A Hyper Learning Binary Dragonfly Algorithm for Feature Selection: A COVID-19 Case Study
The rapid expansion of information science has caused the issue of “the curse of dimensionality”, which will negatively affect the performance of the machine learning model. Feature selection is typically considered as a pre-processing mechanism to find an optimal subset of features from a given set...
Uloženo v:
| Vydáno v: | Knowledge-based systems Ročník 212; s. 106553 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
05.01.2021
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The rapid expansion of information science has caused the issue of “the curse of dimensionality”, which will negatively affect the performance of the machine learning model. Feature selection is typically considered as a pre-processing mechanism to find an optimal subset of features from a given set of all features in the data mining process. In this article, a novel Hyper Learning Binary Dragonfly Algorithm (HLBDA) is proposed as a wrapper-based method to find an optimal subset of features for a given classification problem. HLBDA is an enhanced version of the Binary Dragonfly Algorithm (BDA) in which a hyper learning strategy is used to assist the algorithm to escape local optima and improve searching behavior. The proposed HLBDA is compared with eight algorithms in the literature. Several assessment indicators are employed to evaluate and compare the effectiveness of these methods over twenty-one datasets from the University of California Irvine (UCI) repository and Arizona State University. Also, the proposed method is applied to a coronavirus disease (COVID-19) dataset. The results demonstrate the superiority of HLBDA in increasing classification accuracy and reducing the number of selected features.22The source code of HLBDA is publicly available at https://seyedalimirjalili.com/da. |
|---|---|
| AbstractList | The rapid expansion of information science has caused the issue of "the curse of dimensionality", which will negatively affect the performance of the machine learning model. Feature selection is typically considered as a pre-processing mechanism to find an optimal subset of features from a given set of all features in the data mining process. In this article, a novel Hyper Learning Binary Dragonfly Algorithm (HLBDA) is proposed as a wrapper-based method to find an optimal subset of features for a given classification problem. HLBDA is an enhanced version of the Binary Dragonfly Algorithm (BDA) in which a hyper learning strategy is used to assist the algorithm to escape local optima and improve searching behavior. The proposed HLBDA is compared with eight algorithms in the literature. Several assessment indicators are employed to evaluate and compare the effectiveness of these methods over twenty-one datasets from the University of California Irvine (UCI) repository and Arizona State University. Also, the proposed method is applied to a coronavirus disease (COVID-19) dataset. The results demonstrate the superiority of HLBDA in increasing classification accuracy and reducing the number of selected features. The rapid expansion of information science has caused the issue of “the curse of dimensionality”, which will negatively affect the performance of the machine learning model. Feature selection is typically considered as a pre-processing mechanism to find an optimal subset of features from a given set of all features in the data mining process. In this article, a novel Hyper Learning Binary Dragonfly Algorithm (HLBDA) is proposed as a wrapper-based method to find an optimal subset of features for a given classification problem. HLBDA is an enhanced version of the Binary Dragonfly Algorithm (BDA) in which a hyper learning strategy is used to assist the algorithm to escape local optima and improve searching behavior. The proposed HLBDA is compared with eight algorithms in the literature. Several assessment indicators are employed to evaluate and compare the effectiveness of these methods over twenty-one datasets from the University of California Irvine (UCI) repository and Arizona State University. Also, the proposed method is applied to a coronavirus disease (COVID-19) dataset. The results demonstrate the superiority of HLBDA in increasing classification accuracy and reducing the number of selected features.22The source code of HLBDA is publicly available at https://seyedalimirjalili.com/da. |
| ArticleNumber | 106553 |
| Author | Too, Jingwei Mirjalili, Seyedali |
| Author_xml | – sequence: 1 givenname: Jingwei orcidid: 0000-0001-6908-1038 surname: Too fullname: Too, Jingwei email: jamesjames868@gmail.com organization: Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia – sequence: 2 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali email: ali.mirjalili@gmail.com organization: Center for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia |
| BookMark | eNqFkEtLAzEUhYMoWKv_wEXA9dQ8JzNdCLVVWyi48IG7kEkzNXWa1GQqzL83ZVy50NWBe-65j-8MHDvvDACXGI0wwvn1ZvThfOziiCByKOWc0yMwwIUgmWCoPAYDVHKUCcTxKTiLcYMQIgQXA_A2gfNuZwJcGhWcdWt4a50KHZwFtfaubjo4adY-2PZ9C2sf4L1R7T4Y-GQao1vr3RhO4PTxdTHLcAmnKiar3a-6c3BSqyaaix8dgpf7u-fpPFs-Piymk2WmKWVttsoZUlSLouakrHJccaGTUlZUqFKclopVosJ5haigvM4V19SwmnBRFsmo6RBc9XN3wX_uTWzlxu-DSyslYSUiOeNMpK5x36WDjzGYWmrbqsP5bVC2kRjJA0m5kT1JeSApe5IpzH6Fd8FuE6T_Yjd9zKT3v6wJMmprnDYrGxI6ufL27wHf3IWPog |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_128506 crossref_primary_10_3390_computers10110136 crossref_primary_10_1007_s11227_023_05413_x crossref_primary_10_1016_j_cie_2021_107666 crossref_primary_10_1007_s42235_024_00580_w crossref_primary_10_3390_fi14060178 crossref_primary_10_1016_j_asoc_2024_111650 crossref_primary_10_3389_fpubh_2021_697850 crossref_primary_10_1016_j_knosys_2023_111191 crossref_primary_10_7717_peerj_cs_1430 crossref_primary_10_1016_j_asoc_2023_110319 crossref_primary_10_1016_j_knosys_2025_113252 crossref_primary_10_1016_j_knosys_2023_111352 crossref_primary_10_1016_j_bspc_2023_105073 crossref_primary_10_1089_cmb_2021_0256 crossref_primary_10_2478_cait_2023_0038 crossref_primary_10_1093_jcde_qwaf050 crossref_primary_10_1016_j_asoc_2021_107956 crossref_primary_10_1007_s00521_023_08588_9 crossref_primary_10_1038_s41598_025_92187_2 crossref_primary_10_1002_ima_22889 crossref_primary_10_1016_j_eswa_2021_116377 crossref_primary_10_3390_app11052251 crossref_primary_10_3390_rs15163980 crossref_primary_10_1016_j_knosys_2023_110635 crossref_primary_10_1002_cpe_6675 crossref_primary_10_1371_journal_pone_0324866 crossref_primary_10_1007_s10462_024_10822_2 crossref_primary_10_1007_s00500_023_09062_3 crossref_primary_10_1007_s43674_021_00021_9 crossref_primary_10_3390_biomimetics10050315 crossref_primary_10_32604_cmc_2022_019611 crossref_primary_10_1007_s11042_025_20605_8 crossref_primary_10_3389_fdata_2025_1624507 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_32604_cmes_2024_048049 crossref_primary_10_1038_s41598_024_57518_9 crossref_primary_10_1016_j_knosys_2022_108787 crossref_primary_10_1016_j_engappai_2022_105088 crossref_primary_10_1109_ACCESS_2022_3188856 crossref_primary_10_1007_s00521_021_06775_0 crossref_primary_10_1016_j_cie_2021_107912 crossref_primary_10_3390_math10183274 crossref_primary_10_1111_exsy_13200 crossref_primary_10_1016_j_asoc_2023_110583 crossref_primary_10_1007_s11042_024_18734_7 crossref_primary_10_1016_j_swevo_2025_101908 crossref_primary_10_1007_s42979_021_00687_5 crossref_primary_10_1109_TNNLS_2021_3106399 crossref_primary_10_1016_j_compbiomed_2023_107237 crossref_primary_10_1016_j_eswa_2023_119745 crossref_primary_10_1016_j_compbiomed_2022_106520 crossref_primary_10_1016_j_compbiomed_2023_107197 crossref_primary_10_1016_j_jksuci_2024_102205 crossref_primary_10_1016_j_knosys_2024_112550 crossref_primary_10_1080_10255842_2022_2112185 crossref_primary_10_3390_rs14030805 crossref_primary_10_1007_s10489_022_04446_8 crossref_primary_10_3390_biomimetics8030310 crossref_primary_10_3390_s25030863 crossref_primary_10_1109_ACCESS_2021_3138403 crossref_primary_10_1111_exsy_13330 crossref_primary_10_1016_j_cie_2021_107904 crossref_primary_10_1016_j_health_2023_100200 crossref_primary_10_3390_math10152742 crossref_primary_10_1007_s00521_023_08997_w crossref_primary_10_1007_s11042_023_17580_3 crossref_primary_10_3390_s21227542 crossref_primary_10_1007_s10586_024_04988_1 crossref_primary_10_1093_jcde_qwad009 crossref_primary_10_1134_S0361768821050066 crossref_primary_10_1016_j_ins_2021_12_086 crossref_primary_10_1109_JIOT_2023_3317089 crossref_primary_10_1007_s12530_023_09557_2 crossref_primary_10_1016_j_eswa_2022_118293 crossref_primary_10_1016_j_micpro_2023_104778 crossref_primary_10_1007_s10489_021_02776_7 crossref_primary_10_3390_sym15020316 crossref_primary_10_1007_s00500_022_06826_1 crossref_primary_10_1016_j_rineng_2025_105154 crossref_primary_10_1016_j_imu_2022_100941 crossref_primary_10_1109_ACCESS_2023_3310429 crossref_primary_10_1016_j_knosys_2022_109446 crossref_primary_10_1111_exsy_12949 crossref_primary_10_1016_j_bdr_2025_100556 crossref_primary_10_32604_cmc_2023_033039 crossref_primary_10_3390_biomimetics9030187 crossref_primary_10_1109_ACCESS_2023_3287484 crossref_primary_10_1016_j_asoc_2022_108736 crossref_primary_10_1016_j_engstruct_2021_113108 crossref_primary_10_1016_j_bspc_2023_105423 crossref_primary_10_1016_j_rineng_2025_104866 crossref_primary_10_1111_exsy_12786 crossref_primary_10_1016_j_imu_2021_100825 crossref_primary_10_3390_biomedicines11061723 crossref_primary_10_1109_ACCESS_2023_3290895 crossref_primary_10_1371_journal_pone_0275727 crossref_primary_10_1016_j_asoc_2024_111546 crossref_primary_10_1016_j_eswa_2023_122701 crossref_primary_10_3233_JIFS_236372 crossref_primary_10_3233_JIFS_221036 crossref_primary_10_1016_j_chemolab_2023_104880 crossref_primary_10_1007_s42235_025_00656_1 crossref_primary_10_1016_j_artmed_2024_102886 crossref_primary_10_1007_s10586_022_03725_w crossref_primary_10_3390_math13030449 crossref_primary_10_1007_s11831_022_09853_1 crossref_primary_10_1016_j_bspc_2022_104534 crossref_primary_10_1016_j_bspc_2023_104718 crossref_primary_10_1007_s11227_024_06088_8 crossref_primary_10_1371_journal_pone_0260232 crossref_primary_10_1002_int_22979 crossref_primary_10_1007_s41870_023_01380_x crossref_primary_10_1016_j_asoc_2022_109023 crossref_primary_10_1016_j_eswa_2023_121582 |
| Cites_doi | 10.1002/er.5747 10.1016/j.cmpb.2017.11.021 10.1109/ACCESS.2019.2953800 10.1016/j.asoc.2016.08.011 10.1016/j.eswa.2019.112976 10.1016/j.cie.2020.106628 10.1016/j.chemolab.2020.104054 10.1007/s00521-015-1920-1 10.1016/j.compstruc.2012.07.010 10.1109/ICTCS.2017.43 10.1016/j.neucom.2016.03.101 10.1080/10798587.2017.1342400 10.1007/s13042-019-00931-8 10.1016/j.eswa.2019.113103 10.1016/j.swevo.2020.100665 10.1016/j.chaos.2020.109853 10.1016/j.asoc.2017.04.042 10.1007/s10489-018-1334-8 10.1109/ACCESS.2019.2906757 10.1038/scientificamerican0792-66 10.1016/j.asoc.2019.106031 10.1007/s00330-020-06829-2 10.1016/j.knosys.2020.106270 10.1080/10798587.2017.1307626 10.1016/j.eswa.2019.112824 10.1109/CEC.2014.6900380 10.1016/j.asoc.2015.07.023 10.1016/j.ins.2014.06.009 10.2991/ijcis.d.200219.001 10.1109/ACCESS.2020.2992752 10.3389/fpubh.2020.00357 10.1016/j.neucom.2017.04.053 10.1016/j.eswa.2020.113249 10.1016/j.asoc.2017.11.006 10.1016/j.patrec.2016.03.014 10.1016/j.knosys.2017.04.004 10.1016/j.jss.2017.02.044 10.1016/j.swevo.2011.02.002 10.1016/j.patrec.2013.01.026 10.1016/j.bbe.2020.08.008 10.1016/j.neucom.2015.06.083 10.1007/s10710-019-09358-0 10.1016/j.swevo.2018.02.021 10.1007/s10489-018-1261-8 10.1016/j.eswa.2005.09.024 10.1016/j.compeleceng.2018.04.014 10.1016/j.eswa.2014.05.009 10.1109/CEC.2018.8477769 10.1016/j.eswa.2020.113364 10.1007/s00521-013-1433-8 10.1016/j.asoc.2015.07.028 10.1016/j.eswa.2018.09.015 10.1109/ICSMC.1997.637339 10.1016/j.asoc.2015.06.004 10.1016/j.knosys.2020.106131 10.1016/j.ins.2015.06.044 10.1007/s13369-020-04486-7 10.1016/j.eswa.2017.04.033 10.1109/ACCESS.2020.2999093 10.1038/s41598-020-71294-2 10.1016/j.future.2017.05.044 10.1016/j.advengsoft.2013.12.007 10.1007/s00500-016-2442-1 10.1016/j.eswa.2018.08.051 10.1007/s10479-016-2331-0 10.1109/ACCESS.2020.2985596 10.1016/j.asoc.2018.10.054 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Jan 5, 2021 |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jan 5, 2021 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2020.106553 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2020_106553 S0950705120306821 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-d640a3c78f529b61b57c9b6348b0ba539a4b7b16b03735f6a5c3e4f25798b7bf3 |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604529100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 18:43:44 EST 2025 Sat Nov 29 07:04:10 EST 2025 Tue Nov 18 21:58:38 EST 2025 Tue Jul 16 04:30:26 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Combinatorial Optimization Feature selection Binary Dragonfly Algorithm Artificial Intelligence Classification Data mining Algorithm Optimization Particle Swarm Optimization Binary Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-d640a3c78f529b61b57c9b6348b0ba539a4b7b16b03735f6a5c3e4f25798b7bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6908-1038 0000-0002-1443-9458 |
| PQID | 2490264547 |
| PQPubID | 2035257 |
| ParticipantIDs | proquest_journals_2490264547 crossref_citationtrail_10_1016_j_knosys_2020_106553 crossref_primary_10_1016_j_knosys_2020_106553 elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106553 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-05 |
| PublicationDateYYYYMMDD | 2021-01-05 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Wan, Wang, Ye, Lai (b45) 2016; 49 Hammouri, Mafarja, Al-Betar (b69) 2020; 203 Neggaz, Ewees, Elaziz, Mafarja (b68) 2020; 145 Hariharan, Sindhu, Vijean (b67) 2018; 155 Kennedy (b8) 2011 J. Pierezan, L. Dos Santos Coelho, Coyote optimization algorithm: A new metaheuristic for global optimization problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC, 2018, pp. 1–8. Derrac, García, Hui (b84) 2014; 289 Aljarah, Habib, Faris (b3) 2020; 147 Eskandar, Sadollah, Bahreininejad, Hamdi (b10) 2012; 110–111 Kanti Ghosh, Guha, Ghosh (b48) 2020 Ribeiro, da Silva, Mariani, Coelho (b64) 2020; 135 J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: Computational Cybernetics and Simulation 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, 1997, pp. 4104–4108. Hu, Ao, Bai (b21) 2020; 8 Mafarja, Mirjalili (b58) 2017; 260 Chen, Tang, Mo (b87) 2020 Iwendi, Bashir, Peshkar (b90) 2020; 8 Wang, Yang, Ni (b13) 2015; 34 Neggaz, Houssein, Hussain (b76) 2020; 152 Tubishat, Abushariah, Idris, Aljarah (b59) 2019; 49 Abdel-Basset, Abdle-Fatah, Sangaiah (b20) 2018 R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: 2014 IEEE Congress on Evolutionary Computation, CEC, 2014, pp. 1658–1665. (b75) 2019 Chantar, Mafarja, Alsawalqah (b54) 2019 Kanimozhi, Manjula (b36) 2017 Huang, Wang (b41) 2006; 31 Mafarja, Aljarah, Faris (b71) 2019; 117 Jude Hemanth, Anitha (b42) 2019; 75 KS, Murugan (b19) 2017; 83 Shaban, Rabie, Saleh, Abo-Elsoud (b61) 2020; 205 Tuncer, Dogan, Ozyurt (b63) 2020; 203 Ji, Lu, Sun (b39) 2020; 8 Arora, Anand (b5) 2019; 116 Ma, Xia (b32) 2017; 58 M.M. Mafarja, D. Eleyan, I. Jaber, et al. Binary dragonfly algorithm for feature selectionn, in: 2017 International Conference on New Trends in Computing Sciences, ICTCS, 2017, pp. 12–17. Zhong, Chen, Peng (b6) 2020; 13 Sayed, Tharwat, Hassanien (b25) 2019; 49 Zawbaa, Emary, Grosan, Snasel (b53) 2018; 42 Derrac, García, Molina, F. (b86) 2011; 1 Emary, Zawbaa, Hassanien (b70) 2016; 213 Emary, Zawbaa, Hassanien (b52) 2016; 172 He, Xie, Wong, Wang (b77) 2018; 78 Baynath, Soyjaudah, Khan (b50) 2018 Mafarja, Mirjalili (b57) 2018; 62 Zhang, Xu, Yu (b23) 2020; 141 Ahmed, Ghosh, Singh (b28) 2020; 8 Too, Abdullah (b44) 2020 Thom de Souza, de Macedo, dos Santos Coelho (b81) 2020; 107 Al-Tashi, Kadir, Rais (b7) 2019; 7 Ghaemi, Feizi-Derakhshi (b12) 2014; 41 Patel, Savsani (b14) 2015; 324 Mirjalili, Mirjalili, Lewis (b51) 2014; 69 Alazzam, Sharieh, Sabri (b30) 2020; 148 Erdal Tümer, Akkuş (b35) 2019; 34 Al-Madi, Faris, Mirjalili (b72) 2019 (b88) 2020 Xue, NanWang, Niu (b34) 2019; 60 Zhang, Liu, Wang (b46) 2020 Wang, Deb, Cui (b16) 2015 Qiu (b40) 2019 Wang, Yang, Wang (b26) 2020; 21 Lian, Zhang, Jiang, Goss (b33) 2018; 137 Sayed, Hassanien, Azar (b79) 2017 Carrasco, García, Rueda (b85) 2020; 54 Yousri, Rezk, Fathy (b22) 2020 AbdEl-Fattah Sayed, Nabil, Badr (b27) 2016; 77 Holl (b9) 1992; 267 Aljarah, Faris, Mirjalili (b18) 2018; 22 da Silva, Ribeiro, Mariani, Coelho (b65) 2020; 139 Sahlol, Yousri, Ewees, Al-Qaness, Damasevicius, Elaziz (b89) 2020 Han, Zhou, Zhou (b1) 2019; 7 Emary, Zawbaa (b73) 2018 Tubishat, Idris (b60) 2019 Shareef, Ibrahim, Mutlag (b15) 2015; 36 Too, Abdullah (b47) 2020 Abdel-Basset, El-Shahat, El-henawy (b56) 2020; 139 Quiroz, Banerjee, Dascalu, Lau (b2) 2017 Too, Abdullah (b49) 2020; 0 Wang, Jing, Niu (b29) 2017; 126 Hancer, Xue, Karaboga, Zhang (b4) 2015; 36 (b74) 2019 Xue, Tang, Pang, Liu (b38) 2020; 88 Too, Abdullah (b55) 2020 Hansen, Kern (b82) 2004 Krömer, Platoš, Nowaková, Snášel (b43) 2018; 265 Gupta, Sundaram, Khanna (b24) 2018; 68 Jain, Mittal, Thakur, M.K. (b62) 2020; 40 De Stefano, Fontanella, Marrocco, Scotto di Freca (b31) 2014; 35 Fang, Cai, Sun (b37) 2018; 55 Li, Zhang, Yin (b11) 2014; 24 Mirjalili (b17) 2016; 27 Iwendi (10.1016/j.knosys.2020.106553_b90) 2020; 8 Too (10.1016/j.knosys.2020.106553_b44) 2020 Emary (10.1016/j.knosys.2020.106553_b70) 2016; 213 Xue (10.1016/j.knosys.2020.106553_b38) 2020; 88 Shaban (10.1016/j.knosys.2020.106553_b61) 2020; 205 Ghaemi (10.1016/j.knosys.2020.106553_b12) 2014; 41 10.1016/j.knosys.2020.106553_b66 Mafarja (10.1016/j.knosys.2020.106553_b71) 2019; 117 Patel (10.1016/j.knosys.2020.106553_b14) 2015; 324 De Stefano (10.1016/j.knosys.2020.106553_b31) 2014; 35 Krömer (10.1016/j.knosys.2020.106553_b43) 2018; 265 Wang (10.1016/j.knosys.2020.106553_b26) 2020; 21 Al-Tashi (10.1016/j.knosys.2020.106553_b7) 2019; 7 Lian (10.1016/j.knosys.2020.106553_b33) 2018; 137 Mirjalili (10.1016/j.knosys.2020.106553_b51) 2014; 69 Too (10.1016/j.knosys.2020.106553_b47) 2020 Too (10.1016/j.knosys.2020.106553_b49) 2020; 0 Chantar (10.1016/j.knosys.2020.106553_b54) 2019 Neggaz (10.1016/j.knosys.2020.106553_b68) 2020; 145 Carrasco (10.1016/j.knosys.2020.106553_b85) 2020; 54 Yousri (10.1016/j.knosys.2020.106553_b22) 2020 Qiu (10.1016/j.knosys.2020.106553_b40) 2019 Abdel-Basset (10.1016/j.knosys.2020.106553_b56) 2020; 139 Ahmed (10.1016/j.knosys.2020.106553_b28) 2020; 8 Ribeiro (10.1016/j.knosys.2020.106553_b64) 2020; 135 Sayed (10.1016/j.knosys.2020.106553_b25) 2019; 49 KS (10.1016/j.knosys.2020.106553_b19) 2017; 83 Aljarah (10.1016/j.knosys.2020.106553_b18) 2018; 22 Too (10.1016/j.knosys.2020.106553_b55) 2020 Eskandar (10.1016/j.knosys.2020.106553_b10) 2012; 110–111 Zhang (10.1016/j.knosys.2020.106553_b46) 2020 Derrac (10.1016/j.knosys.2020.106553_b84) 2014; 289 Jude Hemanth (10.1016/j.knosys.2020.106553_b42) 2019; 75 da Silva (10.1016/j.knosys.2020.106553_b65) 2020; 139 Sahlol (10.1016/j.knosys.2020.106553_b89) 2020 Li (10.1016/j.knosys.2020.106553_b11) 2014; 24 Abdel-Basset (10.1016/j.knosys.2020.106553_b20) 2018 Hu (10.1016/j.knosys.2020.106553_b21) 2020; 8 Mafarja (10.1016/j.knosys.2020.106553_b58) 2017; 260 Shareef (10.1016/j.knosys.2020.106553_b15) 2015; 36 Wang (10.1016/j.knosys.2020.106553_b16) 2015 Gupta (10.1016/j.knosys.2020.106553_b24) 2018; 68 Hariharan (10.1016/j.knosys.2020.106553_b67) 2018; 155 Zhong (10.1016/j.knosys.2020.106553_b6) 2020; 13 Alazzam (10.1016/j.knosys.2020.106553_b30) 2020; 148 Jain (10.1016/j.knosys.2020.106553_b62) 2020; 40 (10.1016/j.knosys.2020.106553_b75) 2019 Emary (10.1016/j.knosys.2020.106553_b73) 2018 Erdal Tümer (10.1016/j.knosys.2020.106553_b35) 2019; 34 Derrac (10.1016/j.knosys.2020.106553_b86) 2011; 1 Han (10.1016/j.knosys.2020.106553_b1) 2019; 7 Mirjalili (10.1016/j.knosys.2020.106553_b17) 2016; 27 (10.1016/j.knosys.2020.106553_b88) 2020 Fang (10.1016/j.knosys.2020.106553_b37) 2018; 55 Ma (10.1016/j.knosys.2020.106553_b32) 2017; 58 Zawbaa (10.1016/j.knosys.2020.106553_b53) 2018; 42 Neggaz (10.1016/j.knosys.2020.106553_b76) 2020; 152 Tubishat (10.1016/j.knosys.2020.106553_b60) 2019 Sayed (10.1016/j.knosys.2020.106553_b79) 2017 Wang (10.1016/j.knosys.2020.106553_b13) 2015; 34 Hansen (10.1016/j.knosys.2020.106553_b82) 2004 Baynath (10.1016/j.knosys.2020.106553_b50) 2018 Hammouri (10.1016/j.knosys.2020.106553_b69) 2020; 203 Wang (10.1016/j.knosys.2020.106553_b29) 2017; 126 Ji (10.1016/j.knosys.2020.106553_b39) 2020; 8 Al-Madi (10.1016/j.knosys.2020.106553_b72) 2019 10.1016/j.knosys.2020.106553_b78 (10.1016/j.knosys.2020.106553_b74) 2019 Tubishat (10.1016/j.knosys.2020.106553_b59) 2019; 49 Kanti Ghosh (10.1016/j.knosys.2020.106553_b48) 2020 Mafarja (10.1016/j.knosys.2020.106553_b57) 2018; 62 Zhang (10.1016/j.knosys.2020.106553_b23) 2020; 141 Huang (10.1016/j.knosys.2020.106553_b41) 2006; 31 AbdEl-Fattah Sayed (10.1016/j.knosys.2020.106553_b27) 2016; 77 Thom de Souza (10.1016/j.knosys.2020.106553_b81) 2020; 107 Arora (10.1016/j.knosys.2020.106553_b5) 2019; 116 Holl (10.1016/j.knosys.2020.106553_b9) 1992; 267 Emary (10.1016/j.knosys.2020.106553_b52) 2016; 172 Kanimozhi (10.1016/j.knosys.2020.106553_b36) 2017 Wan (10.1016/j.knosys.2020.106553_b45) 2016; 49 He (10.1016/j.knosys.2020.106553_b77) 2018; 78 Chen (10.1016/j.knosys.2020.106553_b87) 2020 Quiroz (10.1016/j.knosys.2020.106553_b2) 2017 Kennedy (10.1016/j.knosys.2020.106553_b8) 2011 Tuncer (10.1016/j.knosys.2020.106553_b63) 2020; 203 Aljarah (10.1016/j.knosys.2020.106553_b3) 2020; 147 Xue (10.1016/j.knosys.2020.106553_b34) 2019; 60 10.1016/j.knosys.2020.106553_b83 10.1016/j.knosys.2020.106553_b80 Hancer (10.1016/j.knosys.2020.106553_b4) 2015; 36 |
| References_xml | – start-page: 1 year: 2015 end-page: 20 ident: b16 article-title: Monarch butterfly optimization publication-title: Neural Comput. Appl. – start-page: 1 year: 2018 ident: b50 article-title: Feature selection and representation of evolutionary algorithm on keystroke dynamics publication-title: Intell. Autom. Soft Comput. – volume: 34 year: 2019 ident: b35 article-title: Application of radial basis function networks with feature selection for GDP per capita estimation based on academic parameters publication-title: Comput. Syst. Sci. Eng. – volume: 49 start-page: 188 year: 2019 end-page: 205 ident: b25 article-title: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection publication-title: Appl. Intell. – volume: 107 year: 2020 ident: b81 article-title: Binary coyote optimization algorithm for feature selection publication-title: Pattern Recognit, – volume: 324 start-page: 217 year: 2015 end-page: 246 ident: b14 article-title: Heat transfer search (HTS): a novel optimization algorithm publication-title: Inf. Sci. – volume: 41 start-page: 6676 year: 2014 end-page: 6687 ident: b12 article-title: Forest optimization algorithm publication-title: Expert Syst. Appl. – volume: 126 start-page: 8 year: 2017 end-page: 19 ident: b29 article-title: A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data publication-title: Knowl.-Based Syst. – volume: 213 start-page: 54 year: 2016 end-page: 65 ident: b70 article-title: Binary ant lion approaches for feature selection publication-title: Neurocomputing – volume: 54 year: 2020 ident: b85 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. – volume: 7 start-page: 39496 year: 2019 end-page: 39508 ident: b7 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access – volume: 34 start-page: 736 year: 2015 end-page: 743 ident: b13 article-title: A human learning optimization algorithm and its application to multi-dimensional knapsack problems publication-title: Appl. Soft Comput. – volume: 55 year: 2018 ident: b37 article-title: Feature selection method based on class discriminative degree for intelligent medical diagnosis publication-title: CMC-Comput. Mater. Contin. – volume: 83 start-page: 63 year: 2017 end-page: 78 ident: b19 article-title: Memory based hybrid dragonfly algorithm for numerical optimization problems publication-title: Expert Syst. Appl. – volume: 77 start-page: 21 year: 2016 end-page: 27 ident: b27 article-title: A binary clonal flower pollination algorithm for feature selection publication-title: Pattern Recognit. Lett. – volume: 116 start-page: 147 year: 2019 end-page: 160 ident: b5 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Syst. Appl. – reference: J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: Computational Cybernetics and Simulation 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, 1997, pp. 4104–4108. – volume: 68 start-page: 412 year: 2018 end-page: 424 ident: b24 article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm publication-title: Comput. Electr. Eng. – volume: 289 start-page: 41 year: 2014 end-page: 58 ident: b84 article-title: Analyzing convergence performance of evolutionary algorithms: A statistical approach publication-title: Inf. Sci. – volume: 147 year: 2020 ident: b3 article-title: A dynamic locality multi-objective salp swarm algorithm for feature selection publication-title: Comput. Ind. Eng. – volume: 139 year: 2020 ident: b56 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Syst. Appl. – volume: 42 start-page: 29 year: 2018 end-page: 42 ident: b53 article-title: Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach publication-title: Swarm Evol. Comput. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b51 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: b52 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b58 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – reference: M.M. Mafarja, D. Eleyan, I. Jaber, et al. Binary dragonfly algorithm for feature selectionn, in: 2017 International Conference on New Trends in Computing Sciences, ICTCS, 2017, pp. 12–17. – volume: 203 year: 2020 ident: b63 article-title: An automated residual exemplar local binary pattern and iterative relieff based COVID-19 detection method using chest X-ray image publication-title: Chemom. Intell. Lab. Syst. – volume: 58 start-page: 328 year: 2017 end-page: 338 ident: b32 article-title: A tribe competition-based genetic algorithm for feature selection in pattern classification publication-title: Appl. Soft Comput. – volume: 60 start-page: 741 year: 2019 end-page: 756 ident: b34 article-title: Robust re-weighted multi-view feature selection publication-title: Comput. Mater. Contin. – start-page: 760 year: 2011 end-page: 766 ident: b8 article-title: Particle swarm optimization publication-title: Encyclopedia of Machine Learning – volume: 141 year: 2020 ident: b23 article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection publication-title: Expert Syst. Appl. – volume: 75 start-page: 21 year: 2019 end-page: 28 ident: b42 article-title: Modified genetic algorithm approaches for classification of abnormal magnetic resonance brain tumour images publication-title: Appl. Soft Comput. – volume: 21 start-page: 393 year: 2020 end-page: 405 ident: b26 article-title: Big data service architecture: A survey publication-title: J. Internet Technol. – year: 2020 ident: b46 article-title: Boosted binary Harris hawks optimizer and feature selection publication-title: Eng. Comput. – volume: 203 year: 2020 ident: b69 article-title: An improved dragonfly algorithm for feature selection publication-title: Knowl.-Based Syst. – volume: 110–111 start-page: 151 year: 2012 end-page: 166 ident: b10 article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. – volume: 40 start-page: 1391 year: 2020 end-page: 1405 ident: b62 article-title: A deep learning approach to detect Covid-19 coronavirus with X-ray images publication-title: Biocybern. Biomed. Eng. – start-page: 1 year: 2018 end-page: 20 ident: b73 article-title: Feature selection via Lèvy Antlion optimization publication-title: PAA Pattern Anal. Appl. – start-page: 11302 year: 2020 end-page: 11322 ident: b22 article-title: Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approach publication-title: Int. J. Energy Res. – volume: 155 start-page: 39 year: 2018 end-page: 51 ident: b67 article-title: Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification publication-title: Comput, Methods Programs Biomed, – year: 2020 ident: b87 article-title: A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: a multi-center study publication-title: Eur. Radiol. – volume: 148 year: 2020 ident: b30 article-title: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer publication-title: Expert Syst. Appl. – start-page: 282 year: 2004 end-page: 291 ident: b82 article-title: Evaluating the CMA evolution strategy on multimodal test functions publication-title: Parallel Problem Solving from Nature - PPSN VIII – year: 2019 ident: b40 article-title: A novel multi-swarm particle swarm optimization for feature selection publication-title: Genet. Program. Evolvable Mach. – volume: 0 start-page: 1 year: 2020 end-page: 25 ident: b49 article-title: Binary atom search optimisation approaches for feature selection publication-title: Connect. Sci. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b86 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – year: 2019 ident: b74 article-title: UCI Machine Learning Repository – volume: 49 start-page: 1688 year: 2019 end-page: 1707 ident: b59 article-title: Improved whale optimization algorithm for feature selection in Arabic sentiment analysis publication-title: Appl. Intell. – start-page: 1 year: 2017 end-page: 9 ident: b2 article-title: Feature selection for activity recognition from smartphone accelerometer data publication-title: Intell. Autom. Soft Comput. – volume: 152 year: 2020 ident: b76 article-title: An efficient henry gas solubility optimization for feature selection publication-title: Expert Syst. Appl. – volume: 7 start-page: 166833 year: 2019 end-page: 166859 ident: b1 article-title: Binary symbiotic organism search algorithm for feature selection and analysis publication-title: IEEE Access – start-page: 1 year: 2018 end-page: 16 ident: b20 article-title: An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment publication-title: Clust. Comput. – volume: 31 start-page: 231 year: 2006 end-page: 240 ident: b41 article-title: A GA-based feature selection and parameters optimizationfor support vector machines publication-title: Expert Syst. Appl. – volume: 137 start-page: 636 year: 2018 end-page: 651 ident: b33 article-title: An approach for optimized feature selection in large-scale software product lines publication-title: J. Syst. Softw. – volume: 49 start-page: 248 year: 2016 end-page: 258 ident: b45 article-title: A feature selection method based on modified binary coded ant colony optimization algorithm publication-title: Appl. Soft Comput. – year: 2020 ident: b47 article-title: Chaotic atom search optimization for feature selection publication-title: Arab. J. Sci. Eng. – volume: 35 start-page: 130 year: 2014 end-page: 141 ident: b31 article-title: A GA-based feature selection approach with an application to handwritten character recognition publication-title: Pattern Recognit. Lett. – year: 2019 ident: b54 article-title: Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification publication-title: Neural Comput Appl. – volume: 8 start-page: 85989 year: 2020 end-page: 86002 ident: b39 article-title: Bio-inspired feature selection: An improved binary particle swarm optimization approach publication-title: IEEE Access – volume: 8 year: 2020 ident: b90 article-title: COVID-19 patient health prediction using boosted random forest algorithm publication-title: Front. Publ. Health – volume: 8 start-page: 102629 year: 2020 end-page: 102645 ident: b28 article-title: Hybrid of harmony search algorithm and ring theory-based evolutionary algorithm for feature selection publication-title: IEEE Access – reference: R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: 2014 IEEE Congress on Evolutionary Computation, CEC, 2014, pp. 1658–1665. – volume: 88 year: 2020 ident: b38 article-title: Self-adaptive parameter and strategy based particle swarm optimization for large-scale feature selection problems with multiple classifiers publication-title: Appl. Soft Comput. – volume: 13 start-page: 247 year: 2020 end-page: 258 ident: b6 article-title: Feature selection based on a novel improved tree growth algorithm publication-title: Int. J. Comput. Intell. Syst. – volume: 145 year: 2020 ident: b68 article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection publication-title: Expert Syst. Appl. – year: 2020 ident: b48 article-title: Atom search optimization with simulated annealing – a hybrid metaheuristic approach for feature selection – year: 2019 ident: b60 article-title: Explicit and implicit aspect extraction using whale optimization algorithm and hybrid approach publication-title: Int. Conf. Ind. Enterp. Syst. Eng. – reference: J. Pierezan, L. Dos Santos Coelho, Coyote optimization algorithm: A new metaheuristic for global optimization problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC, 2018, pp. 1–8. – volume: 135 year: 2020 ident: b64 article-title: Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil publication-title: Chaos Solitons Fractals – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b9 article-title: Genetic algorithms publication-title: Sci. Am. – volume: 117 start-page: 267 year: 2019 end-page: 286 ident: b71 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Syst. Appl. – volume: 36 start-page: 315 year: 2015 end-page: 333 ident: b15 article-title: Lightning search algorithm publication-title: Appl. Soft Comput. – volume: 139 year: 2020 ident: b65 article-title: Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables publication-title: Chaos Solitons Fractals – volume: 62 start-page: 441 year: 2018 end-page: 453 ident: b57 article-title: Whale optimization approaches for wrapper feature selection publication-title: Appl. Soft Comput. – year: 2019 ident: b72 article-title: Binary multi-verse optimization algorithm for global optimization and discrete problems publication-title: Int. J. Mach. Learn. Cybern. – year: 2019 ident: b75 article-title: Datasets — Feature Selection @ ASU – volume: 265 start-page: 205 year: 2018 end-page: 222 ident: b43 article-title: Optimal column subset selection for image classification by genetic algorithms publication-title: Ann. Oper. Res. – start-page: 1 year: 2020 end-page: 31 ident: b44 article-title: A new and fast rival genetic algorithm for feature selection publication-title: J. Supercomput. – volume: 8 start-page: 65891 year: 2020 end-page: 65910 ident: b21 article-title: An improved Harris’s hawks optimization for SAR target recognition and stock market index prediction publication-title: IEEE Access – start-page: 1 year: 2017 end-page: 18 ident: b79 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Comput. App.l – volume: 24 start-page: 1867 year: 2014 end-page: 1877 ident: b11 article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behavior publication-title: Neural Comput. Appl. – year: 2020 ident: b89 article-title: COVID-19 image classification using deep features and fractional-order marine predators algorithm publication-title: Sci. Rep. – volume: 205 year: 2020 ident: b61 article-title: A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier publication-title: Knowl.-Based Syst. – year: 2020 ident: b88 article-title: Coronavirus Update (Live): 18 447 723 Cases and 697, 244 Deaths from COVID-19 Virus Pandemic - Worldometer – volume: 36 start-page: 334 year: 2015 end-page: 348 ident: b4 article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection publication-title: Appl. Soft Comput. – year: 2020 ident: b55 article-title: Opposition based competitive grey wolf optimizer for EMG feature selection publication-title: Evol. Intell. – volume: 78 start-page: 77 year: 2018 end-page: 86 ident: b77 article-title: A novel binary artificial bee colony algorithm for the set-union knapsack problem publication-title: Future Gener. Comput. Syst. – start-page: 1 year: 2017 end-page: 9 ident: b36 article-title: An intelligent incremental filtering feature selection and clustering algorithm for effective classification publication-title: Intell. Autom. Soft Comput. – volume: 22 start-page: 1 year: 2018 end-page: 15 ident: b18 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Comput. – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b17 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. – start-page: 11302 year: 2020 ident: 10.1016/j.knosys.2020.106553_b22 article-title: Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approach publication-title: Int. J. Energy Res. doi: 10.1002/er.5747 – volume: 155 start-page: 39 year: 2018 ident: 10.1016/j.knosys.2020.106553_b67 article-title: Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification publication-title: Comput, Methods Programs Biomed, doi: 10.1016/j.cmpb.2017.11.021 – volume: 7 start-page: 166833 year: 2019 ident: 10.1016/j.knosys.2020.106553_b1 article-title: Binary symbiotic organism search algorithm for feature selection and analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953800 – volume: 49 start-page: 248 year: 2016 ident: 10.1016/j.knosys.2020.106553_b45 article-title: A feature selection method based on modified binary coded ant colony optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.08.011 – volume: 141 year: 2020 ident: 10.1016/j.knosys.2020.106553_b23 article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112976 – volume: 147 year: 2020 ident: 10.1016/j.knosys.2020.106553_b3 article-title: A dynamic locality multi-objective salp swarm algorithm for feature selection publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106628 – volume: 203 year: 2020 ident: 10.1016/j.knosys.2020.106553_b63 article-title: An automated residual exemplar local binary pattern and iterative relieff based COVID-19 detection method using chest X-ray image publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104054 – volume: 55 year: 2018 ident: 10.1016/j.knosys.2020.106553_b37 article-title: Feature selection method based on class discriminative degree for intelligent medical diagnosis publication-title: CMC-Comput. Mater. Contin. – year: 2020 ident: 10.1016/j.knosys.2020.106553_b55 article-title: Opposition based competitive grey wolf optimizer for EMG feature selection publication-title: Evol. Intell. – volume: 27 start-page: 1053 year: 2016 ident: 10.1016/j.knosys.2020.106553_b17 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 110–111 start-page: 151 year: 2012 ident: 10.1016/j.knosys.2020.106553_b10 article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – ident: 10.1016/j.knosys.2020.106553_b66 doi: 10.1109/ICTCS.2017.43 – volume: 213 start-page: 54 year: 2016 ident: 10.1016/j.knosys.2020.106553_b70 article-title: Binary ant lion approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.101 – start-page: 1 year: 2017 ident: 10.1016/j.knosys.2020.106553_b2 article-title: Feature selection for activity recognition from smartphone accelerometer data publication-title: Intell. Autom. Soft Comput. doi: 10.1080/10798587.2017.1342400 – year: 2019 ident: 10.1016/j.knosys.2020.106553_b72 article-title: Binary multi-verse optimization algorithm for global optimization and discrete problems publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-00931-8 – volume: 145 year: 2020 ident: 10.1016/j.knosys.2020.106553_b68 article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113103 – volume: 54 year: 2020 ident: 10.1016/j.knosys.2020.106553_b85 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100665 – year: 2019 ident: 10.1016/j.knosys.2020.106553_b60 article-title: Explicit and implicit aspect extraction using whale optimization algorithm and hybrid approach publication-title: Int. Conf. Ind. Enterp. Syst. Eng. – volume: 135 year: 2020 ident: 10.1016/j.knosys.2020.106553_b64 article-title: Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109853 – volume: 58 start-page: 328 year: 2017 ident: 10.1016/j.knosys.2020.106553_b32 article-title: A tribe competition-based genetic algorithm for feature selection in pattern classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.042 – volume: 49 start-page: 1688 year: 2019 ident: 10.1016/j.knosys.2020.106553_b59 article-title: Improved whale optimization algorithm for feature selection in Arabic sentiment analysis publication-title: Appl. Intell. doi: 10.1007/s10489-018-1334-8 – volume: 7 start-page: 39496 year: 2019 ident: 10.1016/j.knosys.2020.106553_b7 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – year: 2020 ident: 10.1016/j.knosys.2020.106553_b88 – start-page: 1 year: 2015 ident: 10.1016/j.knosys.2020.106553_b16 article-title: Monarch butterfly optimization publication-title: Neural Comput. Appl. – volume: 267 start-page: 66 year: 1992 ident: 10.1016/j.knosys.2020.106553_b9 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 88 year: 2020 ident: 10.1016/j.knosys.2020.106553_b38 article-title: Self-adaptive parameter and strategy based particle swarm optimization for large-scale feature selection problems with multiple classifiers publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.106031 – year: 2020 ident: 10.1016/j.knosys.2020.106553_b87 article-title: A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: a multi-center study publication-title: Eur. Radiol. doi: 10.1007/s00330-020-06829-2 – volume: 205 year: 2020 ident: 10.1016/j.knosys.2020.106553_b61 article-title: A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106270 – start-page: 1 year: 2017 ident: 10.1016/j.knosys.2020.106553_b36 article-title: An intelligent incremental filtering feature selection and clustering algorithm for effective classification publication-title: Intell. Autom. Soft Comput. doi: 10.1080/10798587.2017.1307626 – volume: 139 year: 2020 ident: 10.1016/j.knosys.2020.106553_b56 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112824 – ident: 10.1016/j.knosys.2020.106553_b83 doi: 10.1109/CEC.2014.6900380 – volume: 36 start-page: 334 year: 2015 ident: 10.1016/j.knosys.2020.106553_b4 article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.023 – volume: 289 start-page: 41 year: 2014 ident: 10.1016/j.knosys.2020.106553_b84 article-title: Analyzing convergence performance of evolutionary algorithms: A statistical approach publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.06.009 – volume: 13 start-page: 247 year: 2020 ident: 10.1016/j.knosys.2020.106553_b6 article-title: Feature selection based on a novel improved tree growth algorithm publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.d.200219.001 – volume: 8 start-page: 85989 year: 2020 ident: 10.1016/j.knosys.2020.106553_b39 article-title: Bio-inspired feature selection: An improved binary particle swarm optimization approach publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992752 – volume: 8 year: 2020 ident: 10.1016/j.knosys.2020.106553_b90 article-title: COVID-19 patient health prediction using boosted random forest algorithm publication-title: Front. Publ. Health doi: 10.3389/fpubh.2020.00357 – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.knosys.2020.106553_b58 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 148 year: 2020 ident: 10.1016/j.knosys.2020.106553_b30 article-title: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113249 – volume: 34 year: 2019 ident: 10.1016/j.knosys.2020.106553_b35 article-title: Application of radial basis function networks with feature selection for GDP per capita estimation based on academic parameters publication-title: Comput. Syst. Sci. Eng. – volume: 62 start-page: 441 year: 2018 ident: 10.1016/j.knosys.2020.106553_b57 article-title: Whale optimization approaches for wrapper feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.006 – volume: 77 start-page: 21 year: 2016 ident: 10.1016/j.knosys.2020.106553_b27 article-title: A binary clonal flower pollination algorithm for feature selection publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.03.014 – volume: 126 start-page: 8 year: 2017 ident: 10.1016/j.knosys.2020.106553_b29 article-title: A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.04.004 – volume: 137 start-page: 636 year: 2018 ident: 10.1016/j.knosys.2020.106553_b33 article-title: An approach for optimized feature selection in large-scale software product lines publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2017.02.044 – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.knosys.2020.106553_b86 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 35 start-page: 130 year: 2014 ident: 10.1016/j.knosys.2020.106553_b31 article-title: A GA-based feature selection approach with an application to handwritten character recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.01.026 – year: 2020 ident: 10.1016/j.knosys.2020.106553_b46 article-title: Boosted binary Harris hawks optimizer and feature selection publication-title: Eng. Comput. – volume: 40 start-page: 1391 year: 2020 ident: 10.1016/j.knosys.2020.106553_b62 article-title: A deep learning approach to detect Covid-19 coronavirus with X-ray images publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.08.008 – start-page: 1 year: 2018 ident: 10.1016/j.knosys.2020.106553_b50 article-title: Feature selection and representation of evolutionary algorithm on keystroke dynamics publication-title: Intell. Autom. Soft Comput. – volume: 172 start-page: 371 year: 2016 ident: 10.1016/j.knosys.2020.106553_b52 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – year: 2019 ident: 10.1016/j.knosys.2020.106553_b40 article-title: A novel multi-swarm particle swarm optimization for feature selection publication-title: Genet. Program. Evolvable Mach. doi: 10.1007/s10710-019-09358-0 – volume: 42 start-page: 29 year: 2018 ident: 10.1016/j.knosys.2020.106553_b53 article-title: Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.021 – year: 2020 ident: 10.1016/j.knosys.2020.106553_b48 – volume: 49 start-page: 188 year: 2019 ident: 10.1016/j.knosys.2020.106553_b25 article-title: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection publication-title: Appl. Intell. doi: 10.1007/s10489-018-1261-8 – volume: 0 start-page: 1 year: 2020 ident: 10.1016/j.knosys.2020.106553_b49 article-title: Binary atom search optimisation approaches for feature selection publication-title: Connect. Sci. – volume: 31 start-page: 231 year: 2006 ident: 10.1016/j.knosys.2020.106553_b41 article-title: A GA-based feature selection and parameters optimizationfor support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.024 – volume: 68 start-page: 412 year: 2018 ident: 10.1016/j.knosys.2020.106553_b24 article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.04.014 – volume: 41 start-page: 6676 year: 2014 ident: 10.1016/j.knosys.2020.106553_b12 article-title: Forest optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.05.009 – ident: 10.1016/j.knosys.2020.106553_b80 doi: 10.1109/CEC.2018.8477769 – volume: 152 year: 2020 ident: 10.1016/j.knosys.2020.106553_b76 article-title: An efficient henry gas solubility optimization for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113364 – volume: 24 start-page: 1867 year: 2014 ident: 10.1016/j.knosys.2020.106553_b11 article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behavior publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1433-8 – volume: 36 start-page: 315 year: 2015 ident: 10.1016/j.knosys.2020.106553_b15 article-title: Lightning search algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.07.028 – volume: 117 start-page: 267 year: 2019 ident: 10.1016/j.knosys.2020.106553_b71 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.015 – ident: 10.1016/j.knosys.2020.106553_b78 doi: 10.1109/ICSMC.1997.637339 – start-page: 282 year: 2004 ident: 10.1016/j.knosys.2020.106553_b82 article-title: Evaluating the CMA evolution strategy on multimodal test functions – volume: 34 start-page: 736 year: 2015 ident: 10.1016/j.knosys.2020.106553_b13 article-title: A human learning optimization algorithm and its application to multi-dimensional knapsack problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.004 – volume: 21 start-page: 393 year: 2020 ident: 10.1016/j.knosys.2020.106553_b26 article-title: Big data service architecture: A survey publication-title: J. Internet Technol. – volume: 203 year: 2020 ident: 10.1016/j.knosys.2020.106553_b69 article-title: An improved dragonfly algorithm for feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106131 – year: 2019 ident: 10.1016/j.knosys.2020.106553_b54 article-title: Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification publication-title: Neural Comput Appl. – start-page: 1 year: 2018 ident: 10.1016/j.knosys.2020.106553_b73 article-title: Feature selection via Lèvy Antlion optimization publication-title: PAA Pattern Anal. Appl. – volume: 324 start-page: 217 year: 2015 ident: 10.1016/j.knosys.2020.106553_b14 article-title: Heat transfer search (HTS): a novel optimization algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.06.044 – year: 2020 ident: 10.1016/j.knosys.2020.106553_b47 article-title: Chaotic atom search optimization for feature selection publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04486-7 – volume: 107 year: 2020 ident: 10.1016/j.knosys.2020.106553_b81 article-title: Binary coyote optimization algorithm for feature selection publication-title: Pattern Recognit, – start-page: 1 year: 2018 ident: 10.1016/j.knosys.2020.106553_b20 article-title: An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment publication-title: Clust. Comput. – volume: 83 start-page: 63 year: 2017 ident: 10.1016/j.knosys.2020.106553_b19 article-title: Memory based hybrid dragonfly algorithm for numerical optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.033 – volume: 139 year: 2020 ident: 10.1016/j.knosys.2020.106553_b65 article-title: Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables publication-title: Chaos Solitons Fractals – volume: 8 start-page: 102629 year: 2020 ident: 10.1016/j.knosys.2020.106553_b28 article-title: Hybrid of harmony search algorithm and ring theory-based evolutionary algorithm for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2999093 – start-page: 1 year: 2020 ident: 10.1016/j.knosys.2020.106553_b44 article-title: A new and fast rival genetic algorithm for feature selection publication-title: J. Supercomput. – year: 2020 ident: 10.1016/j.knosys.2020.106553_b89 article-title: COVID-19 image classification using deep features and fractional-order marine predators algorithm publication-title: Sci. Rep. doi: 10.1038/s41598-020-71294-2 – start-page: 760 year: 2011 ident: 10.1016/j.knosys.2020.106553_b8 article-title: Particle swarm optimization – year: 2019 ident: 10.1016/j.knosys.2020.106553_b75 – volume: 78 start-page: 77 year: 2018 ident: 10.1016/j.knosys.2020.106553_b77 article-title: A novel binary artificial bee colony algorithm for the set-union knapsack problem publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.05.044 – year: 2019 ident: 10.1016/j.knosys.2020.106553_b74 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.knosys.2020.106553_b51 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 60 start-page: 741 year: 2019 ident: 10.1016/j.knosys.2020.106553_b34 article-title: Robust re-weighted multi-view feature selection publication-title: Comput. Mater. Contin. – volume: 22 start-page: 1 year: 2018 ident: 10.1016/j.knosys.2020.106553_b18 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Comput. doi: 10.1007/s00500-016-2442-1 – volume: 116 start-page: 147 year: 2019 ident: 10.1016/j.knosys.2020.106553_b5 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.051 – start-page: 1 year: 2017 ident: 10.1016/j.knosys.2020.106553_b79 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Comput. App.l – volume: 265 start-page: 205 year: 2018 ident: 10.1016/j.knosys.2020.106553_b43 article-title: Optimal column subset selection for image classification by genetic algorithms publication-title: Ann. Oper. Res. doi: 10.1007/s10479-016-2331-0 – volume: 8 start-page: 65891 year: 2020 ident: 10.1016/j.knosys.2020.106553_b21 article-title: An improved Harris’s hawks optimization for SAR target recognition and stock market index prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985596 – volume: 75 start-page: 21 year: 2019 ident: 10.1016/j.knosys.2020.106553_b42 article-title: Modified genetic algorithm approaches for classification of abnormal magnetic resonance brain tumour images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.054 |
| SSID | ssj0002218 |
| Score | 2.6029627 |
| Snippet | The rapid expansion of information science has caused the issue of “the curse of dimensionality”, which will negatively affect the performance of the machine... The rapid expansion of information science has caused the issue of "the curse of dimensionality", which will negatively affect the performance of the machine... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106553 |
| SubjectTerms | Algorithm Algorithms Artificial Intelligence Binary Dragonfly Algorithm Binary Optimization Case studies Classification Combinatorial Optimization Coronaviruses COVID-19 Data mining Datasets Feature selection Information retrieval Information science Learning Learning strategies Machine learning Novels Optimization Particle Swarm Optimization Viral diseases |
| Title | A Hyper Learning Binary Dragonfly Algorithm for Feature Selection: A COVID-19 Case Study |
| URI | https://dx.doi.org/10.1016/j.knosys.2020.106553 https://www.proquest.com/docview/2490264547 |
| Volume | 212 |
| WOSCitedRecordID | wos000604529100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENZAyoELb4ZCYXRguHjM2JZsWdxMmk4LmZSZuoxvHluRQ0Jxghug_fesXk7Lq3DgYidSZMfaz6vd1T4Qeh6kTS2UU7sksgEFZZr4sM5zXzSAZioCGdSa0mM2maRFwd9ZU_apLifA2jY9O-Or_0pqaANiq9DZfyB3f1FogM9AdDgC2eH4V4TPvH3QLTuXOXXmvTYht7tdNVMxIOdedjJbdvP1h0_ax1AJgWoX4UhXxLGuHpk3PHx_sOuH3BvCOqfdDS9tAL91tjhfrYNTmxG6F9DzpdnRgft_k_OeqvNuAXK_icg-kudyCt8u2h2iUNsd4o0xzAXEOB608UIy1sXAZ4HNJSsNb00ZCPM04BeZb2SdqA37DH_J1I19YfHyY7uEhwGdPlKNSWyyDF_OoT05LPeOx-MyHxX5i9VnX5UXU9vwttbKdbQVsZinA7SVHYyKN_2iHUXaFNz_bxdlqV0Bf77x76SYH9ZzLaTkd9Atq13gzKDiLrom23votqvcge0k3kdFhjVIsAMJNiDBPUhwDxIMIMEWJLgHySucYQcRrCCCNUQeoOO9UT7c922NDV8QQtf-NKFBRQRLmzjidRLWMRNwJjStg7qKCa9ozeowqQPCSNwkVSyIpA0wep5CR0MeokG7bOUjhNMKlG8OAi8XlAraVJIyGAQ6bz1lKZXbiLg5K4VNQK_qoJyUztNwUZqZLtVMl2amt5Hfj1qZBCxX_J45cpRWiDTCYQlwumLkjqNead9n6Kc8iHTWu8d_7n6Cbm7ekh00WHdf5FN0Q3xdz0-7ZxZu3wFD5pi6 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hyper+Learning+Binary+Dragonfly+Algorithm+for+Feature+Selection%3A+A+COVID-19+Case+Study&rft.jtitle=Knowledge-based+systems&rft.au=Too%2C+Jingwei&rft.au=Mirjalili%2C+Seyedali&rft.date=2021-01-05&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=212&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2020.106553&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |