. In this paper, a MapReduce-based artificial bee colony called MR-ABC is proposed for data clustering. The ABC is implemented based on the MapReduce model in the Hadoop framework and utilized to optimize the assignment of the large data instances to clusters with the objective of minimizing the sum of the squared Euclidean distance between each data instance and the centroid of the cluster to which it belongs. The experimental results demonstrate that our proposed algorithm is well-suited for dealing with massive amounts of data, while the quality level of the clustering results is still maintained.
AbstractList •A MapReduce-Based ABC for Large Scale Data Clustering.•Implementing based on the MapReduce model in the Hadoop framework.•Optimizing the assignment of large data instances to clusters.•The performance in dealing with massive data is improved.•The quality level of the clustering results is still maintained. The progress of technology has been a significant factor in increasing the growth of digital data. Therefore, good data analysis is a necessity for making better decisions. Clustering is one of the most important elements in the field of data analysis. However, the clustering of very large datasets is considered a primary concern. The improvement of computational models along with the ability to cluster huge volumes of data within a reasonable amount of time is thus required. MapReduce is a powerful programming model and an associated implement for processing large datasets with a parallel, distributed algorithm in a computing cluster. In this paper, a MapReduce-based artificial bee colony called MR-ABC is proposed for data clustering. The ABC is implemented based on the MapReduce model in the Hadoop framework and utilized to optimize the assignment of the large data instances to clusters with the objective of minimizing the sum of the squared Euclidean distance between each data instance and the centroid of the cluster to which it belongs. The experimental results demonstrate that our proposed algorithm is well-suited for dealing with massive amounts of data, while the quality level of the clustering results is still maintained.
The progress of technology has been a significant factor in increasing the growth of digital data. Therefore, good data analysis is a necessity for making better decisions. Clustering is one of the most important elements in the field of data analysis. However, the clustering of very large datasets is considered a primary concern. The improvement of computational models along with the ability to cluster huge volumes of data within a reasonable amount of time is thus required. MapReduce is a powerful programming model and an associated implement for processing large datasets with a parallel, distributed algorithm in a computing cluster. In this paper, a MapReduce-based artificial bee colony called MR-ABC is proposed for data clustering. The ABC is implemented based on the MapReduce model in the Hadoop framework and utilized to optimize the assignment of the large data instances to clusters with the objective of minimizing the sum of the squared Euclidean distance between each data instance and the centroid of the cluster to which it belongs. The experimental results demonstrate that our proposed algorithm is well-suited for dealing with massive amounts of data, while the quality level of the clustering results is still maintained.
Author Banharnsakun, Anan
Author_xml – sequence: 1
  givenname: Anan
  orcidid: 0000-0003-2004-4070
  surname: Banharnsakun
  fullname: Banharnsakun, Anan
  email: ananb@ieee.org, anan@eng.src.ku.ac.th
  organization: Computational Intelligence Research Laboratory (CIRLab), Department of Computer Engineering, Faculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
BookMark eNqFkMFKxDAQhoMouKu-gYeC59ZpkzapB2FZdBUUQfQcpslUstRmTbLCvr2V9eRBT8Mw_zfDfHN2OPqRGDsvoSihbC7XxQZTIFNUU1eALKCSB2xWKlnlkgtxyGbTQOaqqetjNo9xDQANb9WMrRbZI26eyW4N5R1GshmG5HpnHA5ZR5QZP_hxl_U-ZAOGN8qjwYEyiwkzM2xjouDGt1N21OMQ6eynnrDX25uX5V3-8LS6Xy4ecsO5SLntW6pr6CyIxore1rwFU1vVo-yaCkm1KIWEmleiF5YjKjCqM6rsZG0rAn7CLvZ7N8F_bCkmvfbbME4ndQWqlZWCkk-pq33KBB9joF4blzA5P6aAbtAl6G9xeq334vS3OA1ST-ImWPyCN8G9Y9j9h13vMZre_3QUdDSORkPWTdGkrXd_L_gCxZSLuQ
CitedBy_id crossref_primary_10_1007_s10462_020_09918_2
crossref_primary_10_1007_s10489_017_1089_7
crossref_primary_10_3233_IDT_230123
crossref_primary_10_1002_cpe_4872
crossref_primary_10_3389_fninf_2021_727859
crossref_primary_10_1007_s11042_018_5933_5
crossref_primary_10_1007_s11042_020_09714_8
crossref_primary_10_1007_s12065_022_00794_z
crossref_primary_10_1007_s42979_025_03990_7
crossref_primary_10_1080_00051144_2021_1938477
crossref_primary_10_3390_info13110530
crossref_primary_10_1111_coin_12275
crossref_primary_10_1155_2018_2634861
crossref_primary_10_1007_s00521_023_08415_1
crossref_primary_10_1007_s40747_020_00200_0
crossref_primary_10_1016_j_engappai_2019_01_006
crossref_primary_10_1002_cpe_5451
crossref_primary_10_1016_j_procs_2022_12_011
crossref_primary_10_1016_j_cosrev_2018_01_003
crossref_primary_10_1016_j_jocs_2019_101065
crossref_primary_10_4018_IJISP_201907010107
crossref_primary_10_1007_s10462_024_10920_1
crossref_primary_10_1007_s11042_020_09639_2
crossref_primary_10_1007_s13369_020_04875_y
crossref_primary_10_7717_peerj_cs_416
crossref_primary_10_4018_IJSSMET_2020040105
crossref_primary_10_1016_j_bdr_2018_05_002
crossref_primary_10_1109_TII_2020_2995680
crossref_primary_10_1016_j_engappai_2019_04_007
crossref_primary_10_1007_s11227_017_2182_8
crossref_primary_10_1109_TEM_2021_3073018
crossref_primary_10_1016_j_asoc_2021_108058
Cites_doi 10.1080/0951192X.2011.579170
10.1016/j.eswa.2011.07.123
10.1109/TSMCA.2007.909595
10.1109/TNN.2005.845141
10.1016/S0031-3203(99)00137-5
10.1109/TKDE.2013.109
10.1016/j.aca.2003.12.032
10.1145/1327452.1327492
10.1197/jamia.M1733
10.1007/s10462-012-9328-0
10.1016/j.neucom.2012.02.047
10.1145/331499.331504
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 1, 2017
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 1, 2017
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2016.07.027
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 84
ExternalDocumentID 10_1016_j_patrec_2016_07_027
S0167865516302069
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
VOH
WUQ
Y6R
~HD
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-df9e550bd046d4fd5390c5d8fa7b62ae89a74705324f4d3aa80c8bc81b75d2e03
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404204100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Sun Nov 09 06:40:58 EST 2025
Sat Nov 29 03:58:41 EST 2025
Tue Nov 18 21:51:59 EST 2025
Fri Feb 23 02:26:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data mining
Clustering
Distributed computing
Artificial Bee Colony (ABC)
Hadoop
MapReduce
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-df9e550bd046d4fd5390c5d8fa7b62ae89a74705324f4d3aa80c8bc81b75d2e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2004-4070
PQID 2089728013
PQPubID 2047552
PageCount 7
ParticipantIDs proquest_journals_2089728013
crossref_citationtrail_10_1016_j_patrec_2016_07_027
crossref_primary_10_1016_j_patrec_2016_07_027
elsevier_sciencedirect_doi_10_1016_j_patrec_2016_07_027
PublicationCentury 2000
PublicationDate 2017-07-01
2017-07-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Shelokar, Jayaraman, Kulkarni (bib0005) 2004; 509
Jain, Murty, Flynn (bib0012) 1999; 31
Wu, Zhu, Wu, Ding (bib0001) 2014; 26
Maulik, Bandyopadhyay (bib0003) 2000; 33
Wang, Yuan, Jiang (bib0009) 2012
Shvachko, Kuang, Radia, Chansler (bib0015) 2010
Cura (bib0006) 2012; 39
C.L. Blake, C.J. Merz, UCI repository of machine learning databases [Online], Available
Anchalia, Roy (bib0011) 2014
1998.
Zhao, Ma, He (bib0008) 2009; 5931
Taetragool, Achalakul (bib0018) 2011; 24
Banharnsakun, Sirinaovakul, Achalakul (bib0013) 2013; 116
Aljarah, Ludwig (bib0010) 2012
Karaboga, Gorkemli, Ozturk, Karaboga (bib0014) 2014; 42
Grama, Gupta, Karypis, Kumar (bib0020) 2003
Hripcsak, Rothschild (bib0019) 2005; 12
Xu, Wunsch (bib0002) 2005; 16
Das, Abraham, Konar (bib0004) 2008; 38
Verma, Llora, Goldberg, Campbell (bib0007) 2009
Dean, Ghemawat (bib0016) 2008; 51
Das (10.1016/j.patrec.2016.07.027_bib0004) 2008; 38
Maulik (10.1016/j.patrec.2016.07.027_bib0003) 2000; 33
Aljarah (10.1016/j.patrec.2016.07.027_bib0010) 2012
10.1016/j.patrec.2016.07.027_bib0017
Verma (10.1016/j.patrec.2016.07.027_bib0007) 2009
Hripcsak (10.1016/j.patrec.2016.07.027_bib0019) 2005; 12
Cura (10.1016/j.patrec.2016.07.027_bib0006) 2012; 39
Xu (10.1016/j.patrec.2016.07.027_bib0002) 2005; 16
Wang (10.1016/j.patrec.2016.07.027_bib0009) 2012
Taetragool (10.1016/j.patrec.2016.07.027_bib0018) 2011; 24
Dean (10.1016/j.patrec.2016.07.027_bib0016) 2008; 51
Wu (10.1016/j.patrec.2016.07.027_bib0001) 2014; 26
Shelokar (10.1016/j.patrec.2016.07.027_bib0005) 2004; 509
Grama (10.1016/j.patrec.2016.07.027_bib0020) 2003
Jain (10.1016/j.patrec.2016.07.027_bib0012) 1999; 31
Zhao (10.1016/j.patrec.2016.07.027_bib0008) 2009; 5931
Karaboga (10.1016/j.patrec.2016.07.027_bib0014) 2014; 42
Anchalia (10.1016/j.patrec.2016.07.027_bib0011) 2014
Shvachko (10.1016/j.patrec.2016.07.027_bib0015) 2010
Banharnsakun (10.1016/j.patrec.2016.07.027_bib0013) 2013; 116
References_xml – volume: 116
  start-page: 355
  year: 2013
  end-page: 366
  ident: bib0013
  article-title: The best-so-far ABC with multiple patrilines for clustering problems
  publication-title: Neurocomputing
– volume: 51
  start-page: 107
  year: 2008
  end-page: 113
  ident: bib0016
  article-title: MapReduce: simplified data processing on large clusters
  publication-title: Commun. ACM
– volume: 42
  start-page: 21
  year: 2014
  end-page: 57
  ident: bib0014
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
– volume: 26
  start-page: 97
  year: 2014
  end-page: 107
  ident: bib0001
  article-title: Data mining with big data
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 13
  year: 2009
  end-page: 18
  ident: bib0007
  article-title: Scaling genetic algorithms using MapReduce
  publication-title: Proceedings of 9th International Conference on Intelligent Systems Design and Applications
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib0002
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
– volume: 509
  start-page: 187
  year: 2004
  end-page: 195
  ident: bib0005
  article-title: An ant colony approach for clustering
  publication-title: Anal. Chim. Acta
– reference: C.L. Blake, C.J. Merz, UCI repository of machine learning databases [Online], Available:
– volume: 38
  start-page: 218
  year: 2008
  end-page: 237
  ident: bib0004
  article-title: Automatic clustering using an improved differential evolution algorithm
  publication-title: IEEE Trans. Syst., Man Cybern., Part A: Syst. Hum.
– year: 2003
  ident: bib0020
  article-title: Introduction to parallel Computing
– volume: 33
  start-page: 1455
  year: 2000
  end-page: 1465
  ident: bib0003
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recogn.
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: bib0012
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
– volume: 5931
  start-page: 674
  year: 2009
  end-page: 679
  ident: bib0008
  article-title: Parallel k-means clustering based on MapReduce
  publication-title: CloudCom 2009
– start-page: 1203
  year: 2012
  end-page: 1208
  ident: bib0009
  article-title: Parallel K-PSO based on map reduce
  publication-title: Proceedings of IEEE 14th International Conference on Communication Technology (ICCT)
– reference: . 1998.
– volume: 24
  start-page: 834
  year: 2011
  end-page: 846
  ident: bib0018
  article-title: Method for failure pattern analysis in disk drive manufacturing
  publication-title: Int. J. Comput. Integr. Manuf.
– start-page: 104
  year: 2012
  end-page: 111
  ident: bib0010
  article-title: Parallel particle swarm optimization clustering algorithm based on MapReduce methodology
  publication-title: Proceedings of 4th World Congress on Nature and Biologically Inspired Computing (NaBIC)
– volume: 12
  start-page: 296
  year: 2005
  end-page: 298
  ident: bib0019
  article-title: Agreement, the F-measure, and reliability in information retrieval
  publication-title: J. Am. Med. Inform. Assoc.
– start-page: 513
  year: 2014
  end-page: 518
  ident: bib0011
  article-title: The k-nearest neighbor algorithm using MapReduce paradigm
  publication-title: Proceedings of 5th International Conference on Intelligent Systems, Modelling and Simulation
– start-page: 1
  year: 2010
  end-page: 10
  ident: bib0015
  article-title: The hadoop distributed file system
  publication-title: Proceedings of the IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST)
– volume: 39
  start-page: 1582
  year: 2012
  end-page: 1588
  ident: bib0006
  article-title: A particle swarm optimization approach to clustering
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 834
  year: 2011
  ident: 10.1016/j.patrec.2016.07.027_bib0018
  article-title: Method for failure pattern analysis in disk drive manufacturing
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2011.579170
– volume: 39
  start-page: 1582
  year: 2012
  ident: 10.1016/j.patrec.2016.07.027_bib0006
  article-title: A particle swarm optimization approach to clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.123
– start-page: 13
  year: 2009
  ident: 10.1016/j.patrec.2016.07.027_bib0007
  article-title: Scaling genetic algorithms using MapReduce
– start-page: 1
  year: 2010
  ident: 10.1016/j.patrec.2016.07.027_bib0015
  article-title: The hadoop distributed file system
– ident: 10.1016/j.patrec.2016.07.027_bib0017
– year: 2003
  ident: 10.1016/j.patrec.2016.07.027_bib0020
– volume: 38
  start-page: 218
  year: 2008
  ident: 10.1016/j.patrec.2016.07.027_bib0004
  article-title: Automatic clustering using an improved differential evolution algorithm
  publication-title: IEEE Trans. Syst., Man Cybern., Part A: Syst. Hum.
  doi: 10.1109/TSMCA.2007.909595
– start-page: 1203
  year: 2012
  ident: 10.1016/j.patrec.2016.07.027_bib0009
  article-title: Parallel K-PSO based on map reduce
– volume: 16
  start-page: 645
  year: 2005
  ident: 10.1016/j.patrec.2016.07.027_bib0002
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 33
  start-page: 1455
  year: 2000
  ident: 10.1016/j.patrec.2016.07.027_bib0003
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(99)00137-5
– start-page: 513
  year: 2014
  ident: 10.1016/j.patrec.2016.07.027_bib0011
  article-title: The k-nearest neighbor algorithm using MapReduce paradigm
– volume: 26
  start-page: 97
  year: 2014
  ident: 10.1016/j.patrec.2016.07.027_bib0001
  article-title: Data mining with big data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.109
– volume: 509
  start-page: 187
  year: 2004
  ident: 10.1016/j.patrec.2016.07.027_bib0005
  article-title: An ant colony approach for clustering
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2003.12.032
– volume: 5931
  start-page: 674
  year: 2009
  ident: 10.1016/j.patrec.2016.07.027_bib0008
  article-title: Parallel k-means clustering based on MapReduce
– volume: 51
  start-page: 107
  year: 2008
  ident: 10.1016/j.patrec.2016.07.027_bib0016
  article-title: MapReduce: simplified data processing on large clusters
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– volume: 12
  start-page: 296
  year: 2005
  ident: 10.1016/j.patrec.2016.07.027_bib0019
  article-title: Agreement, the F-measure, and reliability in information retrieval
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1197/jamia.M1733
– volume: 42
  start-page: 21
  year: 2014
  ident: 10.1016/j.patrec.2016.07.027_bib0014
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– volume: 116
  start-page: 355
  year: 2013
  ident: 10.1016/j.patrec.2016.07.027_bib0013
  article-title: The best-so-far ABC with multiple patrilines for clustering problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.047
– start-page: 104
  year: 2012
  ident: 10.1016/j.patrec.2016.07.027_bib0010
  article-title: Parallel particle swarm optimization clustering algorithm based on MapReduce methodology
– volume: 31
  start-page: 264
  year: 1999
  ident: 10.1016/j.patrec.2016.07.027_bib0012
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
SSID ssj0006398
Score 2.3945982
Snippet •A MapReduce-Based ABC for Large Scale Data Clustering.•Implementing based on the MapReduce model in the Hadoop framework.•Optimizing the assignment of large...
The progress of technology has been a significant factor in increasing the growth of digital data. Therefore, good data analysis is a necessity for making...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 78
SubjectTerms Algorithms
Artificial Bee Colony (ABC)
Clustering
Computer applications
Data analysis
Data mining
Data processing
Datasets
Decision analysis
Digital data
Distributed computing
Distributed processing
Euclidean geometry
Hadoop
MapReduce
Mathematical models
Swarm intelligence
Title A MapReduce-based artificial bee colony for large-scale data clustering
URI https://dx.doi.org/10.1016/j.patrec.2016.07.027
https://www.proquest.com/docview/2089728013
Volume 93
WOSCitedRecordID wos000404204100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5ByoEeeBQQhYL2wC0ycrz2Po4RKi-JqoIi5bZa765Fi2WiOKn685nx7iZRCiogcbEiJ3asnc-z34xmviHkFXJ8oBVNxj3HbJXKs1rUBQpBcumKWhU8DJsQJydyNlOncdBlP4wTEF0nr67U_L-aGs6BsbF19i_Mvb4pnIDPYHQ4gtnh-EeGn44_mflnVGT1Ge5RDnWMzqNQRO2xOr2FkH-oL2yxDjzrwU5-jLWiY9uuUDkh7WeRtZ4OIpzY-BKrjQAy7dAHtEmym-6bWXS9-b6KogQRdjGjMBHr6tOY5rrW6hIyj-BRsYs1bBzBW0oB9JwFAcfkThXb8odhPE_aWctf-uyQPrh4jcl_j6qSk6CnGjQDdtSwv-Bz4GMAjwSmy9VtsleISskR2Zt-OJ59XG_DQL1kEnbHC1Lf5FDcd_2_fsdLdnbogXacPSD3YrxAp8HOD8kt3x2Q-2kWB42u-YDsbwlLPiLvpnQHBHQDAgogoAEEFEBAt0BAEQR0A4LH5Ovb47M377M4MiOzjJXLzDXKQ8xZu7zkrmxcxVRuKycbI2peGC-VgfgRp4GUTemYMTK3srYQu4jKFT5nT8io-9H5p4RyN2mA24qGK6D9jTSw4qbyEK5bW3nrDwlLC6Zt1JPHsSatToWDFzoss8Zl1rnQsMyHJFtfNQ96Kjf8XiRb6MgJA9fTAJ8brjxKptPx9ezhe6lwINuEPfvnGz8ndzdvzREZLRcr_4LcsZfL837xMsLwJwMWkPs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+MapReduce-based+artificial+bee+colony+for+large-scale+data+clustering&rft.jtitle=Pattern+recognition+letters&rft.au=Banharnsakun%2C+Anan&rft.date=2017-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=93&rft.spage=78&rft.epage=84&rft_id=info:doi/10.1016%2Fj.patrec.2016.07.027&rft.externalDocID=S0167865516302069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon