A multi-objective discrete particle swarm optimization method for particle routing in distributed particle filters
Distributed particle filters (PFs) have received extensive attention because of its excellent performance. Generally, it needs to transmit particles to multiple processing units (PUs) in order to improve the performance. However, how to balance communication costs and computation costs in particle r...
Uloženo v:
| Vydáno v: | Knowledge-based systems Ročník 240; s. 108068 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
15.03.2022
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Distributed particle filters (PFs) have received extensive attention because of its excellent performance. Generally, it needs to transmit particles to multiple processing units (PUs) in order to improve the performance. However, how to balance communication costs and computation costs in particle routing is still an open problem. This paper presents a multi-objective discrete particle swarm optimization (PSO) algorithm to solve the problem. In the algorithm, the particle routing problem in distributed PFs is modeled as a multi-objective constrained optimization model for the first time. Following that, an improved hybrid discrete multi-objective PSO is proposed. Two new operators designed based on the problem’s characteristics, that is, a local search strategy based on molecular force and a constraint processing mechanism with greedy search, are developed to improve the performance of the proposed algorithm. By comparing with three commonly used methods on classical particle filters problems, experimental results show that the proposed algorithm is a highly competitive approach, and it can provide multiple high-quality Pareto optimal solutions for decision-makers to meet their different needs.
[Display omitted] |
|---|---|
| AbstractList | Distributed particle filters (PFs) have received extensive attention because of its excellent performance. Generally, it needs to transmit particles to multiple processing units (PUs) in order to improve the performance. However, how to balance communication costs and computation costs in particle routing is still an open problem. This paper presents a multi-objective discrete particle swarm optimization (PSO) algorithm to solve the problem. In the algorithm, the particle routing problem in distributed PFs is modeled as a multi-objective constrained optimization model for the first time. Following that, an improved hybrid discrete multi-objective PSO is proposed. Two new operators designed based on the problem's characteristics, that is, a local search strategy based on molecular force and a constraint processing mechanism with greedy search, are developed to improve the performance of the proposed algorithm. By comparing with three commonly used methods on classical particle filters problems, experimental results show that the proposed algorithm is a highly competitive approach, and it can provide multiple high-quality Pareto optimal solutions for decision-makers to meet their different needs. Distributed particle filters (PFs) have received extensive attention because of its excellent performance. Generally, it needs to transmit particles to multiple processing units (PUs) in order to improve the performance. However, how to balance communication costs and computation costs in particle routing is still an open problem. This paper presents a multi-objective discrete particle swarm optimization (PSO) algorithm to solve the problem. In the algorithm, the particle routing problem in distributed PFs is modeled as a multi-objective constrained optimization model for the first time. Following that, an improved hybrid discrete multi-objective PSO is proposed. Two new operators designed based on the problem’s characteristics, that is, a local search strategy based on molecular force and a constraint processing mechanism with greedy search, are developed to improve the performance of the proposed algorithm. By comparing with three commonly used methods on classical particle filters problems, experimental results show that the proposed algorithm is a highly competitive approach, and it can provide multiple high-quality Pareto optimal solutions for decision-makers to meet their different needs. [Display omitted] |
| ArticleNumber | 108068 |
| Author | Hou, Yun Gu, Feng Xu, Wenyang Hao, Guosheng Zhang, Yong |
| Author_xml | – sequence: 1 givenname: Yun orcidid: 0000-0002-9507-316X surname: Hou fullname: Hou, Yun organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China – sequence: 2 givenname: Guosheng surname: Hao fullname: Hao, Guosheng email: hgskd@jsnu.edu.cn organization: School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China – sequence: 3 givenname: Yong surname: Zhang fullname: Zhang, Yong email: yongzh401@126.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China – sequence: 4 givenname: Feng orcidid: 0000-0001-5337-4282 surname: Gu fullname: Gu, Feng organization: Department of Computer Science, College of Staten Island, The City University of New York, Staten Island, NY 10314, USA – sequence: 5 givenname: Wenyang surname: Xu fullname: Xu, Wenyang organization: School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China |
| BookMark | eNqFUctq3EAQHIINXj_-wAeBz1rPtGb1yCFgTBIbFnKJz8No1HJakTTrnpHD5uujtQwGH-JTQ3VVNVV9Ko5GP6IQl0qulVT5dbf-PfqwD2uQoGaolHn5SaxUWUBaaFkdiZWsNjIt5EadiNMQOiklgCpXgm-SYeojpb7u0EV6xqSh4BgjJjvLkVyPSfhjeUj8LtJAf20kPyYDxl--SVrPbzT2U6TxMaHx4BGZ6ili87ZvqY_I4Vwct7YPePE6z8TDt68_b-_S7Y_v97c329RlmY5pU-lalw43toZcN2DBWWw3BUBZtEVmtWwzXdkGZFZC3mYWqroCpVVdorUzcCauFt8d-6cJQzSdn3icTxrIs6oAqXOYWZ8XlmMfAmNrHMWXjJEt9UZJc-jYdGbp2Bw6NkvHs1i_E--YBsv7j2RfFhnO8Z8J2QRHODpsiOcnmMbT_w3-ATeEnXE |
| CitedBy_id | crossref_primary_10_1016_j_ijpe_2024_109163 crossref_primary_10_1016_j_jclepro_2025_145856 crossref_primary_10_1016_j_neucom_2025_131099 crossref_primary_10_1088_1361_6501_ad1224 crossref_primary_10_1109_TBDATA_2022_3232761 crossref_primary_10_1109_TAES_2025_3561112 crossref_primary_10_1155_2022_7488439 crossref_primary_10_1007_s11518_023_5550_3 crossref_primary_10_1093_jcde_qwac039 crossref_primary_10_3390_math10071129 crossref_primary_10_1080_19392699_2023_2298381 crossref_primary_10_3390_mca28010014 crossref_primary_10_3390_e25030531 crossref_primary_10_1007_s10668_023_04123_x crossref_primary_10_1016_j_heliyon_2023_e13213 crossref_primary_10_1016_j_swevo_2022_101201 |
| Cites_doi | 10.1175/2008MWR2529.1 10.1109/4235.996017 10.1109/TEVC.2007.892759 10.1016/S0167-8191(03)00090-5 10.1142/S1793962310000298 10.1109/78.978374 10.1109/TCYB.2020.3015756 10.1063/1.4766595 10.1109/TEVC.2018.2875430 10.1109/TEVC.2016.2519378 10.1109/TEVC.2005.851275 10.1016/j.jfranklin.2021.08.012 10.1080/03052159908941377 10.1080/00207543.2019.1633023 10.1145/1276958.1277067 10.1016/j.jclepro.2018.04.251 10.1016/j.ins.2013.06.037 10.1145/2379810.2379816 10.1109/TPDS.2015.2405912 10.1016/j.ins.2021.06.068 10.1016/S1474-6670(17)34931-5 10.1504/IJBIC.2019.098406 10.1016/j.asoc.2021.107419 10.1109/TEVC.2008.2009032 10.1109/TCYB.2014.2345478 10.1016/S0888-613X(02)00090-7 10.1109/TSMCB.2011.2161467 10.1109/ACCESS.2020.3010543 10.1109/TEVC.2013.2281534 10.1016/j.est.2021.103269 10.1109/TEVC.2017.2669098 10.1109/TSP.2005.849185 10.1080/0305215X.2016.1271661 10.1109/ICCKE.2016.7802115 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Mar 15, 2022 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Mar 15, 2022 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2021.108068 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2021_108068 S0950705121011473 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-d94b48ce5ab264d2a2caef572287f73a40f349ad203826f3a29b92141b8eaa6f3 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788135700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 18:54:50 EST 2025 Tue Nov 18 21:22:41 EST 2025 Sat Nov 29 07:05:39 EST 2025 Fri Feb 23 02:41:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 99-00 Local search 00-01 Constraint Particle filters Particle swarm optimization Particle routing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-d94b48ce5ab264d2a2caef572287f73a40f349ad203826f3a29b92141b8eaa6f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5337-4282 0000-0002-9507-316X |
| PQID | 2639720462 |
| PQPubID | 2035257 |
| ParticipantIDs | proquest_journals_2639720462 crossref_citationtrail_10_1016_j_knosys_2021_108068 crossref_primary_10_1016_j_knosys_2021_108068 elsevier_sciencedirect_doi_10_1016_j_knosys_2021_108068 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-15 |
| PublicationDateYYYYMMDD | 2022-03-15 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Gao, Yen, Liu (b27) 2015; 45 Liu, Ma, Zhang, Zhou (b28) 2007 Ning, Guo, Yan, Wu, Wu, Zhao (b14) 2017; 49 Bosman, Thierens (b19) 2002; 31 Cheng, Jin, Olhofer, Sendhoff (b18) 2016; 20 Coello, Christiansen (b16) 1999; 31 Zhou, Shen (b47) 2018; 192 Snyder, Bengtsson, Bickel, Anderson (b5) 2008; 136 Zhou, Zhu, Wang, Zhang, Xiang, Zhang (b15) 2020; 50 Arulampalam, Maskell, Gordon, Clapp (b42) 2002; 50 Bai, Gu, Hu, Guo (b3) 2016; 27 Woldesenbet, Yen, Tessema (b13) 2009; 13 Gu, Hu (b1) 2010; 20 Hou, Hao, Zhang, Gu, Wang, Zhang (b40) 2020; 8 Schön, Gustafsson (b41) 2002; 36 Deb, Pratap, Agarwal, Meyarivan (b44) 2002; 6 Coello, Lechuga (b37) 2002; 2 Xue, Gu, Hu (b6) 2012; 22 Zeng, Jiao, Li, Li, Alkasassbeh (b30) 2017; 47 While, Hingston, Barone, Huband (b46) 2006; 10 He, Qian, Li, Zhang (b7) 2021; 358 Demirel, Smal, Niessen, Meijering, Sbalzarini (b11) 2014 Bolic, Djuric, Hong (b2) 2005; 53 Li, Zhang, Tsang, Ford (b21) 2004 Shim, Tan, Cheong, Chia (b23) 2013; 248 Gordon, Salmond (b43) 1993; 140 Jain, Deb (b17) 2014; 18 E. Mohagheghi, M.R. Akbarzadeh T, Multi-objective Estimation of Distribution Algorithm based on Voronoi and local search, in: 2016 6th International Conference on Computer and Knowledge Engineering, ICCKE, 2016, pp. 213–234. Hu, Zhang, Gong (b38) 2021; 51 Nenavath, Ashwini, Jatoth, Mirjalili (b9) 2021 Wang, Cai (b25) 2012; 42 Wang, Xu, Sun, Yang (b29) 2017; 21 Zeng, Jiao, Li, Wang (b31) 2019; 13 Jiang, Han, Wang, Ling, Han, Fan (b36) 2021; 576 Lai, Huang, Han, Gu, Zheng (b8) 2021; 43 Bosman (b22) 2010; vol. 10 Lingala, Sri Namachchivaya, Perkowski, Yeong (b4) 2012; 22 P.A.N. Bosman, D. Thierens, Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms, in: Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, London, England, UK, July 7-11, 2007, 2007, pp. 500+. Zhang, Hu, Wu (b33) 2020; 58 Liu, Zhan, Gao, Zhang, Kwong, Zhang (b35) 2019; 23 Zhang, Li (b45) 2007; 11 Liu, Chen, Zhan, Jeon, Kwong, Zhang (b34) 2021 Teuliére, Brun (b10) 2003; 29 Kieffer, Danoy, Bouvry, Nagih (b26) 2017 Bashi, Jilkov, Li, Chen (b12) 2003 Qiao, Liu, Hao (b32) 2021; 108 Yong, Gong, Ding (b39) 2012; 192 Bosman (10.1016/j.knosys.2021.108068_b19) 2002; 31 Liu (10.1016/j.knosys.2021.108068_b34) 2021 Arulampalam (10.1016/j.knosys.2021.108068_b42) 2002; 50 Jain (10.1016/j.knosys.2021.108068_b17) 2014; 18 Zhou (10.1016/j.knosys.2021.108068_b47) 2018; 192 Shim (10.1016/j.knosys.2021.108068_b23) 2013; 248 Zhang (10.1016/j.knosys.2021.108068_b33) 2020; 58 Li (10.1016/j.knosys.2021.108068_b21) 2004 Zhang (10.1016/j.knosys.2021.108068_b45) 2007; 11 Lai (10.1016/j.knosys.2021.108068_b8) 2021; 43 Liu (10.1016/j.knosys.2021.108068_b28) 2007 Bashi (10.1016/j.knosys.2021.108068_b12) 2003 10.1016/j.knosys.2021.108068_b20 He (10.1016/j.knosys.2021.108068_b7) 2021; 358 Gu (10.1016/j.knosys.2021.108068_b1) 2010; 20 Bai (10.1016/j.knosys.2021.108068_b3) 2016; 27 Hu (10.1016/j.knosys.2021.108068_b38) 2021; 51 Cheng (10.1016/j.knosys.2021.108068_b18) 2016; 20 Jiang (10.1016/j.knosys.2021.108068_b36) 2021; 576 Zeng (10.1016/j.knosys.2021.108068_b31) 2019; 13 Qiao (10.1016/j.knosys.2021.108068_b32) 2021; 108 Teuliére (10.1016/j.knosys.2021.108068_b10) 2003; 29 Demirel (10.1016/j.knosys.2021.108068_b11) 2014 Woldesenbet (10.1016/j.knosys.2021.108068_b13) 2009; 13 Kieffer (10.1016/j.knosys.2021.108068_b26) 2017 Lingala (10.1016/j.knosys.2021.108068_b4) 2012; 22 Wang (10.1016/j.knosys.2021.108068_b29) 2017; 21 Yong (10.1016/j.knosys.2021.108068_b39) 2012; 192 Gordon (10.1016/j.knosys.2021.108068_b43) 1993; 140 Liu (10.1016/j.knosys.2021.108068_b35) 2019; 23 Hou (10.1016/j.knosys.2021.108068_b40) 2020; 8 While (10.1016/j.knosys.2021.108068_b46) 2006; 10 Snyder (10.1016/j.knosys.2021.108068_b5) 2008; 136 Xue (10.1016/j.knosys.2021.108068_b6) 2012; 22 Coello (10.1016/j.knosys.2021.108068_b16) 1999; 31 Zhou (10.1016/j.knosys.2021.108068_b15) 2020; 50 10.1016/j.knosys.2021.108068_b24 Zeng (10.1016/j.knosys.2021.108068_b30) 2017; 47 Ning (10.1016/j.knosys.2021.108068_b14) 2017; 49 Bosman (10.1016/j.knosys.2021.108068_b22) 2010; vol. 10 Wang (10.1016/j.knosys.2021.108068_b25) 2012; 42 Deb (10.1016/j.knosys.2021.108068_b44) 2002; 6 Nenavath (10.1016/j.knosys.2021.108068_b9) 2021 Gao (10.1016/j.knosys.2021.108068_b27) 2015; 45 Coello (10.1016/j.knosys.2021.108068_b37) 2002; 2 Schön (10.1016/j.knosys.2021.108068_b41) 2002; 36 Bolic (10.1016/j.knosys.2021.108068_b2) 2005; 53 |
| References_xml | – volume: 22 year: 2012 ident: b4 article-title: Particle filtering in high-dimensional chaotic systems publication-title: Chaos – volume: 136 start-page: 4629 year: 2008 end-page: 4640 ident: b5 article-title: Obstacles to high-dimensional particle filtering publication-title: Mon. Weather Rev. – volume: 192 start-page: 293 year: 2018 end-page: 305 ident: b47 article-title: Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration publication-title: J. Cleaner Prod. – volume: vol. 10 start-page: 351 year: 2010 end-page: -358 ident: b22 article-title: The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization publication-title: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation – volume: 50 start-page: 3086 year: 2020 end-page: 3099 ident: b15 article-title: Tri-goal evolution framework for constrained many-objective optimization publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 8 start-page: 135661 year: 2020 end-page: 135674 ident: b40 article-title: A molecular interactions-based social learning particle swarm optimization algorithm publication-title: IEEE Access – volume: 27 start-page: 481 year: 2016 end-page: 493 ident: b3 article-title: Particle routing in distributed particle filters for large-scale spatial temporal systems publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 58 start-page: 3589 year: 2020 end-page: 3617 ident: b33 article-title: Improved imperialist competitive algorithms for rebalancing multi-objective two-sided assembly lines with space and resource constraints publication-title: Int. J. Prod. Res. – volume: 22 start-page: 25 year: 2012 ident: b6 article-title: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation publication-title: ACM Trans. Model. Comput. Simul. – volume: 47 start-page: 2678 year: 2017 end-page: 2688 ident: b30 article-title: A general framework of dynamic constrained multiobjective evolutionary algorithms for constrained optimization publication-title: IEEE Trans. Cybern. – volume: 13 start-page: 86 year: 2019 end-page: 111 ident: b31 article-title: Constrained optimisation by solving equivalent dynamic loosely-constrained multiobjective optimisation problem publication-title: Int. J. Bio-Inspired Comput. – volume: 36 start-page: 1251 year: 2002 end-page: 1256 vol.1 ident: b41 article-title: Particle filters for system identification of state-space models linear in either parameters or states publication-title: IFAC Proc. Vol. – volume: 20 start-page: 445 year: 2010 end-page: 468 ident: b1 article-title: Analysis and quantification of data assimilation based on sequential Monte Carlo methods for wildfire spread simulation publication-title: Int. J. Model. Simul. Sci. Comput. – volume: 49 start-page: 1645 year: 2017 end-page: 1664 ident: b14 article-title: Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm publication-title: Eng. Optim. – volume: 576 start-page: 557 year: 2021 end-page: 576 ident: b36 article-title: Improving decomposition-based multiobjective evolutionary algorithm with local reference point aided search publication-title: Inform. Sci. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b45 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: Trans. Evol. Comp. – volume: 140 start-page: P.107 year: 1993 end-page: 113 ident: b43 article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation publication-title: IEE Proc. F – volume: 23 start-page: 587 year: 2019 end-page: 602 ident: b35 article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 665 year: 2017 end-page: 680 ident: b29 article-title: A two-phase differential evolution for uniform designs in constrained experimental domains publication-title: IEEE Trans. Evol. Comput. – volume: 108 year: 2021 ident: b32 article-title: A multi-objective differential evolution algorithm and a constraint handling mechanism based on variables proportion for dynamic economic emission dispatch problems publication-title: Appl. Soft Comput. – volume: 45 start-page: 1108 year: 2015 end-page: 1121 ident: b27 article-title: A dual-population differential evolution with coevolution for constrained optimization publication-title: IEEE Trans. Cybern. – volume: 43 year: 2021 ident: b8 article-title: A novel method for state of energy estimation of lithium-ion batteries using particle filter and extended Kalman filter publication-title: J. Energy Storage – volume: 13 start-page: 514 year: 2009 end-page: 525 ident: b13 article-title: Constraint handling in multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 42 start-page: 203 year: 2012 end-page: 217 ident: b25 article-title: A dynamic hybrid framework for constrained evolutionary optimization publication-title: IEEE Trans. Syst. Man Cybern. B – start-page: 492 year: 2017 end-page: 500 ident: b26 article-title: A new co-evolutionary algorithm based on constraint decomposition publication-title: 2017 IEEE International Parallel and Distributed Processing Symposium: Workshops – volume: 248 start-page: 191 year: 2013 end-page: 213 ident: b23 article-title: Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm publication-title: Inform. Sci. – volume: 10 start-page: 29 year: 2006 end-page: 38 ident: b46 article-title: A faster algorithm for calculating hypervolume publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b44 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2021 end-page: 15 ident: b34 article-title: Many-objective job-shop scheduling: A multiple populations for multiple objectives-based genetic algorithm approach publication-title: IEEE Trans. Cybern. – volume: 2 start-page: 1051 year: 2002 end-page: 1056 vol.2 ident: b37 article-title: MOPSO: A proposal for multiple objective particle swarm optimization publication-title: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600) – reference: P.A.N. Bosman, D. Thierens, Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms, in: Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, London, England, UK, July 7-11, 2007, 2007, pp. 500+. – volume: 358 start-page: 8085 year: 2021 end-page: 8108 ident: b7 article-title: An improved pipeline leak detection and localization method based on compressed sensing and event-triggered particle filter publication-title: J. Franklin Inst. B – volume: 18 start-page: 602 year: 2014 end-page: 622 ident: b17 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach publication-title: IEEE Trans. Evol. Comput. – volume: 51 start-page: 874 year: 2021 end-page: 888 ident: b38 article-title: Multiobjective particle swarm optimization for feature selection with fuzzy cost publication-title: IEEE Trans. Cybern. – volume: 50 start-page: 174 year: 2002 end-page: 188 ident: b42 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: IEEE Trans. Signal Process. – reference: E. Mohagheghi, M.R. Akbarzadeh T, Multi-objective Estimation of Distribution Algorithm based on Voronoi and local search, in: 2016 6th International Conference on Computer and Knowledge Engineering, ICCKE, 2016, pp. 213–234. – start-page: 2996 year: 2007 end-page: 3002 ident: b28 article-title: A memetic co-evolutionary differential evolution algorithm for constrained optimization publication-title: 2007 IEEE Congress on Evolutionary Computation – volume: 31 start-page: 259 year: 2002 end-page: 289 ident: b19 article-title: Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms publication-title: Internat. J. Approx. Reason. – start-page: 0019 year: 2021 end-page: 0578 ident: b9 article-title: Intelligent trigonometric particle filter for visual tracking publication-title: ISA Trans. – volume: 53 start-page: 2442 year: 2005 end-page: 2450 ident: b2 article-title: Resampling algorithms and architectures for distributed particle filters publication-title: IEEE Trans. Signal Process. – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: b18 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 192 start-page: 213 year: 2012 end-page: 227 ident: b39 article-title: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch publication-title: Inform. Sci. – start-page: 145 year: 2004 end-page: 154 ident: b21 article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack publication-title: Problem,” EvoCOP 2004, LNCS 3004 – volume: 29 start-page: 1069 year: 2003 end-page: 1090 ident: b10 article-title: Parallelisation of the particle filtering technique and application to Doppler-bearing tracking of maneuvering sources publication-title: Parallel Comput. – start-page: 1164 year: 2003 end-page: 1171 ident: b12 article-title: Distributed implementations of particle filters publication-title: Sixth International Conference of Information Fusion, 2003. Proceedings of the, Vol. 2 – volume: 31 start-page: 337 year: 1999 end-page: 368 ident: b16 article-title: MOSES: A multiobjective tool for engineering design publication-title: Eng. Optim. – start-page: 1635 year: 2014 end-page: 1639 ident: b11 article-title: An adaptive distributed resampling algorithm with non-proportional allocation publication-title: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 136 start-page: 4629 issue: 12 year: 2008 ident: 10.1016/j.knosys.2021.108068_b5 article-title: Obstacles to high-dimensional particle filtering publication-title: Mon. Weather Rev. doi: 10.1175/2008MWR2529.1 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.knosys.2021.108068_b44 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.knosys.2021.108068_b45 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: Trans. Evol. Comp. doi: 10.1109/TEVC.2007.892759 – volume: 29 start-page: 1069 issue: 8 year: 2003 ident: 10.1016/j.knosys.2021.108068_b10 article-title: Parallelisation of the particle filtering technique and application to Doppler-bearing tracking of maneuvering sources publication-title: Parallel Comput. doi: 10.1016/S0167-8191(03)00090-5 – volume: 20 start-page: 445 issue: 4 year: 2010 ident: 10.1016/j.knosys.2021.108068_b1 article-title: Analysis and quantification of data assimilation based on sequential Monte Carlo methods for wildfire spread simulation publication-title: Int. J. Model. Simul. Sci. Comput. doi: 10.1142/S1793962310000298 – start-page: 1 year: 2021 ident: 10.1016/j.knosys.2021.108068_b34 article-title: Many-objective job-shop scheduling: A multiple populations for multiple objectives-based genetic algorithm approach publication-title: IEEE Trans. Cybern. – volume: 50 start-page: 174 issue: 2 year: 2002 ident: 10.1016/j.knosys.2021.108068_b42 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.978374 – volume: 51 start-page: 874 issue: 2 year: 2021 ident: 10.1016/j.knosys.2021.108068_b38 article-title: Multiobjective particle swarm optimization for feature selection with fuzzy cost publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3015756 – volume: 192 start-page: 213 issue: none year: 2012 ident: 10.1016/j.knosys.2021.108068_b39 article-title: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch publication-title: Inform. Sci. – volume: 22 issue: 4 year: 2012 ident: 10.1016/j.knosys.2021.108068_b4 article-title: Particle filtering in high-dimensional chaotic systems publication-title: Chaos doi: 10.1063/1.4766595 – volume: 23 start-page: 587 issue: 4 year: 2019 ident: 10.1016/j.knosys.2021.108068_b35 article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2875430 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.knosys.2021.108068_b18 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – volume: 10 start-page: 29 issue: 1 year: 2006 ident: 10.1016/j.knosys.2021.108068_b46 article-title: A faster algorithm for calculating hypervolume publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.851275 – start-page: 0019 year: 2021 ident: 10.1016/j.knosys.2021.108068_b9 article-title: Intelligent trigonometric particle filter for visual tracking publication-title: ISA Trans. – volume: 2 start-page: 1051 year: 2002 ident: 10.1016/j.knosys.2021.108068_b37 article-title: MOPSO: A proposal for multiple objective particle swarm optimization – volume: 140 start-page: P.107 issue: 2 year: 1993 ident: 10.1016/j.knosys.2021.108068_b43 article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation publication-title: IEE Proc. F – volume: 358 start-page: 8085 issue: 15 year: 2021 ident: 10.1016/j.knosys.2021.108068_b7 article-title: An improved pipeline leak detection and localization method based on compressed sensing and event-triggered particle filter publication-title: J. Franklin Inst. B doi: 10.1016/j.jfranklin.2021.08.012 – volume: 31 start-page: 337 issue: 3 year: 1999 ident: 10.1016/j.knosys.2021.108068_b16 article-title: MOSES: A multiobjective tool for engineering design publication-title: Eng. Optim. doi: 10.1080/03052159908941377 – volume: 58 start-page: 3589 issue: 12 year: 2020 ident: 10.1016/j.knosys.2021.108068_b33 article-title: Improved imperialist competitive algorithms for rebalancing multi-objective two-sided assembly lines with space and resource constraints publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1633023 – start-page: 1635 year: 2014 ident: 10.1016/j.knosys.2021.108068_b11 article-title: An adaptive distributed resampling algorithm with non-proportional allocation – ident: 10.1016/j.knosys.2021.108068_b20 doi: 10.1145/1276958.1277067 – volume: 192 start-page: 293 year: 2018 ident: 10.1016/j.knosys.2021.108068_b47 article-title: Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.04.251 – volume: 248 start-page: 191 year: 2013 ident: 10.1016/j.knosys.2021.108068_b23 article-title: Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.06.037 – volume: 22 start-page: 25 issue: 4 year: 2012 ident: 10.1016/j.knosys.2021.108068_b6 article-title: Data assimilation using sequential Monte Carlo methods in wildfire spread simulation publication-title: ACM Trans. Model. Comput. Simul. doi: 10.1145/2379810.2379816 – volume: 27 start-page: 481 issue: 2 year: 2016 ident: 10.1016/j.knosys.2021.108068_b3 article-title: Particle routing in distributed particle filters for large-scale spatial temporal systems publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2015.2405912 – volume: 576 start-page: 557 year: 2021 ident: 10.1016/j.knosys.2021.108068_b36 article-title: Improving decomposition-based multiobjective evolutionary algorithm with local reference point aided search publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.06.068 – volume: 36 start-page: 1251 issue: 16 year: 2002 ident: 10.1016/j.knosys.2021.108068_b41 article-title: Particle filters for system identification of state-space models linear in either parameters or states publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)34931-5 – volume: vol. 10 start-page: 351 year: 2010 ident: 10.1016/j.knosys.2021.108068_b22 article-title: The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization – start-page: 492 year: 2017 ident: 10.1016/j.knosys.2021.108068_b26 article-title: A new co-evolutionary algorithm based on constraint decomposition – start-page: 2996 year: 2007 ident: 10.1016/j.knosys.2021.108068_b28 article-title: A memetic co-evolutionary differential evolution algorithm for constrained optimization – volume: 50 start-page: 3086 issue: 8 year: 2020 ident: 10.1016/j.knosys.2021.108068_b15 article-title: Tri-goal evolution framework for constrained many-objective optimization publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 13 start-page: 86 issue: 2 year: 2019 ident: 10.1016/j.knosys.2021.108068_b31 article-title: Constrained optimisation by solving equivalent dynamic loosely-constrained multiobjective optimisation problem publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2019.098406 – volume: 108 year: 2021 ident: 10.1016/j.knosys.2021.108068_b32 article-title: A multi-objective differential evolution algorithm and a constraint handling mechanism based on variables proportion for dynamic economic emission dispatch problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107419 – volume: 13 start-page: 514 issue: 3 year: 2009 ident: 10.1016/j.knosys.2021.108068_b13 article-title: Constraint handling in multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.2009032 – volume: 45 start-page: 1108 issue: 5 year: 2015 ident: 10.1016/j.knosys.2021.108068_b27 article-title: A dual-population differential evolution with coevolution for constrained optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2345478 – volume: 31 start-page: 259 issue: 3 year: 2002 ident: 10.1016/j.knosys.2021.108068_b19 article-title: Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms publication-title: Internat. J. Approx. Reason. doi: 10.1016/S0888-613X(02)00090-7 – volume: 42 start-page: 203 issue: 1 year: 2012 ident: 10.1016/j.knosys.2021.108068_b25 article-title: A dynamic hybrid framework for constrained evolutionary optimization publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2011.2161467 – volume: 8 start-page: 135661 year: 2020 ident: 10.1016/j.knosys.2021.108068_b40 article-title: A molecular interactions-based social learning particle swarm optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010543 – start-page: 1164 year: 2003 ident: 10.1016/j.knosys.2021.108068_b12 article-title: Distributed implementations of particle filters – volume: 18 start-page: 602 issue: 4 year: 2014 ident: 10.1016/j.knosys.2021.108068_b17 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281534 – volume: 43 year: 2021 ident: 10.1016/j.knosys.2021.108068_b8 article-title: A novel method for state of energy estimation of lithium-ion batteries using particle filter and extended Kalman filter publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103269 – volume: 21 start-page: 665 issue: 5 year: 2017 ident: 10.1016/j.knosys.2021.108068_b29 article-title: A two-phase differential evolution for uniform designs in constrained experimental domains publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2669098 – volume: 53 start-page: 2442 issue: 7 year: 2005 ident: 10.1016/j.knosys.2021.108068_b2 article-title: Resampling algorithms and architectures for distributed particle filters publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.849185 – start-page: 145 year: 2004 ident: 10.1016/j.knosys.2021.108068_b21 article-title: Hybrid estimation of distribution algorithm for multiobjective knapsack – volume: 47 start-page: 2678 issue: 9 year: 2017 ident: 10.1016/j.knosys.2021.108068_b30 article-title: A general framework of dynamic constrained multiobjective evolutionary algorithms for constrained optimization publication-title: IEEE Trans. Cybern. – volume: 49 start-page: 1645 issue: 10 year: 2017 ident: 10.1016/j.knosys.2021.108068_b14 article-title: Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm publication-title: Eng. Optim. doi: 10.1080/0305215X.2016.1271661 – ident: 10.1016/j.knosys.2021.108068_b24 doi: 10.1109/ICCKE.2016.7802115 |
| SSID | ssj0002218 |
| Score | 2.4449875 |
| Snippet | Distributed particle filters (PFs) have received extensive attention because of its excellent performance. Generally, it needs to transmit particles to... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108068 |
| SubjectTerms | Algorithms Computation Constraint Constraints Decision makers Decision making Function words Local search Multiple objective analysis Objectives Operators Optimization Optimization models Particle filters Particle routing Particle swarm optimization Performance enhancement Search methods |
| Title | A multi-objective discrete particle swarm optimization method for particle routing in distributed particle filters |
| URI | https://dx.doi.org/10.1016/j.knosys.2021.108068 https://www.proquest.com/docview/2639720462 |
| Volume | 240 |
| WOSCitedRecordID | wos000788135700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvFELBfnAbeUqcZLGPq5QH4BUcSjScoocP8QubbLaTUr_AP-bcWwn262g9MAliuyxZWW-jMfjeSD0nrPISG0OSRaLhKTKCMK0VMQIxjMpFAhL0RWbyM_O2GzGv4xGv0IszNVFXlXs-pov_yuroQ2YbUNn78HuflJogHdgOjyB7fD8J8ZPnZMgqcuFE2b2EgZ0w0ZPlp58sv4pVpeTGsTFpY_D9KWkO6_DnmxVt42PeVE2wa6tjQUKat9v5vaufb2p4H4ONjpi90flM0X3ivtp3XZCv60G0dcZa0_aev1d-21005D9rR4aT7rBx4HMGyvgnGs937IbVseI5JHPMesFMHUJm7wItU6PrtLOLenuDA2Lgx9VDauHwz2NDwbym8m0tza53vUweLUtCjdLYWcp3CwP0A7NM87GaGf68Wj2qd_SKe0Mxf3qQwxm5yh4ezV_0nG2dvtOhTl_ih77sweeOu49QyNdPUdPQl0P7MX8C7Sa4i0I4QAhHHiPOwjhTQhhByEMEBrIPITwvMIbEBr6PYReoq_HR-cfTomvzUFkkqQNUTwtUyZ1JkpQqRUVVAptspzCCdzkiUgjk6RcKBolcIA1iaC85DRO45JpIaDhFRpXdaV3EVYyUlmSskMptU1KC_qSSSImJTdGlCbeQ0n4moX0iett_ZSL4m-83EOkH7V0iVvuoM8DowqvfDqlsgD03TFyP_C18HIA-u2FObWR36_vuZA36NHw5-yjcbNq9Vv0UF418_XqnUfmb1CTuX4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+discrete+particle+swarm+optimization+method+for+particle+routing+in+distributed+particle+filters&rft.jtitle=Knowledge-based+systems&rft.au=Hou%2C+Yun&rft.au=Hao%2C+Guosheng&rft.au=Zhang%2C+Yong&rft.au=Gu%2C+Feng&rft.date=2022-03-15&rft.issn=0950-7051&rft.volume=240&rft.spage=108068&rft_id=info:doi/10.1016%2Fj.knosys.2021.108068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2021_108068 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |