A multi-objective discrete particle swarm optimization method for particle routing in distributed particle filters

Distributed particle filters (PFs) have received extensive attention because of its excellent performance. Generally, it needs to transmit particles to multiple processing units (PUs) in order to improve the performance. However, how to balance communication costs and computation costs in particle r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 240; s. 108068
Hlavní autoři: Hou, Yun, Hao, Guosheng, Zhang, Yong, Gu, Feng, Xu, Wenyang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.03.2022
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Distributed particle filters (PFs) have received extensive attention because of its excellent performance. Generally, it needs to transmit particles to multiple processing units (PUs) in order to improve the performance. However, how to balance communication costs and computation costs in particle routing is still an open problem. This paper presents a multi-objective discrete particle swarm optimization (PSO) algorithm to solve the problem. In the algorithm, the particle routing problem in distributed PFs is modeled as a multi-objective constrained optimization model for the first time. Following that, an improved hybrid discrete multi-objective PSO is proposed. Two new operators designed based on the problem’s characteristics, that is, a local search strategy based on molecular force and a constraint processing mechanism with greedy search, are developed to improve the performance of the proposed algorithm. By comparing with three commonly used methods on classical particle filters problems, experimental results show that the proposed algorithm is a highly competitive approach, and it can provide multiple high-quality Pareto optimal solutions for decision-makers to meet their different needs. [Display omitted]
AbstractList Distributed particle filters (PFs) have received extensive attention because of its excellent performance. Generally, it needs to transmit particles to multiple processing units (PUs) in order to improve the performance. However, how to balance communication costs and computation costs in particle routing is still an open problem. This paper presents a multi-objective discrete particle swarm optimization (PSO) algorithm to solve the problem. In the algorithm, the particle routing problem in distributed PFs is modeled as a multi-objective constrained optimization model for the first time. Following that, an improved hybrid discrete multi-objective PSO is proposed. Two new operators designed based on the problem's characteristics, that is, a local search strategy based on molecular force and a constraint processing mechanism with greedy search, are developed to improve the performance of the proposed algorithm. By comparing with three commonly used methods on classical particle filters problems, experimental results show that the proposed algorithm is a highly competitive approach, and it can provide multiple high-quality Pareto optimal solutions for decision-makers to meet their different needs.
Distributed particle filters (PFs) have received extensive attention because of its excellent performance. Generally, it needs to transmit particles to multiple processing units (PUs) in order to improve the performance. However, how to balance communication costs and computation costs in particle routing is still an open problem. This paper presents a multi-objective discrete particle swarm optimization (PSO) algorithm to solve the problem. In the algorithm, the particle routing problem in distributed PFs is modeled as a multi-objective constrained optimization model for the first time. Following that, an improved hybrid discrete multi-objective PSO is proposed. Two new operators designed based on the problem’s characteristics, that is, a local search strategy based on molecular force and a constraint processing mechanism with greedy search, are developed to improve the performance of the proposed algorithm. By comparing with three commonly used methods on classical particle filters problems, experimental results show that the proposed algorithm is a highly competitive approach, and it can provide multiple high-quality Pareto optimal solutions for decision-makers to meet their different needs. [Display omitted]
ArticleNumber 108068
Author Hou, Yun
Gu, Feng
Xu, Wenyang
Hao, Guosheng
Zhang, Yong
Author_xml – sequence: 1
  givenname: Yun
  orcidid: 0000-0002-9507-316X
  surname: Hou
  fullname: Hou, Yun
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
– sequence: 2
  givenname: Guosheng
  surname: Hao
  fullname: Hao, Guosheng
  email: hgskd@jsnu.edu.cn
  organization: School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China
– sequence: 3
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  email: yongzh401@126.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
– sequence: 4
  givenname: Feng
  orcidid: 0000-0001-5337-4282
  surname: Gu
  fullname: Gu, Feng
  organization: Department of Computer Science, College of Staten Island, The City University of New York, Staten Island, NY 10314, USA
– sequence: 5
  givenname: Wenyang
  surname: Xu
  fullname: Xu, Wenyang
  organization: School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China
BookMark eNqFUctq3EAQHIINXj_-wAeBz1rPtGb1yCFgTBIbFnKJz8No1HJakTTrnpHD5uujtQwGH-JTQ3VVNVV9Ko5GP6IQl0qulVT5dbf-PfqwD2uQoGaolHn5SaxUWUBaaFkdiZWsNjIt5EadiNMQOiklgCpXgm-SYeojpb7u0EV6xqSh4BgjJjvLkVyPSfhjeUj8LtJAf20kPyYDxl--SVrPbzT2U6TxMaHx4BGZ6ili87ZvqY_I4Vwct7YPePE6z8TDt68_b-_S7Y_v97c329RlmY5pU-lalw43toZcN2DBWWw3BUBZtEVmtWwzXdkGZFZC3mYWqroCpVVdorUzcCauFt8d-6cJQzSdn3icTxrIs6oAqXOYWZ8XlmMfAmNrHMWXjJEt9UZJc-jYdGbp2Bw6NkvHs1i_E--YBsv7j2RfFhnO8Z8J2QRHODpsiOcnmMbT_w3-ATeEnXE
CitedBy_id crossref_primary_10_1016_j_ijpe_2024_109163
crossref_primary_10_1016_j_jclepro_2025_145856
crossref_primary_10_1016_j_neucom_2025_131099
crossref_primary_10_1088_1361_6501_ad1224
crossref_primary_10_1109_TBDATA_2022_3232761
crossref_primary_10_1109_TAES_2025_3561112
crossref_primary_10_1155_2022_7488439
crossref_primary_10_1007_s11518_023_5550_3
crossref_primary_10_1093_jcde_qwac039
crossref_primary_10_3390_math10071129
crossref_primary_10_1080_19392699_2023_2298381
crossref_primary_10_3390_mca28010014
crossref_primary_10_3390_e25030531
crossref_primary_10_1007_s10668_023_04123_x
crossref_primary_10_1016_j_heliyon_2023_e13213
crossref_primary_10_1016_j_swevo_2022_101201
Cites_doi 10.1175/2008MWR2529.1
10.1109/4235.996017
10.1109/TEVC.2007.892759
10.1016/S0167-8191(03)00090-5
10.1142/S1793962310000298
10.1109/78.978374
10.1109/TCYB.2020.3015756
10.1063/1.4766595
10.1109/TEVC.2018.2875430
10.1109/TEVC.2016.2519378
10.1109/TEVC.2005.851275
10.1016/j.jfranklin.2021.08.012
10.1080/03052159908941377
10.1080/00207543.2019.1633023
10.1145/1276958.1277067
10.1016/j.jclepro.2018.04.251
10.1016/j.ins.2013.06.037
10.1145/2379810.2379816
10.1109/TPDS.2015.2405912
10.1016/j.ins.2021.06.068
10.1016/S1474-6670(17)34931-5
10.1504/IJBIC.2019.098406
10.1016/j.asoc.2021.107419
10.1109/TEVC.2008.2009032
10.1109/TCYB.2014.2345478
10.1016/S0888-613X(02)00090-7
10.1109/TSMCB.2011.2161467
10.1109/ACCESS.2020.3010543
10.1109/TEVC.2013.2281534
10.1016/j.est.2021.103269
10.1109/TEVC.2017.2669098
10.1109/TSP.2005.849185
10.1080/0305215X.2016.1271661
10.1109/ICCKE.2016.7802115
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 15, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 15, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.108068
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_108068
S0950705121011473
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-d94b48ce5ab264d2a2caef572287f73a40f349ad203826f3a29b92141b8eaa6f3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788135700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:54:50 EST 2025
Tue Nov 18 21:22:41 EST 2025
Sat Nov 29 07:05:39 EST 2025
Fri Feb 23 02:41:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 99-00
Local search
00-01
Constraint
Particle filters
Particle swarm optimization
Particle routing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-d94b48ce5ab264d2a2caef572287f73a40f349ad203826f3a29b92141b8eaa6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5337-4282
0000-0002-9507-316X
PQID 2639720462
PQPubID 2035257
ParticipantIDs proquest_journals_2639720462
crossref_citationtrail_10_1016_j_knosys_2021_108068
crossref_primary_10_1016_j_knosys_2021_108068
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_108068
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Gao, Yen, Liu (b27) 2015; 45
Liu, Ma, Zhang, Zhou (b28) 2007
Ning, Guo, Yan, Wu, Wu, Zhao (b14) 2017; 49
Bosman, Thierens (b19) 2002; 31
Cheng, Jin, Olhofer, Sendhoff (b18) 2016; 20
Coello, Christiansen (b16) 1999; 31
Zhou, Shen (b47) 2018; 192
Snyder, Bengtsson, Bickel, Anderson (b5) 2008; 136
Zhou, Zhu, Wang, Zhang, Xiang, Zhang (b15) 2020; 50
Arulampalam, Maskell, Gordon, Clapp (b42) 2002; 50
Bai, Gu, Hu, Guo (b3) 2016; 27
Woldesenbet, Yen, Tessema (b13) 2009; 13
Gu, Hu (b1) 2010; 20
Hou, Hao, Zhang, Gu, Wang, Zhang (b40) 2020; 8
Schön, Gustafsson (b41) 2002; 36
Deb, Pratap, Agarwal, Meyarivan (b44) 2002; 6
Coello, Lechuga (b37) 2002; 2
Xue, Gu, Hu (b6) 2012; 22
Zeng, Jiao, Li, Li, Alkasassbeh (b30) 2017; 47
While, Hingston, Barone, Huband (b46) 2006; 10
He, Qian, Li, Zhang (b7) 2021; 358
Demirel, Smal, Niessen, Meijering, Sbalzarini (b11) 2014
Bolic, Djuric, Hong (b2) 2005; 53
Li, Zhang, Tsang, Ford (b21) 2004
Shim, Tan, Cheong, Chia (b23) 2013; 248
Gordon, Salmond (b43) 1993; 140
Jain, Deb (b17) 2014; 18
E. Mohagheghi, M.R. Akbarzadeh T, Multi-objective Estimation of Distribution Algorithm based on Voronoi and local search, in: 2016 6th International Conference on Computer and Knowledge Engineering, ICCKE, 2016, pp. 213–234.
Hu, Zhang, Gong (b38) 2021; 51
Nenavath, Ashwini, Jatoth, Mirjalili (b9) 2021
Wang, Cai (b25) 2012; 42
Wang, Xu, Sun, Yang (b29) 2017; 21
Zeng, Jiao, Li, Wang (b31) 2019; 13
Jiang, Han, Wang, Ling, Han, Fan (b36) 2021; 576
Lai, Huang, Han, Gu, Zheng (b8) 2021; 43
Bosman (b22) 2010; vol. 10
Lingala, Sri Namachchivaya, Perkowski, Yeong (b4) 2012; 22
P.A.N. Bosman, D. Thierens, Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms, in: Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, London, England, UK, July 7-11, 2007, 2007, pp. 500+.
Zhang, Hu, Wu (b33) 2020; 58
Liu, Zhan, Gao, Zhang, Kwong, Zhang (b35) 2019; 23
Zhang, Li (b45) 2007; 11
Liu, Chen, Zhan, Jeon, Kwong, Zhang (b34) 2021
Teuliére, Brun (b10) 2003; 29
Kieffer, Danoy, Bouvry, Nagih (b26) 2017
Bashi, Jilkov, Li, Chen (b12) 2003
Qiao, Liu, Hao (b32) 2021; 108
Yong, Gong, Ding (b39) 2012; 192
Bosman (10.1016/j.knosys.2021.108068_b19) 2002; 31
Liu (10.1016/j.knosys.2021.108068_b34) 2021
Arulampalam (10.1016/j.knosys.2021.108068_b42) 2002; 50
Jain (10.1016/j.knosys.2021.108068_b17) 2014; 18
Zhou (10.1016/j.knosys.2021.108068_b47) 2018; 192
Shim (10.1016/j.knosys.2021.108068_b23) 2013; 248
Zhang (10.1016/j.knosys.2021.108068_b33) 2020; 58
Li (10.1016/j.knosys.2021.108068_b21) 2004
Zhang (10.1016/j.knosys.2021.108068_b45) 2007; 11
Lai (10.1016/j.knosys.2021.108068_b8) 2021; 43
Liu (10.1016/j.knosys.2021.108068_b28) 2007
Bashi (10.1016/j.knosys.2021.108068_b12) 2003
10.1016/j.knosys.2021.108068_b20
He (10.1016/j.knosys.2021.108068_b7) 2021; 358
Gu (10.1016/j.knosys.2021.108068_b1) 2010; 20
Bai (10.1016/j.knosys.2021.108068_b3) 2016; 27
Hu (10.1016/j.knosys.2021.108068_b38) 2021; 51
Cheng (10.1016/j.knosys.2021.108068_b18) 2016; 20
Jiang (10.1016/j.knosys.2021.108068_b36) 2021; 576
Zeng (10.1016/j.knosys.2021.108068_b31) 2019; 13
Qiao (10.1016/j.knosys.2021.108068_b32) 2021; 108
Teuliére (10.1016/j.knosys.2021.108068_b10) 2003; 29
Demirel (10.1016/j.knosys.2021.108068_b11) 2014
Woldesenbet (10.1016/j.knosys.2021.108068_b13) 2009; 13
Kieffer (10.1016/j.knosys.2021.108068_b26) 2017
Lingala (10.1016/j.knosys.2021.108068_b4) 2012; 22
Wang (10.1016/j.knosys.2021.108068_b29) 2017; 21
Yong (10.1016/j.knosys.2021.108068_b39) 2012; 192
Gordon (10.1016/j.knosys.2021.108068_b43) 1993; 140
Liu (10.1016/j.knosys.2021.108068_b35) 2019; 23
Hou (10.1016/j.knosys.2021.108068_b40) 2020; 8
While (10.1016/j.knosys.2021.108068_b46) 2006; 10
Snyder (10.1016/j.knosys.2021.108068_b5) 2008; 136
Xue (10.1016/j.knosys.2021.108068_b6) 2012; 22
Coello (10.1016/j.knosys.2021.108068_b16) 1999; 31
Zhou (10.1016/j.knosys.2021.108068_b15) 2020; 50
10.1016/j.knosys.2021.108068_b24
Zeng (10.1016/j.knosys.2021.108068_b30) 2017; 47
Ning (10.1016/j.knosys.2021.108068_b14) 2017; 49
Bosman (10.1016/j.knosys.2021.108068_b22) 2010; vol. 10
Wang (10.1016/j.knosys.2021.108068_b25) 2012; 42
Deb (10.1016/j.knosys.2021.108068_b44) 2002; 6
Nenavath (10.1016/j.knosys.2021.108068_b9) 2021
Gao (10.1016/j.knosys.2021.108068_b27) 2015; 45
Coello (10.1016/j.knosys.2021.108068_b37) 2002; 2
Schön (10.1016/j.knosys.2021.108068_b41) 2002; 36
Bolic (10.1016/j.knosys.2021.108068_b2) 2005; 53
References_xml – volume: 22
  year: 2012
  ident: b4
  article-title: Particle filtering in high-dimensional chaotic systems
  publication-title: Chaos
– volume: 136
  start-page: 4629
  year: 2008
  end-page: 4640
  ident: b5
  article-title: Obstacles to high-dimensional particle filtering
  publication-title: Mon. Weather Rev.
– volume: 192
  start-page: 293
  year: 2018
  end-page: 305
  ident: b47
  article-title: Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration
  publication-title: J. Cleaner Prod.
– volume: vol. 10
  start-page: 351
  year: 2010
  end-page: -358
  ident: b22
  article-title: The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization
  publication-title: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation
– volume: 50
  start-page: 3086
  year: 2020
  end-page: 3099
  ident: b15
  article-title: Tri-goal evolution framework for constrained many-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 8
  start-page: 135661
  year: 2020
  end-page: 135674
  ident: b40
  article-title: A molecular interactions-based social learning particle swarm optimization algorithm
  publication-title: IEEE Access
– volume: 27
  start-page: 481
  year: 2016
  end-page: 493
  ident: b3
  article-title: Particle routing in distributed particle filters for large-scale spatial temporal systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 58
  start-page: 3589
  year: 2020
  end-page: 3617
  ident: b33
  article-title: Improved imperialist competitive algorithms for rebalancing multi-objective two-sided assembly lines with space and resource constraints
  publication-title: Int. J. Prod. Res.
– volume: 22
  start-page: 25
  year: 2012
  ident: b6
  article-title: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation
  publication-title: ACM Trans. Model. Comput. Simul.
– volume: 47
  start-page: 2678
  year: 2017
  end-page: 2688
  ident: b30
  article-title: A general framework of dynamic constrained multiobjective evolutionary algorithms for constrained optimization
  publication-title: IEEE Trans. Cybern.
– volume: 13
  start-page: 86
  year: 2019
  end-page: 111
  ident: b31
  article-title: Constrained optimisation by solving equivalent dynamic loosely-constrained multiobjective optimisation problem
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 36
  start-page: 1251
  year: 2002
  end-page: 1256 vol.1
  ident: b41
  article-title: Particle filters for system identification of state-space models linear in either parameters or states
  publication-title: IFAC Proc. Vol.
– volume: 20
  start-page: 445
  year: 2010
  end-page: 468
  ident: b1
  article-title: Analysis and quantification of data assimilation based on sequential Monte Carlo methods for wildfire spread simulation
  publication-title: Int. J. Model. Simul. Sci. Comput.
– volume: 49
  start-page: 1645
  year: 2017
  end-page: 1664
  ident: b14
  article-title: Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm
  publication-title: Eng. Optim.
– volume: 576
  start-page: 557
  year: 2021
  end-page: 576
  ident: b36
  article-title: Improving decomposition-based multiobjective evolutionary algorithm with local reference point aided search
  publication-title: Inform. Sci.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b45
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: Trans. Evol. Comp.
– volume: 140
  start-page: P.107
  year: 1993
  end-page: 113
  ident: b43
  article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation
  publication-title: IEE Proc. F
– volume: 23
  start-page: 587
  year: 2019
  end-page: 602
  ident: b35
  article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 665
  year: 2017
  end-page: 680
  ident: b29
  article-title: A two-phase differential evolution for uniform designs in constrained experimental domains
  publication-title: IEEE Trans. Evol. Comput.
– volume: 108
  year: 2021
  ident: b32
  article-title: A multi-objective differential evolution algorithm and a constraint handling mechanism based on variables proportion for dynamic economic emission dispatch problems
  publication-title: Appl. Soft Comput.
– volume: 45
  start-page: 1108
  year: 2015
  end-page: 1121
  ident: b27
  article-title: A dual-population differential evolution with coevolution for constrained optimization
  publication-title: IEEE Trans. Cybern.
– volume: 43
  year: 2021
  ident: b8
  article-title: A novel method for state of energy estimation of lithium-ion batteries using particle filter and extended Kalman filter
  publication-title: J. Energy Storage
– volume: 13
  start-page: 514
  year: 2009
  end-page: 525
  ident: b13
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 42
  start-page: 203
  year: 2012
  end-page: 217
  ident: b25
  article-title: A dynamic hybrid framework for constrained evolutionary optimization
  publication-title: IEEE Trans. Syst. Man Cybern. B
– start-page: 492
  year: 2017
  end-page: 500
  ident: b26
  article-title: A new co-evolutionary algorithm based on constraint decomposition
  publication-title: 2017 IEEE International Parallel and Distributed Processing Symposium: Workshops
– volume: 248
  start-page: 191
  year: 2013
  end-page: 213
  ident: b23
  article-title: Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm
  publication-title: Inform. Sci.
– volume: 10
  start-page: 29
  year: 2006
  end-page: 38
  ident: b46
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b44
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2021
  end-page: 15
  ident: b34
  article-title: Many-objective job-shop scheduling: A multiple populations for multiple objectives-based genetic algorithm approach
  publication-title: IEEE Trans. Cybern.
– volume: 2
  start-page: 1051
  year: 2002
  end-page: 1056 vol.2
  ident: b37
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600)
– reference: P.A.N. Bosman, D. Thierens, Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms, in: Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, London, England, UK, July 7-11, 2007, 2007, pp. 500+.
– volume: 358
  start-page: 8085
  year: 2021
  end-page: 8108
  ident: b7
  article-title: An improved pipeline leak detection and localization method based on compressed sensing and event-triggered particle filter
  publication-title: J. Franklin Inst. B
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: b17
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 51
  start-page: 874
  year: 2021
  end-page: 888
  ident: b38
  article-title: Multiobjective particle swarm optimization for feature selection with fuzzy cost
  publication-title: IEEE Trans. Cybern.
– volume: 50
  start-page: 174
  year: 2002
  end-page: 188
  ident: b42
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: IEEE Trans. Signal Process.
– reference: E. Mohagheghi, M.R. Akbarzadeh T, Multi-objective Estimation of Distribution Algorithm based on Voronoi and local search, in: 2016 6th International Conference on Computer and Knowledge Engineering, ICCKE, 2016, pp. 213–234.
– start-page: 2996
  year: 2007
  end-page: 3002
  ident: b28
  article-title: A memetic co-evolutionary differential evolution algorithm for constrained optimization
  publication-title: 2007 IEEE Congress on Evolutionary Computation
– volume: 31
  start-page: 259
  year: 2002
  end-page: 289
  ident: b19
  article-title: Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms
  publication-title: Internat. J. Approx. Reason.
– start-page: 0019
  year: 2021
  end-page: 0578
  ident: b9
  article-title: Intelligent trigonometric particle filter for visual tracking
  publication-title: ISA Trans.
– volume: 53
  start-page: 2442
  year: 2005
  end-page: 2450
  ident: b2
  article-title: Resampling algorithms and architectures for distributed particle filters
  publication-title: IEEE Trans. Signal Process.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b18
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 192
  start-page: 213
  year: 2012
  end-page: 227
  ident: b39
  article-title: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch
  publication-title: Inform. Sci.
– start-page: 145
  year: 2004
  end-page: 154
  ident: b21
  article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack
  publication-title: Problem,” EvoCOP 2004, LNCS 3004
– volume: 29
  start-page: 1069
  year: 2003
  end-page: 1090
  ident: b10
  article-title: Parallelisation of the particle filtering technique and application to Doppler-bearing tracking of maneuvering sources
  publication-title: Parallel Comput.
– start-page: 1164
  year: 2003
  end-page: 1171
  ident: b12
  article-title: Distributed implementations of particle filters
  publication-title: Sixth International Conference of Information Fusion, 2003. Proceedings of the, Vol. 2
– volume: 31
  start-page: 337
  year: 1999
  end-page: 368
  ident: b16
  article-title: MOSES: A multiobjective tool for engineering design
  publication-title: Eng. Optim.
– start-page: 1635
  year: 2014
  end-page: 1639
  ident: b11
  article-title: An adaptive distributed resampling algorithm with non-proportional allocation
  publication-title: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 136
  start-page: 4629
  issue: 12
  year: 2008
  ident: 10.1016/j.knosys.2021.108068_b5
  article-title: Obstacles to high-dimensional particle filtering
  publication-title: Mon. Weather Rev.
  doi: 10.1175/2008MWR2529.1
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.knosys.2021.108068_b44
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.knosys.2021.108068_b45
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: Trans. Evol. Comp.
  doi: 10.1109/TEVC.2007.892759
– volume: 29
  start-page: 1069
  issue: 8
  year: 2003
  ident: 10.1016/j.knosys.2021.108068_b10
  article-title: Parallelisation of the particle filtering technique and application to Doppler-bearing tracking of maneuvering sources
  publication-title: Parallel Comput.
  doi: 10.1016/S0167-8191(03)00090-5
– volume: 20
  start-page: 445
  issue: 4
  year: 2010
  ident: 10.1016/j.knosys.2021.108068_b1
  article-title: Analysis and quantification of data assimilation based on sequential Monte Carlo methods for wildfire spread simulation
  publication-title: Int. J. Model. Simul. Sci. Comput.
  doi: 10.1142/S1793962310000298
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2021.108068_b34
  article-title: Many-objective job-shop scheduling: A multiple populations for multiple objectives-based genetic algorithm approach
  publication-title: IEEE Trans. Cybern.
– volume: 50
  start-page: 174
  issue: 2
  year: 2002
  ident: 10.1016/j.knosys.2021.108068_b42
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.978374
– volume: 51
  start-page: 874
  issue: 2
  year: 2021
  ident: 10.1016/j.knosys.2021.108068_b38
  article-title: Multiobjective particle swarm optimization for feature selection with fuzzy cost
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3015756
– volume: 192
  start-page: 213
  issue: none
  year: 2012
  ident: 10.1016/j.knosys.2021.108068_b39
  article-title: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch
  publication-title: Inform. Sci.
– volume: 22
  issue: 4
  year: 2012
  ident: 10.1016/j.knosys.2021.108068_b4
  article-title: Particle filtering in high-dimensional chaotic systems
  publication-title: Chaos
  doi: 10.1063/1.4766595
– volume: 23
  start-page: 587
  issue: 4
  year: 2019
  ident: 10.1016/j.knosys.2021.108068_b35
  article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2875430
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2021.108068_b18
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 10
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.knosys.2021.108068_b46
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851275
– start-page: 0019
  year: 2021
  ident: 10.1016/j.knosys.2021.108068_b9
  article-title: Intelligent trigonometric particle filter for visual tracking
  publication-title: ISA Trans.
– volume: 2
  start-page: 1051
  year: 2002
  ident: 10.1016/j.knosys.2021.108068_b37
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
– volume: 140
  start-page: P.107
  issue: 2
  year: 1993
  ident: 10.1016/j.knosys.2021.108068_b43
  article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation
  publication-title: IEE Proc. F
– volume: 358
  start-page: 8085
  issue: 15
  year: 2021
  ident: 10.1016/j.knosys.2021.108068_b7
  article-title: An improved pipeline leak detection and localization method based on compressed sensing and event-triggered particle filter
  publication-title: J. Franklin Inst. B
  doi: 10.1016/j.jfranklin.2021.08.012
– volume: 31
  start-page: 337
  issue: 3
  year: 1999
  ident: 10.1016/j.knosys.2021.108068_b16
  article-title: MOSES: A multiobjective tool for engineering design
  publication-title: Eng. Optim.
  doi: 10.1080/03052159908941377
– volume: 58
  start-page: 3589
  issue: 12
  year: 2020
  ident: 10.1016/j.knosys.2021.108068_b33
  article-title: Improved imperialist competitive algorithms for rebalancing multi-objective two-sided assembly lines with space and resource constraints
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1633023
– start-page: 1635
  year: 2014
  ident: 10.1016/j.knosys.2021.108068_b11
  article-title: An adaptive distributed resampling algorithm with non-proportional allocation
– ident: 10.1016/j.knosys.2021.108068_b20
  doi: 10.1145/1276958.1277067
– volume: 192
  start-page: 293
  year: 2018
  ident: 10.1016/j.knosys.2021.108068_b47
  article-title: Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.04.251
– volume: 248
  start-page: 191
  year: 2013
  ident: 10.1016/j.knosys.2021.108068_b23
  article-title: Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.06.037
– volume: 22
  start-page: 25
  issue: 4
  year: 2012
  ident: 10.1016/j.knosys.2021.108068_b6
  article-title: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation
  publication-title: ACM Trans. Model. Comput. Simul.
  doi: 10.1145/2379810.2379816
– volume: 27
  start-page: 481
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2021.108068_b3
  article-title: Particle routing in distributed particle filters for large-scale spatial temporal systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2015.2405912
– volume: 576
  start-page: 557
  year: 2021
  ident: 10.1016/j.knosys.2021.108068_b36
  article-title: Improving decomposition-based multiobjective evolutionary algorithm with local reference point aided search
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.06.068
– volume: 36
  start-page: 1251
  issue: 16
  year: 2002
  ident: 10.1016/j.knosys.2021.108068_b41
  article-title: Particle filters for system identification of state-space models linear in either parameters or states
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)34931-5
– volume: vol. 10
  start-page: 351
  year: 2010
  ident: 10.1016/j.knosys.2021.108068_b22
  article-title: The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization
– start-page: 492
  year: 2017
  ident: 10.1016/j.knosys.2021.108068_b26
  article-title: A new co-evolutionary algorithm based on constraint decomposition
– start-page: 2996
  year: 2007
  ident: 10.1016/j.knosys.2021.108068_b28
  article-title: A memetic co-evolutionary differential evolution algorithm for constrained optimization
– volume: 50
  start-page: 3086
  issue: 8
  year: 2020
  ident: 10.1016/j.knosys.2021.108068_b15
  article-title: Tri-goal evolution framework for constrained many-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 13
  start-page: 86
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2021.108068_b31
  article-title: Constrained optimisation by solving equivalent dynamic loosely-constrained multiobjective optimisation problem
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2019.098406
– volume: 108
  year: 2021
  ident: 10.1016/j.knosys.2021.108068_b32
  article-title: A multi-objective differential evolution algorithm and a constraint handling mechanism based on variables proportion for dynamic economic emission dispatch problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107419
– volume: 13
  start-page: 514
  issue: 3
  year: 2009
  ident: 10.1016/j.knosys.2021.108068_b13
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.2009032
– volume: 45
  start-page: 1108
  issue: 5
  year: 2015
  ident: 10.1016/j.knosys.2021.108068_b27
  article-title: A dual-population differential evolution with coevolution for constrained optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2345478
– volume: 31
  start-page: 259
  issue: 3
  year: 2002
  ident: 10.1016/j.knosys.2021.108068_b19
  article-title: Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms
  publication-title: Internat. J. Approx. Reason.
  doi: 10.1016/S0888-613X(02)00090-7
– volume: 42
  start-page: 203
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2021.108068_b25
  article-title: A dynamic hybrid framework for constrained evolutionary optimization
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2011.2161467
– volume: 8
  start-page: 135661
  year: 2020
  ident: 10.1016/j.knosys.2021.108068_b40
  article-title: A molecular interactions-based social learning particle swarm optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010543
– start-page: 1164
  year: 2003
  ident: 10.1016/j.knosys.2021.108068_b12
  article-title: Distributed implementations of particle filters
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.knosys.2021.108068_b17
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– volume: 43
  year: 2021
  ident: 10.1016/j.knosys.2021.108068_b8
  article-title: A novel method for state of energy estimation of lithium-ion batteries using particle filter and extended Kalman filter
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103269
– volume: 21
  start-page: 665
  issue: 5
  year: 2017
  ident: 10.1016/j.knosys.2021.108068_b29
  article-title: A two-phase differential evolution for uniform designs in constrained experimental domains
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2669098
– volume: 53
  start-page: 2442
  issue: 7
  year: 2005
  ident: 10.1016/j.knosys.2021.108068_b2
  article-title: Resampling algorithms and architectures for distributed particle filters
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.849185
– start-page: 145
  year: 2004
  ident: 10.1016/j.knosys.2021.108068_b21
  article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack
– volume: 47
  start-page: 2678
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2021.108068_b30
  article-title: A general framework of dynamic constrained multiobjective evolutionary algorithms for constrained optimization
  publication-title: IEEE Trans. Cybern.
– volume: 49
  start-page: 1645
  issue: 10
  year: 2017
  ident: 10.1016/j.knosys.2021.108068_b14
  article-title: Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2016.1271661
– ident: 10.1016/j.knosys.2021.108068_b24
  doi: 10.1109/ICCKE.2016.7802115
SSID ssj0002218
Score 2.4449875
Snippet Distributed particle filters (PFs) have received extensive attention because of its excellent performance. Generally, it needs to transmit particles to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108068
SubjectTerms Algorithms
Computation
Constraint
Constraints
Decision makers
Decision making
Function words
Local search
Multiple objective analysis
Objectives
Operators
Optimization
Optimization models
Particle filters
Particle routing
Particle swarm optimization
Performance enhancement
Search methods
Title A multi-objective discrete particle swarm optimization method for particle routing in distributed particle filters
URI https://dx.doi.org/10.1016/j.knosys.2021.108068
https://www.proquest.com/docview/2639720462
Volume 240
WOSCitedRecordID wos000788135700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1CodBy58IzYG8oFb5SmxUxIfK7QPQJo4DKmcIsdxRMuWVGky9gf2v3mOn5OuE4wduFiV_WxZea_vy--DkPchiHQhdMy0DCWLFOhwykSC6eBDYCKQcJkuumYT8elpMp_Lr6PRtc-FuTyPyzK5upKr_4pqmANk29TZe6C7PxQm4DcgHUZAO4z_hPiZCxJkVbZ0zMw-woBu2JjJCsEn61-qvphUwC4uMA8TW0l3UYc9WF21Dea85LbAru2NBQpqv14s7Fv7elPB_eJ9dMzKxxwrRfeK-0nVdky_LQfW1zlrj9tq_cOgGN10ZH-vhsnjbvORB0NnBdi5NvJtesPrGLA4wBqzyIC5K9iELNQGPbpOO7e4u3M0LA9-lhXcHox7Hh4M4DeLaW8JuT700Ee1LVN3SmpPSd0pD8gOj6cyGZOd2afD-edepHPeOYr72_sczC5Q8PZt_qTjbEn7ToU5e0oeo-1BZw57z8jIlM_JE9_XgyKbf0HqGd0iIepJiHrc046E6CYJUUdCFEhoAEMSoouSbpDQsI4k9JJ8Ozo8-3jCsDcH00JEDctllEWJNlOVgUqdc8W1MsU05mCBF7FQUVCISKqcBwIM2EIoLjPJwyjMEqMUTLwi47IqzWtCYwE2MAdLVcGggTvAMijtKjE6yYFb7BLhv2aqsXC97Z9ynv4Nl7uE9btWrnDLHfCxR1SKyqdTKlOgvjt27nu8psgHYN0-mHOb-b13z4u8IY-Gf84-GTd1a96Sh_qyWazrd0iZvwHuxrcp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+discrete+particle+swarm+optimization+method+for+particle+routing+in+distributed+particle+filters&rft.jtitle=Knowledge-based+systems&rft.au=Hou%2C+Yun&rft.au=Hao%2C+Guosheng&rft.au=Zhang%2C+Yong&rft.au=Gu%2C+Feng&rft.date=2022-03-15&rft.issn=0950-7051&rft.volume=240&rft.spage=108068&rft_id=info:doi/10.1016%2Fj.knosys.2021.108068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2021_108068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon