An effective multi-objective evolutionary algorithm for solving the AGV scheduling problem with pickup and delivery
This paper investigates a new automatic guided vehicle scheduling problem with pickup and delivery from the goods handling process in a matrix manufacturing workshop with multi-variety and small-batch production. The problem aims to determine a solution that maximizes customer satisfaction while min...
Uloženo v:
| Vydáno v: | Knowledge-based systems Ročník 218; s. 106881 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
22.04.2021
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper investigates a new automatic guided vehicle scheduling problem with pickup and delivery from the goods handling process in a matrix manufacturing workshop with multi-variety and small-batch production. The problem aims to determine a solution that maximizes customer satisfaction while minimizing distribution cost. For this purpose, a multi-objective mixed-integer linear programming model is first formulated. Then an effective multi-objective evolutionary algorithm is developed for solving the problem. In the algorithm, a constructive heuristic is presented and incorporated into the population initialization. A multi-objective local search based on an ideal-point is used to enforce the exploitation capability. A novel two-point crossover operator is designed to make full use of valuable information collected in the non-dominated solutions. A restart strategy is proposed to avoid the algorithm trapping into a local optimum. At last, a series of comparative experiments are implemented based on a number of real-world instances from an electronic equipment manufacturing enterprise. The results show that the proposed algorithm has a significantly better performance than the existing multi-objective algorithms for solving the problem under consideration. |
|---|---|
| AbstractList | This paper investigates a new automatic guided vehicle scheduling problem with pickup and delivery from the goods handling process in a matrix manufacturing workshop with multi-variety and small-batch production. The problem aims to determine a solution that maximizes customer satisfaction while minimizing distribution cost. For this purpose, a multi-objective mixed-integer linear programming model is first formulated. Then an effective multi-objective evolutionary algorithm is developed for solving the problem. In the algorithm, a constructive heuristic is presented and incorporated into the population initialization. A multi-objective local search based on an ideal-point is used to enforce the exploitation capability. A novel two-point crossover operator is designed to make full use of valuable information collected in the non-dominated solutions. A restart strategy is proposed to avoid the algorithm trapping into a local optimum. At last, a series of comparative experiments are implemented based on a number of real-world instances from an electronic equipment manufacturing enterprise. The results show that the proposed algorithm has a significantly better performance than the existing multi-objective algorithms for solving the problem under consideration. |
| ArticleNumber | 106881 |
| Author | Pan, Quan-Ke Zou, Wen-Qiang Wang, Ling |
| Author_xml | – sequence: 1 givenname: Wen-Qiang surname: Zou fullname: Zou, Wen-Qiang organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, PR China – sequence: 2 givenname: Quan-Ke surname: Pan fullname: Pan, Quan-Ke email: panquanke@shu.edu.cn organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, PR China – sequence: 3 givenname: Ling orcidid: 0000-0003-1226-2801 surname: Wang fullname: Wang, Ling organization: Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Automation, Tsinghua University, Beijing 100084, PR China |
| BookMark | eNqFkE9r3DAQxUVJoZs_3yAHQc_ejmStLfdQWEKbBgK9NL0K2Rpn5WilrSRv2W9fLc6ph-Y0zPDem5nfJbnwwSMhtwzWDFjzaVq_-JBOac2BszJqpGTvyIrJlletgO6CrKDbQNXChn0glylNAMA5kyuStp7iOOKQ7RHpfnbZVqGfXns8BjdnG7yOJ6rdc4g27_Z0DJGm4I7WP9O8Q7q9_0XTsEMzu_PoEEPvcE__FDE92OFlPlDtDTXoSmg8XZP3o3YJb17rFXn69vXn3ffq8cf9w932sRrqWuTKlLs0tjUXKJmWYKDrG25MawSwvhFC9Fq2Y9MwLoG3UhiOY11rKcceTC_rK_JxyS0H_Z4xZTWFOfqyUvENdA3vSlBRiUU1xJBSxFEdot2XhxUDdcarJrXgVWe8asFbbJ__sQ026zOrHLV1b5m_LGYs7x8tRpUGi35AY2NBr0yw_w_4C_KsnTA |
| CitedBy_id | crossref_primary_10_1007_s00170_022_08950_6 crossref_primary_10_1155_2022_3785039 crossref_primary_10_3390_app13020806 crossref_primary_10_3390_sym15081505 crossref_primary_10_1016_j_eswa_2023_119512 crossref_primary_10_3390_electronics11121868 crossref_primary_10_1016_j_autcon_2022_104699 crossref_primary_10_1016_j_ins_2023_119949 crossref_primary_10_1016_j_knosys_2022_108334 crossref_primary_10_3390_systems11070371 crossref_primary_10_51583_IJLTEMAS_2025_1407000069 crossref_primary_10_26599_TST_2024_9010174 crossref_primary_10_1016_j_engappai_2023_107381 crossref_primary_10_1109_TAES_2024_3476456 crossref_primary_10_1007_s10845_023_02252_8 crossref_primary_10_1016_j_eswa_2022_119138 crossref_primary_10_3390_en16176310 crossref_primary_10_1016_j_knosys_2024_112524 crossref_primary_10_3233_JIFS_212242 crossref_primary_10_1016_j_eswa_2025_129457 crossref_primary_10_1016_j_knosys_2022_110002 crossref_primary_10_3390_app13063708 crossref_primary_10_1038_s41598_025_91140_7 crossref_primary_10_1016_j_swevo_2023_101413 crossref_primary_10_1016_j_asoc_2021_107695 crossref_primary_10_1016_j_cie_2024_109976 crossref_primary_10_3390_app11146494 crossref_primary_10_1016_j_eswa_2024_125300 crossref_primary_10_23919_CSMS_2024_0023 crossref_primary_10_1109_TASE_2024_3419848 crossref_primary_10_26599_TST_2023_9010087 crossref_primary_10_1016_j_engappai_2024_109700 crossref_primary_10_1007_s11356_024_32824_x crossref_primary_10_1631_FITEE_2300795 crossref_primary_10_3390_app15063035 crossref_primary_10_1016_j_rcim_2022_102514 crossref_primary_10_1080_00207543_2025_2461131 crossref_primary_10_1016_j_cie_2025_111355 crossref_primary_10_1109_TII_2022_3211507 crossref_primary_10_1049_cim2_12105 crossref_primary_10_1016_j_eswa_2023_122197 crossref_primary_10_1016_j_eswa_2024_125760 crossref_primary_10_1016_j_swevo_2025_101861 |
| Cites_doi | 10.1016/j.cie.2018.10.002 10.1007/s00170-015-7329-2 10.1109/TEVC.2003.810761 10.1109/4235.996017 10.1016/j.renene.2019.05.024 10.1016/j.jclepro.2018.05.046 10.1109/4235.797969 10.1016/j.ejor.2011.06.006 10.1016/j.cie.2019.03.047 10.1016/j.ejor.2004.09.020 10.1016/j.swevo.2011.02.002 10.1007/s00500-015-1830-2 10.1007/s00500-015-1642-4 10.1016/j.ins.2015.09.006 10.1016/j.swevo.2018.04.008 10.2507/IJSIMM16(1)5.368 10.1016/j.ins.2014.05.049 10.1016/j.eswa.2020.113675 10.1109/5326.704576 10.1016/j.ins.2019.03.070 10.1007/s10489-017-0997-x 10.1016/j.asoc.2014.08.028 10.1016/j.neucom.2015.02.051 10.1016/j.asoc.2016.01.033 10.1016/j.cie.2018.04.032 10.1016/j.eswa.2019.01.062 10.1016/j.robot.2015.05.002 10.1016/j.cie.2015.10.017 10.1016/j.cor.2008.10.008 10.1016/j.eswa.2008.09.063 10.1016/j.jclepro.2020.120627 10.1109/TCYB.2017.2771213 10.1007/s12293-016-0222-1 10.1109/ACCESS.2020.2973336 10.2507/IJSIMM09(1)3.139 10.1016/j.engappai.2020.104016 10.1016/j.cie.2015.12.007 10.1016/j.knosys.2019.104894 10.3390/su11051329 10.1016/j.asoc.2018.07.014 10.1016/j.ins.2018.11.006 10.1016/j.ress.2018.01.018 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Apr 22, 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Apr 22, 2021 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2021.106881 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2021_106881 S0950705121001441 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-deffae7324e81a80d09b62dd7d401b6444ba87f6612802784d2ef33a88fb0db83 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633445200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 18:41:52 EST 2025 Tue Nov 18 21:22:38 EST 2025 Sat Nov 29 07:07:01 EST 2025 Sun Apr 06 06:54:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Matrix manufacturing workshop Scheduling Pickup and delivery Multi-objective evolutionary algorithm Automated guided vehicles |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-deffae7324e81a80d09b62dd7d401b6444ba87f6612802784d2ef33a88fb0db83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1226-2801 |
| PQID | 2509629401 |
| PQPubID | 2035257 |
| ParticipantIDs | proquest_journals_2509629401 crossref_primary_10_1016_j_knosys_2021_106881 crossref_citationtrail_10_1016_j_knosys_2021_106881 elsevier_sciencedirect_doi_10_1016_j_knosys_2021_106881 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-22 |
| PublicationDateYYYYMMDD | 2021-04-22 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Karimi, Niaki, Haleh, Naderi (b16) 2018; 175 Umar, Ariffin, Ismail, Tang (b13) 2015; 81 Li, Tao, Jia, Han, Liu, Duan, Zheng, Sang (b41) 2019; 52 Zhang, Pan, Gao, Meng, Li, Peng (b38) 2019 Baradaran, Shafaei, Hosseinian (b25) 2019; 131 Zhu, Xiao, He, Ji, Sun (b24) 2016; 329 Pan, Wang, Qian (b35) 2009; 36 Pan, Gao, Wang, Liang, Li (b31) 2019; 124 Derrac, Garcia, Molina, Herrera (b39) 2011; 1 Malopolski (b9) 2018; 126 Udhayakumar, Kumanan (b12) 2010; 9 Sindhya, Sinha, Deb, Miettinen (b33) 2009 Liao, Zhang, Wei (b18) 2020; 258 Han, Gong, Jin, Pan (b30) 2019; 49 Zou, Pan, Tasgetiren (b29) 2020; 8 Tian, Zhang, Xiao, Zhang, Jin (b46) 2020 Fazlollahtabar, Hassanli (b8) 2018; 48 Mehrabian, Tavakkoli-Moghaddam, Khalili-Damaghani (b15) 2017; 14 Zou, Pan, Meng, Gao, Wang (b1) 2020 Abad, Vahdani, Sharifi, Etebari (b21) 2018; 193 Zeng, Chen, Dai, Li, Zheng, Chen (b49) 2015; 160 Bosman, Thierens (b37) 2003; 7 Fazlollahtabar, Saidi-Mehrabad (b3) 2015; 72 Bederina, Hifi (b20) 2018; 71 Patel, Savsani (b47) 2016; 357 Naderi, Zandieh, Balagh, Roshanaei (b43) 2009; 36 Chen, Zeng, K. D. L (b48) 2019; 143 Braekers, Ramaekers, Van Nieuwenhuyse (b4) 2016; 99 Zeng, Tang, Yan (b10) 2014; 24 Nalepa, Blocho (b6) 2016; 20 Szeto, Wu, Ho (b5) 2011; 215 Tavakkoli-Moghaddam, Safaei, Gholipour (b28) 2006; 176 Zhang, Zhang, Ma, Zhang, Liu (b22) 2019; 490 Montgomery (b40) 2012 Han, Gong, Jin, Pan (b34) 2016; 42 Mousavi, Yap, Musa, Dawal (b14) 2017; 16 Gee, Arokiasami, Jiang, Tan (b19) 2016; 20 Ishibuchi, Murata (b32) 1998; 28 Meng, Pan, Wang (b44) 2019; 184 Pan, Gao, Li, Gao (b42) 2017; 303 Brandao (b7) 2018; 120 Deb, Pratap, Agarwal, Meyarivan (b27) 2002; 6 Zitzler, Thiele (b36) 1999; 3 Huang, Pan, Miao, Gao (b50) 2021; 97 Miyamoto, Inoue (b11) 2016; 91 Li, Wang, Hei, Li, Jiang (b23) 2018; 10 Vis (b2) 2006; 170 Xu, Guo (b17) 2019; 11 Long, Sun, Pardalos, Hong, Zhang (b26) 2019; 478 Zeng, Xie, Chen, Weng (b45) 2019; 44 Mehrabian (10.1016/j.knosys.2021.106881_b15) 2017; 14 Zitzler (10.1016/j.knosys.2021.106881_b36) 1999; 3 Patel (10.1016/j.knosys.2021.106881_b47) 2016; 357 Ishibuchi (10.1016/j.knosys.2021.106881_b32) 1998; 28 Zou (10.1016/j.knosys.2021.106881_b1) 2020 Montgomery (10.1016/j.knosys.2021.106881_b40) 2012 Chen (10.1016/j.knosys.2021.106881_b48) 2019; 143 Deb (10.1016/j.knosys.2021.106881_b27) 2002; 6 Xu (10.1016/j.knosys.2021.106881_b17) 2019; 11 Li (10.1016/j.knosys.2021.106881_b41) 2019; 52 Gee (10.1016/j.knosys.2021.106881_b19) 2016; 20 Long (10.1016/j.knosys.2021.106881_b26) 2019; 478 Zeng (10.1016/j.knosys.2021.106881_b49) 2015; 160 Fazlollahtabar (10.1016/j.knosys.2021.106881_b8) 2018; 48 Sindhya (10.1016/j.knosys.2021.106881_b33) 2009 Baradaran (10.1016/j.knosys.2021.106881_b25) 2019; 131 Zhang (10.1016/j.knosys.2021.106881_b22) 2019; 490 Zhu (10.1016/j.knosys.2021.106881_b24) 2016; 329 Udhayakumar (10.1016/j.knosys.2021.106881_b12) 2010; 9 Han (10.1016/j.knosys.2021.106881_b30) 2019; 49 Liao (10.1016/j.knosys.2021.106881_b18) 2020; 258 Pan (10.1016/j.knosys.2021.106881_b35) 2009; 36 Huang (10.1016/j.knosys.2021.106881_b50) 2021; 97 Vis (10.1016/j.knosys.2021.106881_b2) 2006; 170 Braekers (10.1016/j.knosys.2021.106881_b4) 2016; 99 Tavakkoli-Moghaddam (10.1016/j.knosys.2021.106881_b28) 2006; 176 Mousavi (10.1016/j.knosys.2021.106881_b14) 2017; 16 Fazlollahtabar (10.1016/j.knosys.2021.106881_b3) 2015; 72 Bederina (10.1016/j.knosys.2021.106881_b20) 2018; 71 Umar (10.1016/j.knosys.2021.106881_b13) 2015; 81 Zhang (10.1016/j.knosys.2021.106881_b38) 2019 Karimi (10.1016/j.knosys.2021.106881_b16) 2018; 175 Naderi (10.1016/j.knosys.2021.106881_b43) 2009; 36 Pan (10.1016/j.knosys.2021.106881_b42) 2017; 303 Nalepa (10.1016/j.knosys.2021.106881_b6) 2016; 20 Bosman (10.1016/j.knosys.2021.106881_b37) 2003; 7 Szeto (10.1016/j.knosys.2021.106881_b5) 2011; 215 Pan (10.1016/j.knosys.2021.106881_b31) 2019; 124 Brandao (10.1016/j.knosys.2021.106881_b7) 2018; 120 Abad (10.1016/j.knosys.2021.106881_b21) 2018; 193 Zeng (10.1016/j.knosys.2021.106881_b45) 2019; 44 Miyamoto (10.1016/j.knosys.2021.106881_b11) 2016; 91 Malopolski (10.1016/j.knosys.2021.106881_b9) 2018; 126 Han (10.1016/j.knosys.2021.106881_b34) 2016; 42 Derrac (10.1016/j.knosys.2021.106881_b39) 2011; 1 Li (10.1016/j.knosys.2021.106881_b23) 2018; 10 Meng (10.1016/j.knosys.2021.106881_b44) 2019; 184 Zou (10.1016/j.knosys.2021.106881_b29) 2020; 8 Tian (10.1016/j.knosys.2021.106881_b46) 2020 Zeng (10.1016/j.knosys.2021.106881_b10) 2014; 24 |
| References_xml | – volume: 160 start-page: 173 year: 2015 end-page: 184 ident: b49 article-title: Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization publication-title: Neurocomput. – volume: 357 start-page: 182 year: 2016 end-page: 200 ident: b47 article-title: A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO) publication-title: Inform. Sci. – volume: 126 start-page: 472 year: 2018 end-page: 481 ident: b9 article-title: A sustainable and conflict-free operation of AGVs in a square topology publication-title: Comput. Ind. Eng. – volume: 97 year: 2021 ident: b50 article-title: Effective constructive heuristics and discrete bee colony optimization for distributed flowshop with setup times publication-title: Eng. Appl. Artif. Intell. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b27 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 170 start-page: 677 year: 2006 end-page: 709 ident: b2 article-title: Survey of research in the design and control of automated guided vehicle systems publication-title: European J. Oper. Res. – volume: 176 start-page: 445 year: 2006 end-page: 454 ident: b28 article-title: A hybrid simulated annealing for capacitated vehicle routing problems with the independent route length publication-title: Appl. Math. Comput. – volume: 14 start-page: 45 year: 2017 end-page: 77 ident: b15 article-title: Multi-objective routing and scheduling in flexible manufacturing systems under uncertainty publication-title: Iran. J. Fuzzy. Syst. – volume: 303 start-page: 89 year: 2017 end-page: 112 ident: b42 article-title: Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times publication-title: Appl. Math. Comput. – volume: 10 start-page: 103 year: 2018 end-page: 120 ident: b23 article-title: A decomposition-based chemical reaction optimization for multi-objective vehicle routing problem for simultaneous delivery and pickup with time windows publication-title: Memet. Comput. – volume: 36 start-page: 9625 year: 2009 end-page: 9633 ident: b43 article-title: An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness publication-title: Expert Syst. Appl. – volume: 20 start-page: 2309 year: 2016 end-page: 2327 ident: b6 article-title: Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows publication-title: Soft. Comput. – volume: 258 year: 2020 ident: b18 article-title: Multi-objective green meal delivery routing problem based on a two-stage solution strategy publication-title: J. Clean. Prod. – volume: 28 start-page: 392 year: 1998 end-page: 403 ident: b32 article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling publication-title: IEEE Trans. Syst. Man, Cybern. C, Appl. Rev. – volume: 20 start-page: 3443 year: 2016 end-page: 3453 ident: b19 article-title: Decomposition-based multi-objective evolutionary algorithm for vehicle routing problem with stochastic demands publication-title: Soft. Comput. – volume: 184 year: 2019 ident: b44 article-title: A distributed permutation flowshop scheduling problem with the customer order constraint publication-title: Knowl.-Based Syst. – volume: 7 start-page: 174 year: 2003 end-page: 188 ident: b37 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 99 start-page: 300 year: 2016 end-page: 313 ident: b4 article-title: The vehicle routing problem: State of the art classification and review publication-title: Comput. Ind. Eng. – volume: 81 start-page: 2123 year: 2015 end-page: 2141 ident: b13 article-title: Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment publication-title: Int. J. Adv. Manuf. Technol. – volume: 42 start-page: 229 year: 2016 end-page: 245 ident: b34 article-title: Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time publication-title: Appl. Soft. Comput. – volume: 16 start-page: 58 year: 2017 end-page: 71 ident: b14 article-title: A fuzzy hybrid GA-PSO algorithm for multi-objective AGV scheduling in FMS publication-title: Int. J. Simul. Model. – year: 2012 ident: b40 article-title: Design and Analysis of Experiments – year: 2019 ident: b38 article-title: A three-stage multi-objective approach based on decomposition for an energy-efficient hybrid flowshop scheduling problem publication-title: IEEE T. Syst. Man. Cy-S. – volume: 8 start-page: 35063 year: 2020 end-page: 35076 ident: b29 article-title: An effective discrete artificial bee colony algorithm for scheduling an automatic-guided-vehicle in a linear manufacturing workshop publication-title: IEEE Access – year: 2020 ident: b46 article-title: A coevolutionary framework for constrained multi-objective optimization problems publication-title: IEEE T. Evolut. Comput. – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b36 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. – volume: 9 start-page: 28 year: 2010 end-page: 39 ident: b12 article-title: Task scheduling of AGV in FMS using non-traditional optimization techniques publication-title: Int. J. Simul. Model. – volume: 72 start-page: 131 year: 2015 end-page: 138 ident: b3 article-title: Mathematical optimization for earliness/tardiness minimization in a multiple automated guided vehicle manufacturing system via integrated heuristic algorithms publication-title: Robot. Auton. Syst. – volume: 49 start-page: 184 year: 2019 end-page: 197 ident: b30 article-title: Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns publication-title: IEEE T. Cybern. – volume: 124 start-page: 309 year: 2019 end-page: 324 ident: b31 article-title: Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem publication-title: Expert. Syst. Appl. – volume: 193 start-page: 784 year: 2018 end-page: 801 ident: b21 article-title: A bi-objective model for pickup and delivery pollution-routing problem with integration and consolidation shipments in cross-docking system publication-title: J. Clean. Prod. – volume: 71 start-page: 980 year: 2018 end-page: 993 ident: b20 article-title: A hybrid multi-objective evolutionary optimization approach for the robust vehicle routing problem publication-title: Appl. Soft. Comput. – volume: 91 start-page: 1 year: 2016 end-page: 9 ident: b11 article-title: Local and random searches for dispatch and conflict-free routing problem of capacitated AGV systems publication-title: Comput. Ind. Eng. – year: 2020 ident: b1 article-title: An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop publication-title: Expert. Syst. Appl. – volume: 329 start-page: 73 year: 2016 end-page: 89 ident: b24 article-title: A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery problem publication-title: Inform. Sci. – volume: 143 start-page: 277 year: 2019 end-page: 294 ident: b48 article-title: Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources publication-title: Renew. Energy – volume: 478 start-page: 40 year: 2019 end-page: 61 ident: b26 article-title: A hybrid multi-objective genetic local search algorithm for the prize-collecting vehicle routing problem publication-title: Inform. Sci. – volume: 48 start-page: 482 year: 2018 end-page: 498 ident: b8 article-title: Hybrid cost and time path planning for multiple autonomous guided vehicles publication-title: Appl. Intell. – start-page: 2919 year: 2009 end-page: 2926 ident: b33 article-title: Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems publication-title: 2009 IEEE Congress on Evolutionary Computation – volume: 215 start-page: 126 year: 2011 end-page: 135 ident: b5 article-title: An artificial bee colony algorithm for the capacitated vehicle routing problem publication-title: European J. Oper. Res. – volume: 175 start-page: 92 year: 2018 end-page: 104 ident: b16 article-title: Bi-objective optimization of a job shop with two types of failures for the operating machines that use automated guided vehicles publication-title: Reliab. Eng. Syst. Saf. – volume: 52 year: 2019 ident: b41 article-title: Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots publication-title: Swarm. Evol. Comput. – volume: 490 start-page: 166 year: 2019 end-page: 190 ident: b22 article-title: A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows publication-title: Inform. Sci. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b39 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm. Evol. Comput. – volume: 120 start-page: 146 year: 2018 end-page: 159 ident: b7 article-title: Iterated local search algorithm with ejection chains for the open vehicle routing problem with time windows publication-title: Comput. Ind. Eng. – volume: 44 start-page: 320 year: 2019 end-page: 334 ident: b45 article-title: Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems publication-title: Swarm. Evol. Comput. – volume: 11 start-page: 1329 year: 2019 ident: b17 article-title: A multi-objective and multi-dimensional optimization scheduling method using a hybrid evolutionary algorithms with a sectional encoding mode publication-title: Sustainability-Basel. – volume: 36 start-page: 2498 year: 2009 end-page: 2511 ident: b35 article-title: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems publication-title: Comput. Oper. Res. – volume: 131 start-page: 187 year: 2019 end-page: 199 ident: b25 article-title: Stochastic vehicle routing problem with heterogeneous vehicles and multiple prioritized time windows: Mathematical modeling and solution approach publication-title: Comput. Ind. Eng. – volume: 24 start-page: 1033 year: 2014 end-page: 1046 ident: b10 article-title: Scheduling of no buffer job shop cells with blocking constraints and automated guided vehicles publication-title: Appl. Soft. Comput. – volume: 126 start-page: 472 year: 2018 ident: 10.1016/j.knosys.2021.106881_b9 article-title: A sustainable and conflict-free operation of AGVs in a square topology publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.10.002 – volume: 81 start-page: 2123 issue: 9–12 year: 2015 ident: 10.1016/j.knosys.2021.106881_b13 article-title: Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7329-2 – volume: 7 start-page: 174 year: 2003 ident: 10.1016/j.knosys.2021.106881_b37 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810761 – year: 2020 ident: 10.1016/j.knosys.2021.106881_b46 article-title: A coevolutionary framework for constrained multi-objective optimization problems publication-title: IEEE T. Evolut. Comput. – volume: 14 start-page: 45 issue: 2 year: 2017 ident: 10.1016/j.knosys.2021.106881_b15 article-title: Multi-objective routing and scheduling in flexible manufacturing systems under uncertainty publication-title: Iran. J. Fuzzy. Syst. – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.knosys.2021.106881_b27 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 143 start-page: 277 year: 2019 ident: 10.1016/j.knosys.2021.106881_b48 article-title: Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources publication-title: Renew. Energy doi: 10.1016/j.renene.2019.05.024 – volume: 193 start-page: 784 year: 2018 ident: 10.1016/j.knosys.2021.106881_b21 article-title: A bi-objective model for pickup and delivery pollution-routing problem with integration and consolidation shipments in cross-docking system publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.05.046 – volume: 3 start-page: 257 year: 1999 ident: 10.1016/j.knosys.2021.106881_b36 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – year: 2012 ident: 10.1016/j.knosys.2021.106881_b40 – volume: 215 start-page: 126 issue: 1 year: 2011 ident: 10.1016/j.knosys.2021.106881_b5 article-title: An artificial bee colony algorithm for the capacitated vehicle routing problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2011.06.006 – start-page: 2919 year: 2009 ident: 10.1016/j.knosys.2021.106881_b33 article-title: Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems – volume: 52 year: 2019 ident: 10.1016/j.knosys.2021.106881_b41 article-title: Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots publication-title: Swarm. Evol. Comput. – volume: 131 start-page: 187 year: 2019 ident: 10.1016/j.knosys.2021.106881_b25 article-title: Stochastic vehicle routing problem with heterogeneous vehicles and multiple prioritized time windows: Mathematical modeling and solution approach publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.03.047 – volume: 170 start-page: 677 issue: 3 year: 2006 ident: 10.1016/j.knosys.2021.106881_b2 article-title: Survey of research in the design and control of automated guided vehicle systems publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2004.09.020 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.knosys.2021.106881_b39 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm. Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 20 start-page: 3443 issue: 9 year: 2016 ident: 10.1016/j.knosys.2021.106881_b19 article-title: Decomposition-based multi-objective evolutionary algorithm for vehicle routing problem with stochastic demands publication-title: Soft. Comput. doi: 10.1007/s00500-015-1830-2 – volume: 20 start-page: 2309 issue: 6 year: 2016 ident: 10.1016/j.knosys.2021.106881_b6 article-title: Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows publication-title: Soft. Comput. doi: 10.1007/s00500-015-1642-4 – volume: 329 start-page: 73 year: 2016 ident: 10.1016/j.knosys.2021.106881_b24 article-title: A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery problem publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.09.006 – volume: 44 start-page: 320 year: 2019 ident: 10.1016/j.knosys.2021.106881_b45 article-title: Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems publication-title: Swarm. Evol. Comput. doi: 10.1016/j.swevo.2018.04.008 – volume: 16 start-page: 58 issue: 1 year: 2017 ident: 10.1016/j.knosys.2021.106881_b14 article-title: A fuzzy hybrid GA-PSO algorithm for multi-objective AGV scheduling in FMS publication-title: Int. J. Simul. Model. doi: 10.2507/IJSIMM16(1)5.368 – volume: 357 start-page: 182 year: 2016 ident: 10.1016/j.knosys.2021.106881_b47 article-title: A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO) publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.05.049 – year: 2020 ident: 10.1016/j.knosys.2021.106881_b1 article-title: An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2020.113675 – volume: 28 start-page: 392 issue: 3 year: 1998 ident: 10.1016/j.knosys.2021.106881_b32 article-title: A multi-objective genetic local search algorithm and its application to flowshop scheduling publication-title: IEEE Trans. Syst. Man, Cybern. C, Appl. Rev. doi: 10.1109/5326.704576 – volume: 490 start-page: 166 year: 2019 ident: 10.1016/j.knosys.2021.106881_b22 article-title: A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.03.070 – volume: 48 start-page: 482 issue: 2 year: 2018 ident: 10.1016/j.knosys.2021.106881_b8 article-title: Hybrid cost and time path planning for multiple autonomous guided vehicles publication-title: Appl. Intell. doi: 10.1007/s10489-017-0997-x – year: 2019 ident: 10.1016/j.knosys.2021.106881_b38 article-title: A three-stage multi-objective approach based on decomposition for an energy-efficient hybrid flowshop scheduling problem publication-title: IEEE T. Syst. Man. Cy-S. – volume: 24 start-page: 1033 year: 2014 ident: 10.1016/j.knosys.2021.106881_b10 article-title: Scheduling of no buffer job shop cells with blocking constraints and automated guided vehicles publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2014.08.028 – volume: 160 start-page: 173 year: 2015 ident: 10.1016/j.knosys.2021.106881_b49 article-title: Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization publication-title: Neurocomput. doi: 10.1016/j.neucom.2015.02.051 – volume: 42 start-page: 229 year: 2016 ident: 10.1016/j.knosys.2021.106881_b34 article-title: Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2016.01.033 – volume: 120 start-page: 146 year: 2018 ident: 10.1016/j.knosys.2021.106881_b7 article-title: Iterated local search algorithm with ejection chains for the open vehicle routing problem with time windows publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.04.032 – volume: 124 start-page: 309 year: 2019 ident: 10.1016/j.knosys.2021.106881_b31 article-title: Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2019.01.062 – volume: 72 start-page: 131 year: 2015 ident: 10.1016/j.knosys.2021.106881_b3 article-title: Mathematical optimization for earliness/tardiness minimization in a multiple automated guided vehicle manufacturing system via integrated heuristic algorithms publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2015.05.002 – volume: 91 start-page: 1 year: 2016 ident: 10.1016/j.knosys.2021.106881_b11 article-title: Local and random searches for dispatch and conflict-free routing problem of capacitated AGV systems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2015.10.017 – volume: 36 start-page: 2498 issue: 8 year: 2009 ident: 10.1016/j.knosys.2021.106881_b35 article-title: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2008.10.008 – volume: 36 start-page: 9625 issue: 6 year: 2009 ident: 10.1016/j.knosys.2021.106881_b43 article-title: An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.063 – volume: 258 year: 2020 ident: 10.1016/j.knosys.2021.106881_b18 article-title: Multi-objective green meal delivery routing problem based on a two-stage solution strategy publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120627 – volume: 49 start-page: 184 issue: 1 year: 2019 ident: 10.1016/j.knosys.2021.106881_b30 article-title: Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns publication-title: IEEE T. Cybern. doi: 10.1109/TCYB.2017.2771213 – volume: 10 start-page: 103 issue: 1 year: 2018 ident: 10.1016/j.knosys.2021.106881_b23 article-title: A decomposition-based chemical reaction optimization for multi-objective vehicle routing problem for simultaneous delivery and pickup with time windows publication-title: Memet. Comput. doi: 10.1007/s12293-016-0222-1 – volume: 8 start-page: 35063 year: 2020 ident: 10.1016/j.knosys.2021.106881_b29 article-title: An effective discrete artificial bee colony algorithm for scheduling an automatic-guided-vehicle in a linear manufacturing workshop publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2973336 – volume: 303 start-page: 89 year: 2017 ident: 10.1016/j.knosys.2021.106881_b42 article-title: Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times publication-title: Appl. Math. Comput. – volume: 9 start-page: 28 issue: 1 year: 2010 ident: 10.1016/j.knosys.2021.106881_b12 article-title: Task scheduling of AGV in FMS using non-traditional optimization techniques publication-title: Int. J. Simul. Model. doi: 10.2507/IJSIMM09(1)3.139 – volume: 97 year: 2021 ident: 10.1016/j.knosys.2021.106881_b50 article-title: Effective constructive heuristics and discrete bee colony optimization for distributed flowshop with setup times publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.104016 – volume: 99 start-page: 300 year: 2016 ident: 10.1016/j.knosys.2021.106881_b4 article-title: The vehicle routing problem: State of the art classification and review publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2015.12.007 – volume: 184 year: 2019 ident: 10.1016/j.knosys.2021.106881_b44 article-title: A distributed permutation flowshop scheduling problem with the customer order constraint publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.104894 – volume: 11 start-page: 1329 issue: 5 year: 2019 ident: 10.1016/j.knosys.2021.106881_b17 article-title: A multi-objective and multi-dimensional optimization scheduling method using a hybrid evolutionary algorithms with a sectional encoding mode publication-title: Sustainability-Basel. doi: 10.3390/su11051329 – volume: 71 start-page: 980 year: 2018 ident: 10.1016/j.knosys.2021.106881_b20 article-title: A hybrid multi-objective evolutionary optimization approach for the robust vehicle routing problem publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2018.07.014 – volume: 478 start-page: 40 year: 2019 ident: 10.1016/j.knosys.2021.106881_b26 article-title: A hybrid multi-objective genetic local search algorithm for the prize-collecting vehicle routing problem publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.11.006 – volume: 175 start-page: 92 year: 2018 ident: 10.1016/j.knosys.2021.106881_b16 article-title: Bi-objective optimization of a job shop with two types of failures for the operating machines that use automated guided vehicles publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.01.018 – volume: 176 start-page: 445 issue: 2 year: 2006 ident: 10.1016/j.knosys.2021.106881_b28 article-title: A hybrid simulated annealing for capacitated vehicle routing problems with the independent route length publication-title: Appl. Math. Comput. |
| SSID | ssj0002218 |
| Score | 2.5050945 |
| Snippet | This paper investigates a new automatic guided vehicle scheduling problem with pickup and delivery from the goods handling process in a matrix manufacturing... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106881 |
| SubjectTerms | Algorithms Automated guided vehicles Batch production Client satisfaction Crossovers Customer satisfaction Distribution costs Electronic equipment Evolutionary algorithms Experiments Exploitation Genetic algorithms Heuristic Integer programming Linear programming Manufacturing Matrix manufacturing workshop Mixed integer Multi-objective evolutionary algorithm Objectives Pickup and delivery Satisfaction Scheduling |
| Title | An effective multi-objective evolutionary algorithm for solving the AGV scheduling problem with pickup and delivery |
| URI | https://dx.doi.org/10.1016/j.knosys.2021.106881 https://www.proquest.com/docview/2509629401 |
| Volume | 218 |
| WOSCitedRecordID | wos000633445200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMv3BGDgfyAeEGeEjutnccIdVxWFSZ1qOIlihNna1eS0LXV_gV_meNbMsZl8MBL1DpN4vr7cs7xudgIvRAiZOUwlmQoo5xEspREhiInTJYDXhRcxsogPeaTiZjN4o-93jdfC7Nd8qoSFxdx81-hhjYAW5fO_gPc7U2hAT4D6HAE2OH4V8AnlUvS0DlBJl-Q1HLhvqute7ZOlsuWJ_Vqvj79YnINoVdbXzuVvPn0Cqa9oIZctbrZdcY6bZt5frZpTNChUEud1vFDZPjQO-mIVpCFWyq6tdw_1xuT1qcqcgTMPOlCWEb8HW2yihx28SLnzR57Bev8EzTUoRbazWbbwhkvq7psJeuFDAgP3JqzyspgwcHoj4L4spCmTkpbMRv-UvhbP8Ri_6yq4b_t685A41CIsFN2PsA_-ZAeHI_H6XQ0m75svhK9DZkO17s9WW6gHcoHseijneTdaPa-Ve6UGpdx229fjWlSBn9-8O-snSt63xgz07votpuF4MSy5x7qqeo-uuN3-MBuEB-g86TCLZnwFTLhy2TCLZkwkAk7MmEgEwYy4Y5M2JEJazJhSyYMZMKeTA_R8cFo-votcdt0kJyxaE0K6EemOFjmSoSZCIoglkMK73kBc3cJ9nYkM8FLMASpMHHugqqSsUyIUgaFFOwR6ld1pR4jrDIWRQquKnMVFWUYi5JnJYtyQWU0EMNdxPxwprlbw15vpbJMfbLiIrUgpBqE1IKwi0h7VWPXcLnm99wjlTo71NqXKTDtmiv3PLCpEwlwXq-wRGMYjCd_Pv0U3epeoD3UX6826hm6mW_X8_PVc8fE79EeuIg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+multi-objective+evolutionary+algorithm+for+solving+the+AGV+scheduling+problem+with+pickup+and+delivery&rft.jtitle=Knowledge-based+systems&rft.au=Zou%2C+Wen-Qiang&rft.au=Pan%2C+Quan-Ke&rft.au=Wang%2C+Ling&rft.date=2021-04-22&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=218&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2021.106881&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |