Clustering Approach for the Efficient Solution of Multiscale Stochastic Programming Problems: Application to Energy Hub Design and Operation under Uncertainty

The management of the supply chain for enterprise-wide operations generally consists of strategic, tactical, and operational decision stages dependent on one another and affecting various time scales. Their integration usually leads to multiscale models that are computationally intractable. The desi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes Jg. 11; H. 4; S. 1046
Hauptverfasser: Alkatheri, Mohammed, Alhameli, Falah, Betancourt-Torcat, Alberto, Almansoori, Ali, Elkamel, Ali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.04.2023
Schlagworte:
ISSN:2227-9717, 2227-9717
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The management of the supply chain for enterprise-wide operations generally consists of strategic, tactical, and operational decision stages dependent on one another and affecting various time scales. Their integration usually leads to multiscale models that are computationally intractable. The design and operation of energy hubs faces similar challenges. Renewable energies are challenging to model due to the high level of intermittency and uncertainty. The multiscale (i.e., planning and scheduling) energy hub systems that incorporate renewable energy resources become more challenging to model due to an integration of the multiscale and high level of intermittency associated with renewable energy. In this work, a mixed-integer programming (MILP) superstructure is proposed for clustering shape-based time series data featuring multiple attributes using a multi-objective optimization approach. Additionally, a data-driven statistical method is used to represent the intermittent behavior of uncertain renewable energy data. According to these methods, the design and operation of an energy hub with hydrogen storage was reformulated following a two-stage stochastic modeling technique. The main outcomes of this study are formulating a stochastic energy hub optimization model which comprehensively considers the design and operation planning, energy storage system, and uncertainties of DRERs, and proposing an efficient size reduction approach for large-sized multiple attributes demand data. The case study results show that normal clustering is closer to the optimal case (full scale model) compared with sequence clustering. In addition, there is an improvement in the objective function value using the stochastic approach instead of the deterministic. The present clustering algorithm features many unique characteristics that gives it advantages over other clustering approach and the straightforward statistical approach used to represent intermittent energy, and it can be easily incorporated into various distributed energy systems.
AbstractList The management of the supply chain for enterprise-wide operations generally consists of strategic, tactical, and operational decision stages dependent on one another and affecting various time scales. Their integration usually leads to multiscale models that are computationally intractable. The design and operation of energy hubs faces similar challenges. Renewable energies are challenging to model due to the high level of intermittency and uncertainty. The multiscale (i.e., planning and scheduling) energy hub systems that incorporate renewable energy resources become more challenging to model due to an integration of the multiscale and high level of intermittency associated with renewable energy. In this work, a mixed-integer programming (MILP) superstructure is proposed for clustering shape-based time series data featuring multiple attributes using a multi-objective optimization approach. Additionally, a data-driven statistical method is used to represent the intermittent behavior of uncertain renewable energy data. According to these methods, the design and operation of an energy hub with hydrogen storage was reformulated following a two-stage stochastic modeling technique. The main outcomes of this study are formulating a stochastic energy hub optimization model which comprehensively considers the design and operation planning, energy storage system, and uncertainties of DRERs, and proposing an efficient size reduction approach for large-sized multiple attributes demand data. The case study results show that normal clustering is closer to the optimal case (full scale model) compared with sequence clustering. In addition, there is an improvement in the objective function value using the stochastic approach instead of the deterministic. The present clustering algorithm features many unique characteristics that gives it advantages over other clustering approach and the straightforward statistical approach used to represent intermittent energy, and it can be easily incorporated into various distributed energy systems.
Audience Academic
Author Alhameli, Falah
Elkamel, Ali
Alkatheri, Mohammed
Betancourt-Torcat, Alberto
Almansoori, Ali
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Alkatheri
  fullname: Alkatheri, Mohammed
– sequence: 2
  givenname: Falah
  surname: Alhameli
  fullname: Alhameli, Falah
– sequence: 3
  givenname: Alberto
  surname: Betancourt-Torcat
  fullname: Betancourt-Torcat, Alberto
– sequence: 4
  givenname: Ali
  orcidid: 0000-0002-0789-5105
  surname: Almansoori
  fullname: Almansoori, Ali
– sequence: 5
  givenname: Ali
  orcidid: 0000-0002-6220-6288
  surname: Elkamel
  fullname: Elkamel, Ali
BookMark eNptkd9KwzAUxoNMcOpufIKAd8Jm2mTN6t2Y8w8oE9TrkqYnXUab1CS92Mv4rGaboIg5gZyE7_eFc84pGhhrAKGLhEwozcl155KEsLizIzRM05SPc57wwa_8BI2835C48oTOptkQfS6a3gdw2tR43nXOCrnGyjoc1oCXSmmpwQT8aps-aGuwVfi5b4L2UjSAX4OVa-GDlvjF2dqJtt0ZxbxsoPU3O8tGS7FHg8VLA67e4oe-xLfgdW2wMBVedeAOkt5U4PC7keCC0CZsz9GxEo2H0fd5ht7vlm-Lh_HT6v5xMX8aS0pZGFc8z0tWcSZUMkvyrOQktqKiGVOSUKAMShlvZEYgm3IGFHiqSDaFClhOmKBn6PLgGzvw0YMPxcb2zsQvi3RGsoxwntOomhxUdSy-0EbZ4ISMUUGrZRyG0vF9zlkMkk55BMgBkM5670AVUod9qRHUTZGQYje54mdyEbn6g3ROt8Jt_xN_Abv_nPA
CitedBy_id crossref_primary_10_3390_pr11072008
crossref_primary_10_3390_su17073001
Cites_doi 10.3390/en15249572
10.1021/ie404165c
10.1016/j.est.2023.106937
10.1016/j.neucom.2013.03.017
10.1016/j.energy.2015.10.079
10.1016/j.renene.2017.10.017
10.1016/j.scs.2022.104354
10.1016/j.energy.2020.117052
10.1016/B978-0-12-397219-4.00017-5
10.1016/j.rser.2018.03.003
10.1080/01621459.1969.10500990
10.1007/s11590-012-0469-5
10.1021/acs.iecr.6b01264
10.1016/j.jenvman.2009.11.009
10.1016/j.ejor.2005.04.048
10.1016/j.ijhydene.2015.08.038
10.2478/amcs-2014-0012
10.1016/j.egyr.2023.02.051
10.1016/j.enbuild.2019.04.004
10.1016/j.scs.2020.102578
10.1007/978-1-4614-0237-4
10.1016/j.enconman.2017.04.074
10.1016/j.energy.2020.117130
10.1016/j.ejor.2005.04.049
10.1002/aic.16578
10.1016/j.energy.2022.125219
10.1016/j.enconman.2017.11.007
10.1016/j.energy.2015.10.137
10.1109/BigData.2015.7364011
10.1016/j.enconman.2016.12.011
10.1016/j.egypro.2017.12.539
10.1109/TEM.2013.2284386
10.1016/j.energy.2017.06.003
10.1007/978-3-540-88908-3
10.1016/j.enconman.2018.12.073
10.3390/en10070868
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr11041046
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Biological Science Collection
Biological Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Statistics
EISSN 2227-9717
ExternalDocumentID A747470257
10_3390_pr11041046
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c334t-d799b4d74af18196b70110d364fc03e34ebcd36080e6574e3e72f065ede4904a3
IEDL.DBID KB.
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000982795800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Fri Jul 25 11:55:26 EDT 2025
Tue Nov 04 18:15:31 EST 2025
Tue Nov 18 21:53:10 EST 2025
Sat Nov 29 07:17:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-d799b4d74af18196b70110d364fc03e34ebcd36080e6574e3e72f065ede4904a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6220-6288
0000-0002-0789-5105
OpenAccessLink https://www.proquest.com/docview/2806607793?pq-origsite=%requestingapplication%
PQID 2806607793
PQPubID 2032344
ParticipantIDs proquest_journals_2806607793
gale_infotracacademiconefile_A747470257
crossref_citationtrail_10_3390_pr11041046
crossref_primary_10_3390_pr11041046
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lyu (ref_28) 2013; 119
Sengupta (ref_38) 2018; 89
Elkamel (ref_23) 2023; 89
ref_36
ref_10
Koltsaklis (ref_8) 2014; 53
Alhameli (ref_21) 2019; 65
ref_30
Salman (ref_34) 2006; 173
Nojavan (ref_20) 2017; 145
ref_39
ref_37
Maroufmashat (ref_9) 2016; 55
Maroufmashat (ref_18) 2016; 41
Vinod (ref_31) 1969; 64
Liu (ref_24) 2019; 182
Mirzaesmaeeli (ref_33) 2010; 91
(ref_25) 2010; 5
Yilmaz (ref_2) 2019; 61
(ref_35) 2006; 173
Guo (ref_7) 2023; 9
Zhang (ref_14) 2019; 194
Sabo (ref_29) 2014; 24
ref_43
ref_42
Zhang (ref_12) 2022; 261
Turk (ref_22) 2020; 196
ref_41
ref_1
Majidi (ref_16) 2017; 134
Lu (ref_5) 2020; 195
Wang (ref_19) 2017; 142
Moghaddam (ref_3) 2016; 94
Faraji (ref_15) 2020; 65
Kotzur (ref_11) 2018; 117
Green (ref_27) 2014; 61
Maroufmashat (ref_40) 2015; 93
ref_26
Mangasarian (ref_32) 2013; 7
Amry (ref_13) 2023; 62
Ma (ref_4) 2017; 133
Nojavan (ref_17) 2018; 156
ref_6
References_xml – ident: ref_6
  doi: 10.3390/en15249572
– volume: 53
  start-page: 16905
  year: 2014
  ident: ref_8
  article-title: Design and Operational Planning of Energy Networks Based on Combined Heat and Power Units
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie404165c
– volume: 62
  start-page: 106937
  year: 2023
  ident: ref_13
  article-title: Optimal sizing and energy management strategy for EV workplace charging station considering PV and flywheel energy storage system
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106937
– volume: 119
  start-page: 413
  year: 2013
  ident: ref_28
  article-title: A comparison of typical ℓ minimization algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.017
– volume: 93
  start-page: 2546
  year: 2015
  ident: ref_40
  article-title: Modeling and optimization of a network of energy hubs to improve economic and emission considerations
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.079
– volume: 117
  start-page: 474
  year: 2018
  ident: ref_11
  article-title: Impact of different time series aggregation methods on optimal energy system design
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.10.017
– volume: 89
  start-page: 104354
  year: 2023
  ident: ref_23
  article-title: Multi-agent modeling for linking a green transportation system with an urban agriculture network in a food-energy-water nexus
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2022.104354
– volume: 195
  start-page: 117052
  year: 2020
  ident: ref_5
  article-title: Optimal household energy management based on smart residential energy hub considering uncertain behaviors
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117052
– ident: ref_37
  doi: 10.1016/B978-0-12-397219-4.00017-5
– volume: 5
  start-page: 1721
  year: 2010
  ident: ref_25
  article-title: The comparison of L11 and L22-norm minimization methods
  publication-title: Int. J. Phys.
– volume: 89
  start-page: 51
  year: 2018
  ident: ref_38
  article-title: The National Solar Radiation Data Base (NSRDB)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.003
– volume: 64
  start-page: 506
  year: 1969
  ident: ref_31
  article-title: Integer Programming and the Theory of Grouping
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1969.10500990
– volume: 7
  start-page: 625
  year: 2013
  ident: ref_32
  article-title: Absolute value equation solution via dual complementarity
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-012-0469-5
– volume: 55
  start-page: 8950
  year: 2016
  ident: ref_9
  article-title: Multi-objective Optimization for Design and Operation of Distributed Energy Systems through the Multi-energy Hub Network Approach
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b01264
– ident: ref_39
– volume: 91
  start-page: 1063
  year: 2010
  ident: ref_33
  article-title: A multi-period optimization model for energy planning with CO2 emission consideration
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2009.11.009
– volume: 173
  start-page: 866
  year: 2006
  ident: ref_34
  article-title: A mixed-integer programming approach to the clustering problem with an application in customer segmentation
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.04.048
– volume: 41
  start-page: 7700
  year: 2016
  ident: ref_18
  article-title: Mixed integer linear programing based approach for optimal planning and operation of a smart urban energy network to support the hydrogen economy
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.08.038
– ident: ref_42
– ident: ref_1
– volume: 24
  start-page: 151
  year: 2014
  ident: ref_29
  article-title: Center-based l1–clustering method
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/amcs-2014-0012
– volume: 9
  start-page: 3683
  year: 2023
  ident: ref_7
  article-title: Multi-energy collaborative optimization of park integrated energy system considering carbon emission and demand response
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.02.051
– volume: 194
  start-page: 113
  year: 2019
  ident: ref_14
  article-title: Bi-stage stochastic model for optimal capacity and electric cooling ratio of CCHPs—A case study for a hotel
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.04.004
– volume: 65
  start-page: 102578
  year: 2020
  ident: ref_15
  article-title: Stochastic operation and scheduling of energy hub considering renewable energy sources’ uncertainty and N-1 contingency
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102578
– ident: ref_43
  doi: 10.1007/978-1-4614-0237-4
– volume: 145
  start-page: 117
  year: 2017
  ident: ref_20
  article-title: Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.04.074
– volume: 196
  start-page: 117130
  year: 2020
  ident: ref_22
  article-title: Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117130
– volume: 61
  start-page: 125
  year: 2019
  ident: ref_2
  article-title: Reducing energy time series for energy system models via self-organizing maps
  publication-title: Inf. Technol.
– volume: 173
  start-page: 910
  year: 2006
  ident: ref_35
  article-title: A mixed-integer programming approach to multi-class data classification problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.04.049
– volume: 65
  start-page: e16578
  year: 2019
  ident: ref_21
  article-title: A mixed-integer programming approach for clustering demand data for multiscale mathematical programming applications
  publication-title: AIChE J.
  doi: 10.1002/aic.16578
– volume: 261
  start-page: 125219
  year: 2022
  ident: ref_12
  article-title: Modelling and analysis of offshore energy hubs
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125219
– volume: 156
  start-page: 34
  year: 2018
  ident: ref_17
  article-title: Optimal scheduling of heating and power hubs under economic and environment issues in the presence of peak load management
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.11.007
– volume: 94
  start-page: 157
  year: 2016
  ident: ref_3
  article-title: A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.137
– ident: ref_26
  doi: 10.1109/BigData.2015.7364011
– ident: ref_41
– volume: 133
  start-page: 292
  year: 2017
  ident: ref_4
  article-title: Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.12.011
– ident: ref_36
– volume: 142
  start-page: 1615
  year: 2017
  ident: ref_19
  article-title: Optimal design and operation of CHPs and energy hub with multi objectives for a local energy system
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.539
– volume: 61
  start-page: 251
  year: 2014
  ident: ref_27
  article-title: Divide and Conquer? ${k}$-Means Clustering of Demand Data Allows Rapid and Accurate Simulations of the British Electricity System
  publication-title: IEEE Trans. Eng. Manag.
  doi: 10.1109/TEM.2013.2284386
– volume: 134
  start-page: 157
  year: 2017
  ident: ref_16
  article-title: A cost-emission framework for hub energy system under demand response program
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.003
– ident: ref_30
  doi: 10.1007/978-3-540-88908-3
– volume: 182
  start-page: 126
  year: 2019
  ident: ref_24
  article-title: Standardized modelling and economic optimization of multi-carrier energy systems considering energy storage and demand response
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.12.073
– ident: ref_10
  doi: 10.3390/en10070868
SSID ssj0000913856
Score 2.2292078
Snippet The management of the supply chain for enterprise-wide operations generally consists of strategic, tactical, and operational decision stages dependent on one...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1046
SubjectTerms Algorithms
Alternative energy sources
Case studies
Clustering
Costs
Decision making
Design optimization
Efficiency
Electricity
Emissions
Energy industry
Energy resources
Energy sources
Energy storage
Greenhouse gases
Hydrogen storage
Integer programming
Intermittency
Linear programming
Mathematical programming
Mixed integer
Monte Carlo simulation
Multiple objective analysis
Optimization models
Renewable energy
Renewable resources
Scale models
Scheduling
Statistical analysis
Statistical methods
Statistics
Stochastic models
Stochastic programming
Superstructures
Supply chains
Uncertainty
Title Clustering Approach for the Efficient Solution of Multiscale Stochastic Programming Problems: Application to Energy Hub Design and Operation under Uncertainty
URI https://www.proquest.com/docview/2806607793
Volume 11
WOSCitedRecordID wos000982795800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwEB1By6EcgC5UbCmrkUCCHkLT2hvHXNC2pCoHlgioVE6RYzviUDbbTRaJC5_CtzKTeLsgVVy4RIpsWZZmPPPsmXkD8NxUQlrjZDQubRVJ63SUulJFJvZaVD6NtUm7ZhNqOk0vLnQeHtyakFa5somdoXa15TfyA44AJrEidXozv4q4axRHV0MLjduweXhEWJ-Dssevrt9YmPMyHSc9K6mg2_3BfEHuTnJc8y8_dLM17lzM6f3_3dwDuBfAJU56bdiGW342gLt_UA4OYDsc5gZfBsbp_QFsMeTsGZsfwq-TyyWzJ9B0nATGcSRoiwQVMesYJ8hR4eo9DesKuyrehqTt8VNb26-Gl8K8T_36xgvlfd-a5jVO1hFzbGvMutpDPFuW-LZLJkEzc_hh7nvNRK5xW-A57bhLXWh_PILz0-zzyVkUujhEVgjZRk5pXUqnpKkITeikVAw5nEhkZWPhhfSlpT9Crj4ZK-mFV0cVASPvvNSxNGIHNmb1zD8G1FYfVmRiXaoMrViWZTom9-q91Ym0Wg9hfyXTwgaKc-60cVnQVYflX6zlP4Rn13PnPbHHjbNesGoUfNppJWtC0QLth3mzigndxqQi3KiGsLdSjSKYgaZY68Xuv4efwBb3se9TgvZgo10s_VO4Y7-T9BYj2DzOpvnHUafdI05Pzfn7M6OR_N37_MtvC7QKIA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFIlyABpABAqMBAh6sGqyG68XCaGoTZWobbBEK7Uns18WhxKH2AH1z_AT-I3M-qMBqeLWA0fLq5G1-zzzdnfmDcBLlTFulOXBQJss4MbKILZaBCp0kmUuDqWKq2YTYjqNT09lsga_2loYn1bZ-sTKUdvc-DPyHX8DGIWC4PRh_i3wXaP87WrbQqOGxYG7-EFbtuL9ZI_W91W_vz863h0HTVeBwDDGy8AKKTW3gquMopuMtPAh0LKIZyZkjnGnDT0Rk3LRQHDHnOhnFKiddVyGXDGyewPWOYE97MB6MjlKzi5PdbzKZjyIah1UxmS4M1-Qde5vUv-KfFf7_yqo7d_936bjHtxp6DMOa7xvwpqbdeH2H6KKXdhs3FWBbxpN7e0ubHhSXWtS34efu-dLrw9Bw3HYaKojkXckMoyjSlODQjG2J4aYZ1jVKReEZ4efytx8Ud4UJnVy21dvKKk78xTvcLjKCcAyx1FVXYnjpca9Kl0G1czix7mr_z30VXwLPKEvrpIzyosHcHItU_gQOrN85h4BSiPfZhREbCwUWdRaxwMiEM4ZGXEjZQ-2WwylphFx971EzlPazHm8pSu89eDF5dh5LV1y5ajXHoqp92dkyaimLIO-xyuDpUPab3JBzFj0YKuFYto4uiJd4fDxv18_h1vj46PD9HAyPXgCG33iinUC1BZ0ysXSPYWb5jut5OJZ808hfL5u3P4G5gBh0Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NDqHxAKyAVhhwEiDYQ9RQu3GMhFBZW20aKhEwaW_BsR3tYTSlSUH7MnwQPh3nxFlBmnjbA49RrJNl_3x_7LvfATxTOeNaGR4MM50HXBsZxCYTgQqtZLmNQ6niutmEmM3ikxOZbMCvthbGpVW2OrFW1KbQ7o68714Ao1AQnPq5T4tIxtO3i2-B6yDlXlrbdhoNRI7s-Q8K38o3h2Pa6-eDwXTyef8g8B0GAs0YrwIjpMy4EVzlZOlklAlnDg2LeK5DZhm3maYv8qpsNBTcMisGORltayyXIVeM5F6DTcEo6OnA5rvJLPl4ccPjGDfjYdRwojImw_5iSdK5e1X9ywpebgtqAze9_T8vzR245d1qHDXnYBs27LwLN_8gW-zCtldjJb70XNt7XdhyznbDVX0Xfu6frRxvBA3HkedaR3LqkZxknNRcG2Sisb1JxCLHun65JJxb_FQV-lQ5UZg0SW9fnaCk6dhTvsbROlcAqwInddUlHqwyHNdpNKjmBj8sbHMm0VX3LfGYZlwnbVTn9-D4SpbwPnTmxdzuAEotX-VkXEwsFEnMsiwekmNhrZYR11L2YK_FU6o9ubvrMXKWUpDnsJeusdeDpxdjFw2lyaWjXjhYpk7PkSStfLkGzccxhqUjikO5II9Z9GC3hWXqFWCZrjH54N-_n8ANAmv6_nB29BC2BuRCNnlRu9Cpliv7CK7r77SRy8f-eCF8uWrY_gYRPGpr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Approach+for+the+Efficient+Solution+of+Multiscale+Stochastic+Programming+Problems%3A+Application+to+Energy+Hub+Design+and+Operation+under+Uncertainty&rft.jtitle=Processes&rft.au=Alkatheri%2C+Mohammed&rft.au=Alhameli%2C+Falah&rft.au=Betancourt-Torcat%2C+Alberto&rft.au=Almansoori%2C+Ali&rft.date=2023-04-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=11&rft.issue=4&rft.spage=1046&rft_id=info:doi/10.3390%2Fpr11041046&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr11041046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon