Structural residual learning for single image rain removal

To alleviate the adverse effect of rain streaks in image processing tasks, CNN-based single image rain removal methods have been recently proposed. However, the performance of these deep learning methods largely relies on the covering range of rain shapes contained in the pre-collected training rain...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge-based systems Ročník 213; s. 106595
Hlavní autori: Wang, Hong, Wu, Yichen, Xie, Qi, Zhao, Qian, Liang, Yong, Zhang, Shijun, Meng, Deyu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 15.02.2021
Elsevier Science Ltd
Predmet:
ISSN:0950-7051, 1872-7409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To alleviate the adverse effect of rain streaks in image processing tasks, CNN-based single image rain removal methods have been recently proposed. However, the performance of these deep learning methods largely relies on the covering range of rain shapes contained in the pre-collected training rainy-clean image pairs. This makes them easily trapped into the overfitting-to-the-training-samples issue and cannot finely generalize to practical rainy images with complex and diverse rain streaks. Against this generalization issue, this study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures. Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks, and thus regulates sound rain shapes capable of being well extracted from rainy images in both training and predicting stages. Such a general regularization function naturally leads to both its better training accuracy and testing generalization capability even for those non-seen rain configurations. Such superiority is comprehensively substantiated by experiments implemented on synthetic and real datasets both visually and quantitatively as compared with current state-of-the-art methods.
AbstractList To alleviate the adverse effect of rain streaks in image processing tasks, CNN-based single image rain removal methods have been recently proposed. However, the performance of these deep learning methods largely relies on the covering range of rain shapes contained in the pre-collected training rainy-clean image pairs. This makes them easily trapped into the overfitting-to-the-training-samples issue and cannot finely generalize to practical rainy images with complex and diverse rain streaks. Against this generalization issue, this study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures. Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks, and thus regulates sound rain shapes capable of being well extracted from rainy images in both training and predicting stages. Such a general regularization function naturally leads to both its better training accuracy and testing generalization capability even for those non-seen rain configurations. Such superiority is comprehensively substantiated by experiments implemented on synthetic and real datasets both visually and quantitatively as compared with current state-of-the-art methods.
ArticleNumber 106595
Author Meng, Deyu
Xie, Qi
Wang, Hong
Zhao, Qian
Liang, Yong
Wu, Yichen
Zhang, Shijun
Author_xml – sequence: 1
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  organization: Xi’an Jiaotong University, Shaanxi, 710049, PR China
– sequence: 2
  givenname: Yichen
  surname: Wu
  fullname: Wu, Yichen
  organization: Xi’an Jiaotong University, Shaanxi, 710049, PR China
– sequence: 3
  givenname: Qi
  surname: Xie
  fullname: Xie, Qi
  email: xq.liwu@stu.xjtu.edu.cn
  organization: Xi’an Jiaotong University, Shaanxi, 710049, PR China
– sequence: 4
  givenname: Qian
  orcidid: 0000-0001-9956-0064
  surname: Zhao
  fullname: Zhao, Qian
  organization: Xi’an Jiaotong University, Shaanxi, 710049, PR China
– sequence: 5
  givenname: Yong
  surname: Liang
  fullname: Liang, Yong
  email: yliang@must.edu.mo
  organization: Macau University of Science and Technology, Macau, PR China
– sequence: 6
  givenname: Shijun
  surname: Zhang
  fullname: Zhang, Shijun
  organization: China Mobile Research Institute, Beijing, PR China
– sequence: 7
  givenname: Deyu
  surname: Meng
  fullname: Meng, Deyu
  organization: Xi’an Jiaotong University, Shaanxi, 710049, PR China
BookMark eNqFUE1LAzEUDFLBtvoPPCx43ppks7vZHgQpfkHBg3oOafalpG6TmmQL_fdmWU8e9PSGx8x7MzNDE-ssIHRN8IJgUt3uFp_WhVNYUEyHVVU25RmaEl7TvGa4maApbkqc17gkF2gWwg5jTCnhU7R8i75XsfeyyzwE0_YJdCC9NXabaeezkEAHmdnLLWReGpt4e3eU3SU617ILcPUz5-jj8eF99ZyvX59eVvfrXBUFi3nbMMZUsWGEK1YC3myqQmrArWxaSnlDuVK8qEFqXWICkiZvWldFm-y3qmLFHN2Mdw_effUQoti53tv0UtAyxaAc84G1HFnKuxA8aKFMlNE4G5PpThAshq7EToxdiaErMXaVxOyX-OBTYH_6T3Y3yiDFPxrwIigDVkFrPKgoWmf-PvANDBuHvw
CitedBy_id crossref_primary_10_1007_s11432_020_3225_9
crossref_primary_10_1109_TIP_2023_3335822
crossref_primary_10_1016_j_measurement_2022_112063
crossref_primary_10_1109_TCSVT_2022_3190516
crossref_primary_10_1016_j_patcog_2023_109740
crossref_primary_10_1049_ipr2_12151
crossref_primary_10_1145_3625818
crossref_primary_10_1016_j_knosys_2022_109587
crossref_primary_10_1109_TIP_2021_3128327
crossref_primary_10_1016_j_knosys_2022_109244
crossref_primary_10_1109_TNNLS_2022_3231453
crossref_primary_10_1002_smr_70010
crossref_primary_10_1016_j_eswa_2023_121339
crossref_primary_10_1038_s41598_025_94643_5
crossref_primary_10_1109_JSTSP_2021_3052648
crossref_primary_10_1016_j_image_2024_117170
crossref_primary_10_1007_s10489_024_05494_y
crossref_primary_10_1016_j_knosys_2025_114086
crossref_primary_10_1109_ACCESS_2024_3415420
Cites_doi 10.1109/CVPR.2018.00854
10.1109/TITS.2018.2872502
10.1109/25.543744
10.1109/ICCV.2019.01030
10.1109/ICCV.2017.189
10.1109/CVPR42600.2020.00837
10.1109/TIP.2003.819861
10.1049/el:20080522
10.1109/CVPR.2019.00396
10.1109/TPAMI.2012.213
10.1109/CVPR.2016.90
10.1109/LSP.2018.2889277
10.1109/CVPR.2018.00324
10.1007/s11263-006-0028-6
10.1109/TIP.2017.2708502
10.1109/CVPR.2019.00400
10.1109/CVPR.2019.00821
10.1007/s11042-015-2657-7
10.1109/TIP.2018.2869722
10.1109/TIP.2018.2839891
10.1109/TIP.2017.2691802
10.1109/CVPR.2017.183
10.1109/CVPR.2017.186
10.1109/TIP.2020.2973802
10.1109/CVPR.2018.00262
10.1109/TITS.2008.915644
10.1109/TIP.2011.2179057
10.1109/CVPR.2019.00173
10.1109/ICCV.2019.00574
10.1109/CVPR.2019.01255
10.1109/CVPR.2018.00079
10.1109/ICCV.2017.275
10.1109/CVPR.2018.00695
10.1109/CVPR.2019.00860
10.1109/CVPR.2016.299
10.1109/CVPR.2018.00658
10.1109/TPAMI.2015.2439281
10.1007/s13042-020-01061-2
10.1109/CVPR42600.2020.00317
10.1109/ICCV.2015.388
10.1049/iet-ipr.2010.0547
10.1109/CVPR.2018.00341
10.1109/TNNLS.2019.2921597
10.1109/CVPR.2017.303
10.1007/978-3-030-01234-2_16
10.1109/CVPR.2019.00406
10.1109/TIP.2015.2428933
10.1109/TIP.2017.2662206
10.1109/CVPR.2018.00853
10.1109/ICCV.2013.247
10.1109/ICCV.2017.276
10.1109/CVPR.2004.1315077
10.1007/s11263-008-0200-2
ContentType Journal Article
Copyright 2020
Copyright Elsevier Science Ltd. Feb 15, 2021
Copyright_xml – notice: 2020
– notice: Copyright Elsevier Science Ltd. Feb 15, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2020.106595
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2020_106595
S0950705120307243
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-d9444c3b418c45e0bb63afe0da9d228928cc837eaff501ea2000ff63d187dc643
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614644100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:49:14 EST 2025
Sat Nov 29 07:09:25 EST 2025
Tue Nov 18 21:50:34 EST 2025
Fri Feb 23 02:41:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Generalization performance
Single image deraining
Interpretability
Multi-scale convolutional sparse coding
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-d9444c3b418c45e0bb63afe0da9d228928cc837eaff501ea2000ff63d187dc643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9956-0064
PQID 2502228084
PQPubID 2035257
ParticipantIDs proquest_journals_2502228084
crossref_citationtrail_10_1016_j_knosys_2020_106595
crossref_primary_10_1016_j_knosys_2020_106595
elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106595
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Ding, Chen, Zheng, Yue, Zeng (b12) 2016; 75
Dong, Loy, He, Tang (b46) 2015; 38
Fu, Liang, Huang, Ding, Paisley (b62) 2019
Son, Zhang (b56) 2016
H. Wang, Q. Xie, Q. Zhao, D. Meng, A model-driven deep neural network for single image rain removal, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3103–3112.
Zhang, Li, Qi, Leow, Ng (b36) 2006
Zheng, Yu, Liu, Zhang (b63) 2019
Wang, Liu, Chen, Zeng (b58) 2017; 26
Tai, Yang, Liu (b48) 2017
Barnum, Narasimhan, Kanade (b38) 2010; 86
Kingma, Ba (b73) 2014
Huynh-Thu, Ghanbari (b74) 2008; 44
W. Wei, D. Meng, Q. Zhao, Z. Xu, Y. Wu, Semi-supervised transfer learning for image rain removal, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3877–3886.
R. Yasarla, V.M. Patel, Uncertainty guided multi-scale residual learning-using a cycle spinning cnn for single image de-raining, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 8405–8414.
D. Ren, W. Zuo, Q. Hu, P. Zhu, D. Meng, Progressive image deraining networks: a better and simpler baseline, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3937–3946.
Zhang, Zuo, Chen, Meng, Zhang (b44) 2017; 26
Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (b71) 2017
Jing, Wei, Peng, Tang (b10) 2012
Jin-Hwan, Jae-Young, Chang-Su (b41) 2015; 24
C.E. Smith, C. Richards, S. Brandt, N. Papanikolopoulos, Visual tracking for intelligent vehicle-highway systems, IEEE Trans. Veh. Technol. 45 (4) 744–759.
G. Wang, C. Sun, A. Sowmya, Erl-net: Entangled representation learning for single image de-raining, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 5644–5652.
H. Zhang, V.M. Patel, Density-aware single image de-raining using a multi-stream dense network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 695–704.
K. Garg, S.K. Nayar, Detection and removal of rain from videos, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, 2004, p. I.
K. Jiang, Z. Wang, P. Yi, C. Chen, B. Huang, Y. Luo, J. Ma, J. Jiang, Multi-scale progressive fusion network for single image deraining, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8346–8355.
X. Li, J. Wu, Z. Lin, H. Liu, H. Zha, Recurrent squeeze-and-excitation context aggregation net for single image deraining, in: Proceedings of the European Conference on Computer Vision, 2018, pp. 254–269.
Mu, Chen, Liu, Fan, Luo (b67) 2019; 26
L. Zhu, C.W. Fu, D. Lischinski, P.A. Heng, Joint bi-layer optimization for single-image rain streak removal, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2526–2534.
T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, R.W. Lau, Spatial attentive single-image deraining with a high quality real rain dataset, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 12270–12279.
Park, Lee (b37) 2008
Garg, Nayar (b35) 2007; 75
Yasarla, Patel (b7) 2020; 29
Y.L. Chen, C.T. Hsu, A generalized low-rank appearance model for spatio-temporally correlated rain streaks, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 1968–1975.
X. Hu, C.-W. Fu, L. Zhu, P.-A. Heng, Depth-attentional features for single-image rain removal, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 8022–8031.
Wang, Wu, Li, Zhao, Meng (b5) 2019
Liu, Jiang, Fan, Luo (b18) 2019; 31
W. Yang, R.T. Tan, J. Feng, J. Liu, Z. Guo, S. Yan, Deep joint rain detection and removal from a single image, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1357–1366.
W. Wei, L. Yi, Q. Xie, Q. Zhao, D. Meng, Z. Xu, Should we encode rain streaks in video as deterministic or stochastic? in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2516–2525.
Yang, Liu, Feng (b54) 2020
He, Sun, Tang (b11) 2010; 35
Y. Li, Rain streak removal using layer priors, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2736–2744.
Fu, Huang, Ding, Liao, Paisley (b22) 2017; 26
Fu, Kang, Lin, Hsu (b59) 2011
Bahnsen, Moeslund (b3) 2018; 20
Shehata, Cai, Badawy, Burr, Pervez, Johannesson, Radmanesh (b2) 2008; 9
S. Li, I.B. Araujo, W. Ren, Z. Wang, E.K. Tokuda, R.H. Junior, R. Cesar-Junior, J. Zhang, X. Guo, X. Cao, Single image deraining: A comprehensive benchmark analysis, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3838–3847.
M. Li, Q. Xie, Q. Zhao, W. Wei, S. Gu, J. Tao, D. Meng, Video rain streak removal by multiscale convolutional sparse coding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6644–6653.
R. Li, L.-F. Cheong, R.T. Tan, Heavy rain image restoration: Integrating physics model and conditional adversarial learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 1633–1642.
He, Patel (b32) 2017
Wang, Xie, Wu, Zhao, Meng (b19) 2020; 11
J. Pan, S. Liu, D. Sun, . Zhang, et al. Learning dual convolutional neural networks for low-level vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3070–3079.
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Tripathi, Mukhopadhyay (b39) 2012; 6
X. Fu, J. Huang, D. Zeng, H. Yue, X. Ding, J. Paisley, Removing rain from single images via a deep detail network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3855–3863.
S. Gu, D. Meng, W. Zuo, Z. Lei, Joint convolutional analysis and synthesis sparse representation for single image layer separation, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1708–1716.
J. Liu, W. Yang, S. Yang, Z. Guo, Erase or fill? deep joint recurrent rain removal and reconstruction in videos, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3233–3242.
Kim, Lee, Sim, Kim (b55) 2014
W. Ren, J. Tian, H. Zhi, A. Chan, Y. Tang, Video desnowing and deraining based on matrix decomposition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4210–4219.
Zhang, Sindagi, Patel (b61) 2019
O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, J. Matas, Deblurgan: Blind motion deblurring using conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8183–8192.
Yang, Tan, Feng, Liu, Yan, Guo (b26) 2019; PP
Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image super-resolution, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2472–2481.
Li, Xiang, Wei, Chang, Liang (b16) 2018
S.S. Halder, J.-F. Lalonde, R.d. Charette, Physics-based rendering for improving robustness to rain, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 10203–10212.
X. Tao, H. Gao, X. Shen, J. Wang, J. Jia, Scale-recurrent network for deep image deblurring, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8174–8182.
Yang, Tan, Wang, Fang, Liu (b9) 2020
Liu, Yang, Yang, Guo (b53) 2018; 28
Kang, Lin, Fu (b57) 2012; 21
Zhang, Zuo, Zhang (b45) 2018; 27
C. Jie, C.H. Tan, J. Hou, L.P. Chau, L. He, Robust video content alignment and compensation for rain removal in a CNN framework, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6286–6295.
Huang, Liu, Der Maaten, Weinberger (b70) 2017
Zhou, Alan Conrad, Hamid Rahim, Simoncelli (b72) 2004; 13
L. Yu, X. Yong, J. Hui, Removing rain from a single image via discriminative sparse coding, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3397–3405.
Yu, Koltun (b33) 2015
Li (10.1016/j.knosys.2020.106595_b16) 2018
Huang (10.1016/j.knosys.2020.106595_b70) 2017
Yang (10.1016/j.knosys.2020.106595_b26) 2019; PP
Garg (10.1016/j.knosys.2020.106595_b35) 2007; 75
10.1016/j.knosys.2020.106595_b60
Zheng (10.1016/j.knosys.2020.106595_b63) 2019
Fu (10.1016/j.knosys.2020.106595_b22) 2017; 26
Kim (10.1016/j.knosys.2020.106595_b55) 2014
10.1016/j.knosys.2020.106595_b15
10.1016/j.knosys.2020.106595_b13
10.1016/j.knosys.2020.106595_b14
Mu (10.1016/j.knosys.2020.106595_b67) 2019; 26
Kingma (10.1016/j.knosys.2020.106595_b73) 2014
Liu (10.1016/j.knosys.2020.106595_b18) 2019; 31
Ding (10.1016/j.knosys.2020.106595_b12) 2016; 75
10.1016/j.knosys.2020.106595_b17
Zhang (10.1016/j.knosys.2020.106595_b36) 2006
Zhang (10.1016/j.knosys.2020.106595_b44) 2017; 26
Son (10.1016/j.knosys.2020.106595_b56) 2016
Dong (10.1016/j.knosys.2020.106595_b46) 2015; 38
10.1016/j.knosys.2020.106595_b4
Huynh-Thu (10.1016/j.knosys.2020.106595_b74) 2008; 44
10.1016/j.knosys.2020.106595_b8
10.1016/j.knosys.2020.106595_b30
10.1016/j.knosys.2020.106595_b6
10.1016/j.knosys.2020.106595_b66
10.1016/j.knosys.2020.106595_b23
10.1016/j.knosys.2020.106595_b20
10.1016/j.knosys.2020.106595_b64
10.1016/j.knosys.2020.106595_b21
10.1016/j.knosys.2020.106595_b65
10.1016/j.knosys.2020.106595_b1
10.1016/j.knosys.2020.106595_b27
Liu (10.1016/j.knosys.2020.106595_b53) 2018; 28
10.1016/j.knosys.2020.106595_b24
10.1016/j.knosys.2020.106595_b68
10.1016/j.knosys.2020.106595_b25
10.1016/j.knosys.2020.106595_b69
Yasarla (10.1016/j.knosys.2020.106595_b7) 2020; 29
10.1016/j.knosys.2020.106595_b28
He (10.1016/j.knosys.2020.106595_b11) 2010; 35
10.1016/j.knosys.2020.106595_b29
Paszke (10.1016/j.knosys.2020.106595_b71) 2017
Fu (10.1016/j.knosys.2020.106595_b62) 2019
Barnum (10.1016/j.knosys.2020.106595_b38) 2010; 86
Fu (10.1016/j.knosys.2020.106595_b59) 2011
10.1016/j.knosys.2020.106595_b40
Bahnsen (10.1016/j.knosys.2020.106595_b3) 2018; 20
Jing (10.1016/j.knosys.2020.106595_b10) 2012
Park (10.1016/j.knosys.2020.106595_b37) 2008
Jin-Hwan (10.1016/j.knosys.2020.106595_b41) 2015; 24
Wang (10.1016/j.knosys.2020.106595_b5) 2019
Yang (10.1016/j.knosys.2020.106595_b9) 2020
10.1016/j.knosys.2020.106595_b34
10.1016/j.knosys.2020.106595_b31
Zhou (10.1016/j.knosys.2020.106595_b72) 2004; 13
Wang (10.1016/j.knosys.2020.106595_b19) 2020; 11
He (10.1016/j.knosys.2020.106595_b32) 2017
Shehata (10.1016/j.knosys.2020.106595_b2) 2008; 9
Yu (10.1016/j.knosys.2020.106595_b33) 2015
Tripathi (10.1016/j.knosys.2020.106595_b39) 2012; 6
Kang (10.1016/j.knosys.2020.106595_b57) 2012; 21
10.1016/j.knosys.2020.106595_b51
10.1016/j.knosys.2020.106595_b52
10.1016/j.knosys.2020.106595_b50
Zhang (10.1016/j.knosys.2020.106595_b45) 2018; 27
10.1016/j.knosys.2020.106595_b42
10.1016/j.knosys.2020.106595_b43
Tai (10.1016/j.knosys.2020.106595_b48) 2017
10.1016/j.knosys.2020.106595_b49
10.1016/j.knosys.2020.106595_b47
Yang (10.1016/j.knosys.2020.106595_b54) 2020
Zhang (10.1016/j.knosys.2020.106595_b61) 2019
Wang (10.1016/j.knosys.2020.106595_b58) 2017; 26
References_xml – start-page: 2790
  year: 2017
  end-page: 2798
  ident: b48
  article-title: Image super-resolution via deep recursive residual network
– volume: 27
  start-page: 4608
  year: 2018
  end-page: 4622
  ident: b45
  article-title: FFDNet: Toward a fast and flexible solution for CNN-based image denoising
  publication-title: IEEE Trans. Image Process.
– start-page: 304
  year: 2012
  end-page: 307
  ident: b10
  article-title: Removing rain and snow in a single image using guided filter
  publication-title: IEEE International Conference on Computer Science and Automation Engineering, Vol. 2
– start-page: 1453
  year: 2011
  end-page: 1456
  ident: b59
  article-title: Single-frame-based rain removal via image decomposition
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing
– year: 2019
  ident: b62
  article-title: Lightweight pyramid networks for image deraining
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 461
  year: 2006
  end-page: 464
  ident: b36
  article-title: Rain removal in video by combining temporal and chromatic properties
  publication-title: IEEE International Conference on Multimedia and Expo
– volume: 11
  start-page: 853
  year: 2020
  end-page: 872
  ident: b19
  article-title: Single image rain streaks removal: a review and an exploration
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: PP
  start-page: 1
  year: 2019
  ident: b26
  article-title: Joint rain detection and removal from a single image with contextualized deep networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: W. Wei, L. Yi, Q. Xie, Q. Zhao, D. Meng, Z. Xu, Should we encode rain streaks in video as deterministic or stochastic? in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2516–2525.
– volume: 26
  start-page: 3936
  year: 2017
  end-page: 3950
  ident: b58
  article-title: A hierarchical approach for rain or snow removing in a single color image
  publication-title: IEEE Trans. Image Process.
– year: 2020
  ident: b9
  article-title: Single image deraining: From model-based to data-driven and beyond
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 181
  year: 2012
  end-page: 196
  ident: b39
  article-title: Video post processing: low-latency spatiotemporal approach for detection and removal of rain
  publication-title: IET Image Process.
– volume: 38
  start-page: 295
  year: 2015
  end-page: 307
  ident: b46
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2017
  ident: b71
  article-title: Automatic differentiation in pytorch
– volume: 35
  start-page: 1397
  year: 2010
  end-page: 1409
  ident: b11
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: L. Yu, X. Yong, J. Hui, Removing rain from a single image via discriminative sparse coding, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3397–3405.
– volume: 86
  start-page: 256
  year: 2010
  ident: b38
  article-title: Analysis of rain and snow in frequency space
  publication-title: Int. J. Comput. Vis.
– reference: L. Zhu, C.W. Fu, D. Lischinski, P.A. Heng, Joint bi-layer optimization for single-image rain streak removal, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2526–2534.
– reference: H. Zhang, V.M. Patel, Density-aware single image de-raining using a multi-stream dense network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 695–704.
– reference: R. Li, L.-F. Cheong, R.T. Tan, Heavy rain image restoration: Integrating physics model and conditional adversarial learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 1633–1642.
– reference: G. Wang, C. Sun, A. Sowmya, Erl-net: Entangled representation learning for single image de-raining, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 5644–5652.
– reference: J. Liu, W. Yang, S. Yang, Z. Guo, Erase or fill? deep joint recurrent rain removal and reconstruction in videos, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3233–3242.
– reference: S. Gu, D. Meng, W. Zuo, Z. Lei, Joint convolutional analysis and synthesis sparse representation for single image layer separation, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1708–1716.
– volume: 26
  start-page: 307
  year: 2019
  end-page: 311
  ident: b67
  article-title: Learning bilevel layer priors for single image rain streaks removal
  publication-title: IEEE Signal Process. Lett.
– volume: 9
  start-page: 349
  year: 2008
  end-page: 360
  ident: b2
  article-title: Video-based automatic incident detection for smart roads: The outdoor environmental challenges regarding false alarms
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: R. Yasarla, V.M. Patel, Uncertainty guided multi-scale residual learning-using a cycle spinning cnn for single image de-raining, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 8405–8414.
– start-page: 914
  year: 2014
  end-page: 917
  ident: b55
  article-title: Single-image deraining using an adaptive nonlocal means filter
  publication-title: IEEE International Conference on Image Processing
– reference: W. Wei, D. Meng, Q. Zhao, Z. Xu, Y. Wu, Semi-supervised transfer learning for image rain removal, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3877–3886.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b72
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– year: 2019
  ident: b63
  article-title: Residual multiscale based single image deraining
  publication-title: Conference on BMVC
– reference: S. Li, I.B. Araujo, W. Ren, Z. Wang, E.K. Tokuda, R.H. Junior, R. Cesar-Junior, J. Zhang, X. Guo, X. Cao, Single image deraining: A comprehensive benchmark analysis, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3838–3847.
– reference: M. Li, Q. Xie, Q. Zhao, W. Wei, S. Gu, J. Tao, D. Meng, Video rain streak removal by multiscale convolutional sparse coding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6644–6653.
– reference: O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, J. Matas, Deblurgan: Blind motion deblurring using conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8183–8192.
– reference: K. Garg, S.K. Nayar, Detection and removal of rain from videos, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, 2004, p. I.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b56
  article-title: Rain removal via shrinkage of sparse codes and learned rain dictionary
  publication-title: 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW)
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– volume: 20
  start-page: 2802
  year: 2018
  end-page: 2819
  ident: b3
  article-title: Rain removal in traffic surveillance: Does it matter?
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: X. Li, J. Wu, Z. Lin, H. Liu, H. Zha, Recurrent squeeze-and-excitation context aggregation net for single image deraining, in: Proceedings of the European Conference on Computer Vision, 2018, pp. 254–269.
– reference: X. Tao, H. Gao, X. Shen, J. Wang, J. Jia, Scale-recurrent network for deep image deblurring, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8174–8182.
– year: 2014
  ident: b73
  article-title: Adam: A method for stochastic optimization
  publication-title: Comput. Sci.
– reference: T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, R.W. Lau, Spatial attentive single-image deraining with a high quality real rain dataset, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 12270–12279.
– reference: C. Jie, C.H. Tan, J. Hou, L.P. Chau, L. He, Robust video content alignment and compensation for rain removal in a CNN framework, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6286–6295.
– volume: 26
  start-page: 2944
  year: 2017
  end-page: 2956
  ident: b22
  article-title: Clearing the skies: A deep network architecture for single-image rain removal
  publication-title: IEEE Trans. Image Process.
– year: 2015
  ident: b33
  article-title: Multi-scale context aggregation by dilated convolutions
– volume: 29
  start-page: 4544
  year: 2020
  end-page: 4555
  ident: b7
  article-title: Confidence measure guided single image de-raining
  publication-title: IEEE Trans. Image Process.
– volume: 75
  start-page: 3
  year: 2007
  end-page: 27
  ident: b35
  article-title: Vision and rain
  publication-title: Int. J. Comput. Vis.
– volume: 24
  start-page: 2658
  year: 2015
  end-page: 2670
  ident: b41
  article-title: Video deraining and desnowing using temporal correlation and low-rank matrix completion
  publication-title: IEEE Trans. Image Process.
– volume: 21
  start-page: 1742
  year: 2012
  end-page: 1755
  ident: b57
  article-title: Automatic single-image-based rain streaks removal via image decomposition
  publication-title: IEEE Trans. Image Process.
– reference: J. Pan, S. Liu, D. Sun, . Zhang, et al. Learning dual convolutional neural networks for low-level vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3070–3079.
– reference: D. Ren, W. Zuo, Q. Hu, P. Zhu, D. Meng, Progressive image deraining networks: a better and simpler baseline, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3937–3946.
– reference: X. Hu, C.-W. Fu, L. Zhu, P.-A. Heng, Depth-attentional features for single-image rain removal, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 8022–8031.
– reference: H. Wang, Q. Xie, Q. Zhao, D. Meng, A model-driven deep neural network for single image rain removal, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3103–3112.
– reference: Y.L. Chen, C.T. Hsu, A generalized low-rank appearance model for spatio-temporally correlated rain streaks, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 1968–1975.
– reference: S.S. Halder, J.-F. Lalonde, R.d. Charette, Physics-based rendering for improving robustness to rain, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 10203–10212.
– volume: 31
  start-page: 1653
  year: 2019
  end-page: 1666
  ident: b18
  article-title: Knowledge-driven deep unrolling for robust image layer separation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1259
  year: 2017
  end-page: 1267
  ident: b32
  article-title: Convolutional sparse and low-rank coding-based rain streak removal
  publication-title: IEEE Winter Conference on Applications of Computer Vision
– start-page: 494
  year: 2008
  end-page: 497
  ident: b37
  article-title: Rain removal using Kalman filter in video
  publication-title: International Conference on Smart Manufacturing Application
– reference: W. Ren, J. Tian, H. Zhi, A. Chan, Y. Tang, Video desnowing and deraining based on matrix decomposition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4210–4219.
– year: 2019
  ident: b61
  article-title: Image de-raining using a conditional generative adversarial network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 44
  start-page: 800
  year: 2008
  end-page: 801
  ident: b74
  article-title: Scope of validity of PSNR in image/video quality assessment
  publication-title: Electron. Lett.
– reference: K. Jiang, Z. Wang, P. Yi, C. Chen, B. Huang, Y. Luo, J. Ma, J. Jiang, Multi-scale progressive fusion network for single image deraining, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8346–8355.
– reference: X. Fu, J. Huang, D. Zeng, H. Yue, X. Ding, J. Paisley, Removing rain from single images via a deep detail network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3855–3863.
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  ident: b44
  article-title: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising
  publication-title: IEEE Trans. Image Process.
– year: 2018
  ident: b16
  article-title: Non-locally enhanced encoder-decoder network for single image de-raining
  publication-title: 2018 ACM Multimedia Conference
– volume: 28
  start-page: 699
  year: 2018
  end-page: 712
  ident: b53
  article-title: D3R-Net: Dynamic routing residue recurrent network for video rain removal
  publication-title: IEEE Trans. Image Process.
– reference: Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image super-resolution, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2472–2481.
– reference: C.E. Smith, C. Richards, S. Brandt, N. Papanikolopoulos, Visual tracking for intelligent vehicle-highway systems, IEEE Trans. Veh. Technol. 45 (4) 744–759.
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: b70
  article-title: Densely connected convolutional networks
– year: 2019
  ident: b5
  article-title: A survey on rain removal from video and single image
– reference: W. Yang, R.T. Tan, J. Feng, J. Liu, Z. Guo, S. Yan, Deep joint rain detection and removal from a single image, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1357–1366.
– volume: 75
  start-page: 2697
  year: 2016
  end-page: 2712
  ident: b12
  article-title: Single image rain and snow removal via guided L0 smoothing filter
  publication-title: Multimedia Tools Appl.
– reference: Y. Li, Rain streak removal using layer priors, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2736–2744.
– year: 2020
  ident: b54
  article-title: Frame-consistent recurrent video deraining with dual-level flow
  publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2018
  ident: 10.1016/j.knosys.2020.106595_b16
  article-title: Non-locally enhanced encoder-decoder network for single image de-raining
– start-page: 2790
  year: 2017
  ident: 10.1016/j.knosys.2020.106595_b48
– year: 2019
  ident: 10.1016/j.knosys.2020.106595_b62
  article-title: Lightweight pyramid networks for image deraining
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– ident: 10.1016/j.knosys.2020.106595_b50
  doi: 10.1109/CVPR.2018.00854
– year: 2019
  ident: 10.1016/j.knosys.2020.106595_b63
  article-title: Residual multiscale based single image deraining
– year: 2019
  ident: 10.1016/j.knosys.2020.106595_b5
– volume: 20
  start-page: 2802
  issue: 8
  year: 2018
  ident: 10.1016/j.knosys.2020.106595_b3
  article-title: Rain removal in traffic surveillance: Does it matter?
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2872502
– ident: 10.1016/j.knosys.2020.106595_b4
  doi: 10.1109/25.543744
– year: 2020
  ident: 10.1016/j.knosys.2020.106595_b9
  article-title: Single image deraining: From model-based to data-driven and beyond
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: PP
  start-page: 1
  issue: 99
  year: 2019
  ident: 10.1016/j.knosys.2020.106595_b26
  article-title: Joint rain detection and removal from a single image with contextualized deep networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2020.106595_b56
  article-title: Rain removal via shrinkage of sparse codes and learned rain dictionary
– ident: 10.1016/j.knosys.2020.106595_b66
  doi: 10.1109/ICCV.2019.01030
– ident: 10.1016/j.knosys.2020.106595_b15
  doi: 10.1109/ICCV.2017.189
– ident: 10.1016/j.knosys.2020.106595_b65
  doi: 10.1109/CVPR42600.2020.00837
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.knosys.2020.106595_b72
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 44
  start-page: 800
  issue: 13
  year: 2008
  ident: 10.1016/j.knosys.2020.106595_b74
  article-title: Scope of validity of PSNR in image/video quality assessment
  publication-title: Electron. Lett.
  doi: 10.1049/el:20080522
– ident: 10.1016/j.knosys.2020.106595_b6
  doi: 10.1109/CVPR.2019.00396
– volume: 35
  start-page: 1397
  issue: 6
  year: 2010
  ident: 10.1016/j.knosys.2020.106595_b11
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– ident: 10.1016/j.knosys.2020.106595_b69
  doi: 10.1109/CVPR.2016.90
– volume: 26
  start-page: 307
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2020.106595_b67
  article-title: Learning bilevel layer priors for single image rain streaks removal
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2889277
– year: 2014
  ident: 10.1016/j.knosys.2020.106595_b73
  article-title: Adam: A method for stochastic optimization
  publication-title: Comput. Sci.
– ident: 10.1016/j.knosys.2020.106595_b8
  doi: 10.1109/CVPR.2018.00324
– volume: 75
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.knosys.2020.106595_b35
  article-title: Vision and rain
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-0028-6
– volume: 26
  start-page: 3936
  issue: 8
  year: 2017
  ident: 10.1016/j.knosys.2020.106595_b58
  article-title: A hierarchical approach for rain or snow removing in a single color image
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2708502
– ident: 10.1016/j.knosys.2020.106595_b68
  doi: 10.1109/CVPR.2019.00400
– ident: 10.1016/j.knosys.2020.106595_b29
  doi: 10.1109/CVPR.2019.00821
– volume: 75
  start-page: 2697
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2020.106595_b12
  article-title: Single image rain and snow removal via guided L0 smoothing filter
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-015-2657-7
– year: 2015
  ident: 10.1016/j.knosys.2020.106595_b33
– start-page: 1453
  year: 2011
  ident: 10.1016/j.knosys.2020.106595_b59
  article-title: Single-frame-based rain removal via image decomposition
– volume: 28
  start-page: 699
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2020.106595_b53
  article-title: D3R-Net: Dynamic routing residue recurrent network for video rain removal
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2869722
– volume: 27
  start-page: 4608
  issue: 9
  year: 2018
  ident: 10.1016/j.knosys.2020.106595_b45
  article-title: FFDNet: Toward a fast and flexible solution for CNN-based image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2839891
– volume: 26
  start-page: 2944
  issue: 6
  year: 2017
  ident: 10.1016/j.knosys.2020.106595_b22
  article-title: Clearing the skies: A deep network architecture for single-image rain removal
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2691802
– ident: 10.1016/j.knosys.2020.106595_b25
  doi: 10.1109/CVPR.2017.183
– ident: 10.1016/j.knosys.2020.106595_b23
  doi: 10.1109/CVPR.2017.186
– volume: 29
  start-page: 4544
  year: 2020
  ident: 10.1016/j.knosys.2020.106595_b7
  article-title: Confidence measure guided single image de-raining
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2973802
– year: 2019
  ident: 10.1016/j.knosys.2020.106595_b61
  article-title: Image de-raining using a conditional generative adversarial network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– ident: 10.1016/j.knosys.2020.106595_b47
  doi: 10.1109/CVPR.2018.00262
– start-page: 304
  year: 2012
  ident: 10.1016/j.knosys.2020.106595_b10
  article-title: Removing rain and snow in a single image using guided filter
– volume: 9
  start-page: 349
  issue: 2
  year: 2008
  ident: 10.1016/j.knosys.2020.106595_b2
  article-title: Video-based automatic incident detection for smart roads: The outdoor environmental challenges regarding false alarms
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2008.915644
– start-page: 1259
  year: 2017
  ident: 10.1016/j.knosys.2020.106595_b32
  article-title: Convolutional sparse and low-rank coding-based rain streak removal
– volume: 21
  start-page: 1742
  issue: 4
  year: 2012
  ident: 10.1016/j.knosys.2020.106595_b57
  article-title: Automatic single-image-based rain streaks removal via image decomposition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2179057
– ident: 10.1016/j.knosys.2020.106595_b20
  doi: 10.1109/CVPR.2019.00173
– ident: 10.1016/j.knosys.2020.106595_b21
  doi: 10.1109/ICCV.2019.00574
– start-page: 461
  year: 2006
  ident: 10.1016/j.knosys.2020.106595_b36
  article-title: Rain removal in video by combining temporal and chromatic properties
– ident: 10.1016/j.knosys.2020.106595_b30
  doi: 10.1109/CVPR.2019.01255
– ident: 10.1016/j.knosys.2020.106595_b24
  doi: 10.1109/CVPR.2018.00079
– ident: 10.1016/j.knosys.2020.106595_b43
  doi: 10.1109/ICCV.2017.275
– ident: 10.1016/j.knosys.2020.106595_b1
  doi: 10.1109/CVPR.2018.00695
– start-page: 2261
  year: 2017
  ident: 10.1016/j.knosys.2020.106595_b70
– ident: 10.1016/j.knosys.2020.106595_b64
  doi: 10.1109/CVPR.2019.00860
– ident: 10.1016/j.knosys.2020.106595_b13
  doi: 10.1109/CVPR.2016.299
– ident: 10.1016/j.knosys.2020.106595_b17
  doi: 10.1109/CVPR.2019.00396
– ident: 10.1016/j.knosys.2020.106595_b51
  doi: 10.1109/CVPR.2018.00658
– volume: 38
  start-page: 295
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2020.106595_b46
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 11
  start-page: 853
  issue: 4
  year: 2020
  ident: 10.1016/j.knosys.2020.106595_b19
  article-title: Single image rain streaks removal: a review and an exploration
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01061-2
– ident: 10.1016/j.knosys.2020.106595_b31
  doi: 10.1109/CVPR42600.2020.00317
– ident: 10.1016/j.knosys.2020.106595_b14
  doi: 10.1109/ICCV.2015.388
– start-page: 494
  year: 2008
  ident: 10.1016/j.knosys.2020.106595_b37
  article-title: Rain removal using Kalman filter in video
– volume: 6
  start-page: 181
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2020.106595_b39
  article-title: Video post processing: low-latency spatiotemporal approach for detection and removal of rain
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2010.0547
– ident: 10.1016/j.knosys.2020.106595_b52
  doi: 10.1109/CVPR.2018.00341
– year: 2017
  ident: 10.1016/j.knosys.2020.106595_b71
– volume: 31
  start-page: 1653
  issue: 5
  year: 2019
  ident: 10.1016/j.knosys.2020.106595_b18
  article-title: Knowledge-driven deep unrolling for robust image layer separation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2921597
– start-page: 914
  year: 2014
  ident: 10.1016/j.knosys.2020.106595_b55
  article-title: Single-image deraining using an adaptive nonlocal means filter
– ident: 10.1016/j.knosys.2020.106595_b42
  doi: 10.1109/CVPR.2017.303
– ident: 10.1016/j.knosys.2020.106595_b27
  doi: 10.1007/978-3-030-01234-2_16
– ident: 10.1016/j.knosys.2020.106595_b28
  doi: 10.1109/CVPR.2019.00406
– volume: 24
  start-page: 2658
  issue: 9
  year: 2015
  ident: 10.1016/j.knosys.2020.106595_b41
  article-title: Video deraining and desnowing using temporal correlation and low-rank matrix completion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2428933
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 10.1016/j.knosys.2020.106595_b44
  article-title: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– ident: 10.1016/j.knosys.2020.106595_b49
  doi: 10.1109/CVPR.2018.00853
– ident: 10.1016/j.knosys.2020.106595_b40
  doi: 10.1109/ICCV.2013.247
– ident: 10.1016/j.knosys.2020.106595_b60
  doi: 10.1109/ICCV.2017.276
– year: 2020
  ident: 10.1016/j.knosys.2020.106595_b54
  article-title: Frame-consistent recurrent video deraining with dual-level flow
– ident: 10.1016/j.knosys.2020.106595_b34
  doi: 10.1109/CVPR.2004.1315077
– volume: 86
  start-page: 256
  issue: 2–3
  year: 2010
  ident: 10.1016/j.knosys.2020.106595_b38
  article-title: Analysis of rain and snow in frequency space
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0200-2
SSID ssj0002218
Score 2.4723582
Snippet To alleviate the adverse effect of rain streaks in image processing tasks, CNN-based single image rain removal methods have been recently proposed. However,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106595
SubjectTerms Computer architecture
Deep learning
Experiments
Generalization
Generalization performance
Image processing
Interpretability
Learning
Multi-scale convolutional sparse coding
Networks
Prior knowledge
Rain
Regularization
Side effects
Single image deraining
Training
Title Structural residual learning for single image rain removal
URI https://dx.doi.org/10.1016/j.knosys.2020.106595
https://www.proquest.com/docview/2502228084
Volume 213
WOSCitedRecordID wos000614644100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELag5cCFN6JQKh8QF2S03kdsc6uqVG2JAohU7M3atb1SSrobaKn68zuztjcRjxYOXFaR95Fk5vP48-w8CHkFDD-vhUqYddKynMuKAannjKu6aKzIRpnti7hOxHQqy1J9DOG2Z307AdG28vJSLf-rqmEMlI2ps_-g7uGhMACfQelwBLXD8a8U_7mvCNtX04CttM-1WkQHCAYVondg4d7MTzFcBztEwHWn3UV4biCq76OvjeE6Z0PF54GAfwlu5oMurHw49qO35xhbOiCu9K8_Ps3XHNSdHwmwDB6HlGOQss-59G6wmAoTrc8q_sj7FRMmklBF1nmrKgXQ-DxR62Y35dma4eS_Nefes3Dy9mvbwd-E3XyKg1gCcbV8xVf20w96_3gy0bNxOXu9_MawsRi-gA9dVm6TzVQUCmz35u7huDwalus07Z3Aw--O-ZV9EOCvX_wn_vLTSt7Tk9kDci_sK-iux8NDcsu1j8j92LODBiE-Ju9W8KARHjTCgwI8qIcH7eFBER40wOMJOd4fz_YOWOifwUyW5efMqjzPTVbDDDR54ZK6HmVV4xJbKZvCRjuVxshMuKppioS7CrO2mgZmJ-jLGqCqT8lG27XuGaGVsbWx3KaiUTihKwW8VXJhXGFGijdbJItS0SYUl8ceJwsdowhPtJelRllqL8stwoa7lr64yg3XiyhwHQiiJ34aAHPDndtRPzrMVThfoLdDJjJ_fv3pF-Tuah5skw1QlHtJ7piL8_nZ950AqCs-iY-d
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+residual+learning+for+single+image+rain+removal&rft.jtitle=Knowledge-based+systems&rft.au=Wang%2C+Hong&rft.au=Wu%2C+Yichen&rft.au=Xie%2C+Qi&rft.au=Zhao%2C+Qian&rft.date=2021-02-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=213&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2020.106595&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon