An effective multi-objective evolutionary algorithm for solving the AGV scheduling problem with pickup and delivery
This paper investigates a new automatic guided vehicle scheduling problem with pickup and delivery from the goods handling process in a matrix manufacturing workshop with multi-variety and small-batch production. The problem aims to determine a solution that maximizes customer satisfaction while min...
Saved in:
| Published in: | Knowledge-based systems Vol. 218; p. 106881 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
22.04.2021
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0950-7051, 1872-7409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper investigates a new automatic guided vehicle scheduling problem with pickup and delivery from the goods handling process in a matrix manufacturing workshop with multi-variety and small-batch production. The problem aims to determine a solution that maximizes customer satisfaction while minimizing distribution cost. For this purpose, a multi-objective mixed-integer linear programming model is first formulated. Then an effective multi-objective evolutionary algorithm is developed for solving the problem. In the algorithm, a constructive heuristic is presented and incorporated into the population initialization. A multi-objective local search based on an ideal-point is used to enforce the exploitation capability. A novel two-point crossover operator is designed to make full use of valuable information collected in the non-dominated solutions. A restart strategy is proposed to avoid the algorithm trapping into a local optimum. At last, a series of comparative experiments are implemented based on a number of real-world instances from an electronic equipment manufacturing enterprise. The results show that the proposed algorithm has a significantly better performance than the existing multi-objective algorithms for solving the problem under consideration. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0950-7051 1872-7409 |
| DOI: | 10.1016/j.knosys.2021.106881 |