A Hyper Learning Binary Dragonfly Algorithm for Feature Selection: A COVID-19 Case Study

The rapid expansion of information science has caused the issue of “the curse of dimensionality”, which will negatively affect the performance of the machine learning model. Feature selection is typically considered as a pre-processing mechanism to find an optimal subset of features from a given set...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 212; p. 106553
Main Authors: Too, Jingwei, Mirjalili, Seyedali
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 05.01.2021
Elsevier Science Ltd
Subjects:
ISSN:0950-7051, 1872-7409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapid expansion of information science has caused the issue of “the curse of dimensionality”, which will negatively affect the performance of the machine learning model. Feature selection is typically considered as a pre-processing mechanism to find an optimal subset of features from a given set of all features in the data mining process. In this article, a novel Hyper Learning Binary Dragonfly Algorithm (HLBDA) is proposed as a wrapper-based method to find an optimal subset of features for a given classification problem. HLBDA is an enhanced version of the Binary Dragonfly Algorithm (BDA) in which a hyper learning strategy is used to assist the algorithm to escape local optima and improve searching behavior. The proposed HLBDA is compared with eight algorithms in the literature. Several assessment indicators are employed to evaluate and compare the effectiveness of these methods over twenty-one datasets from the University of California Irvine (UCI) repository and Arizona State University. Also, the proposed method is applied to a coronavirus disease (COVID-19) dataset. The results demonstrate the superiority of HLBDA in increasing classification accuracy and reducing the number of selected features.22The source code of HLBDA is publicly available at https://seyedalimirjalili.com/da.
AbstractList The rapid expansion of information science has caused the issue of "the curse of dimensionality", which will negatively affect the performance of the machine learning model. Feature selection is typically considered as a pre-processing mechanism to find an optimal subset of features from a given set of all features in the data mining process. In this article, a novel Hyper Learning Binary Dragonfly Algorithm (HLBDA) is proposed as a wrapper-based method to find an optimal subset of features for a given classification problem. HLBDA is an enhanced version of the Binary Dragonfly Algorithm (BDA) in which a hyper learning strategy is used to assist the algorithm to escape local optima and improve searching behavior. The proposed HLBDA is compared with eight algorithms in the literature. Several assessment indicators are employed to evaluate and compare the effectiveness of these methods over twenty-one datasets from the University of California Irvine (UCI) repository and Arizona State University. Also, the proposed method is applied to a coronavirus disease (COVID-19) dataset. The results demonstrate the superiority of HLBDA in increasing classification accuracy and reducing the number of selected features.
The rapid expansion of information science has caused the issue of “the curse of dimensionality”, which will negatively affect the performance of the machine learning model. Feature selection is typically considered as a pre-processing mechanism to find an optimal subset of features from a given set of all features in the data mining process. In this article, a novel Hyper Learning Binary Dragonfly Algorithm (HLBDA) is proposed as a wrapper-based method to find an optimal subset of features for a given classification problem. HLBDA is an enhanced version of the Binary Dragonfly Algorithm (BDA) in which a hyper learning strategy is used to assist the algorithm to escape local optima and improve searching behavior. The proposed HLBDA is compared with eight algorithms in the literature. Several assessment indicators are employed to evaluate and compare the effectiveness of these methods over twenty-one datasets from the University of California Irvine (UCI) repository and Arizona State University. Also, the proposed method is applied to a coronavirus disease (COVID-19) dataset. The results demonstrate the superiority of HLBDA in increasing classification accuracy and reducing the number of selected features.22The source code of HLBDA is publicly available at https://seyedalimirjalili.com/da.
ArticleNumber 106553
Author Too, Jingwei
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Jingwei
  orcidid: 0000-0001-6908-1038
  surname: Too
  fullname: Too, Jingwei
  email: jamesjames868@gmail.com
  organization: Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
– sequence: 2
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  email: ali.mirjalili@gmail.com
  organization: Center for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia
BookMark eNqFkEtLAzEUhYMoWKv_wEXA9dQ8JzNdCLVVWyi48IG7kEkzNXWa1GQqzL83ZVy50NWBe-65j-8MHDvvDACXGI0wwvn1ZvThfOziiCByKOWc0yMwwIUgmWCoPAYDVHKUCcTxKTiLcYMQIgQXA_A2gfNuZwJcGhWcdWt4a50KHZwFtfaubjo4adY-2PZ9C2sf4L1R7T4Y-GQao1vr3RhO4PTxdTHLcAmnKiar3a-6c3BSqyaaix8dgpf7u-fpPFs-Piymk2WmKWVttsoZUlSLouakrHJccaGTUlZUqFKclopVosJ5haigvM4V19SwmnBRFsmo6RBc9XN3wX_uTWzlxu-DSyslYSUiOeNMpK5x36WDjzGYWmrbqsP5bVC2kRjJA0m5kT1JeSApe5IpzH6Fd8FuE6T_Yjd9zKT3v6wJMmprnDYrGxI6ufL27wHf3IWPog
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128506
crossref_primary_10_3390_computers10110136
crossref_primary_10_1007_s11227_023_05413_x
crossref_primary_10_1016_j_cie_2021_107666
crossref_primary_10_1007_s42235_024_00580_w
crossref_primary_10_3390_fi14060178
crossref_primary_10_1016_j_asoc_2024_111650
crossref_primary_10_3389_fpubh_2021_697850
crossref_primary_10_1016_j_knosys_2023_111191
crossref_primary_10_7717_peerj_cs_1430
crossref_primary_10_1016_j_asoc_2023_110319
crossref_primary_10_1016_j_knosys_2025_113252
crossref_primary_10_1016_j_knosys_2023_111352
crossref_primary_10_1016_j_bspc_2023_105073
crossref_primary_10_1089_cmb_2021_0256
crossref_primary_10_2478_cait_2023_0038
crossref_primary_10_1093_jcde_qwaf050
crossref_primary_10_1016_j_asoc_2021_107956
crossref_primary_10_1007_s00521_023_08588_9
crossref_primary_10_1038_s41598_025_92187_2
crossref_primary_10_1002_ima_22889
crossref_primary_10_1016_j_eswa_2021_116377
crossref_primary_10_3390_app11052251
crossref_primary_10_3390_rs15163980
crossref_primary_10_1016_j_knosys_2023_110635
crossref_primary_10_1002_cpe_6675
crossref_primary_10_1371_journal_pone_0324866
crossref_primary_10_1007_s10462_024_10822_2
crossref_primary_10_1007_s00500_023_09062_3
crossref_primary_10_1007_s43674_021_00021_9
crossref_primary_10_3390_biomimetics10050315
crossref_primary_10_32604_cmc_2022_019611
crossref_primary_10_1007_s11042_025_20605_8
crossref_primary_10_3389_fdata_2025_1624507
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_32604_cmes_2024_048049
crossref_primary_10_1038_s41598_024_57518_9
crossref_primary_10_1016_j_knosys_2022_108787
crossref_primary_10_1016_j_engappai_2022_105088
crossref_primary_10_1109_ACCESS_2022_3188856
crossref_primary_10_1007_s00521_021_06775_0
crossref_primary_10_1016_j_cie_2021_107912
crossref_primary_10_3390_math10183274
crossref_primary_10_1111_exsy_13200
crossref_primary_10_1016_j_asoc_2023_110583
crossref_primary_10_1007_s11042_024_18734_7
crossref_primary_10_1016_j_swevo_2025_101908
crossref_primary_10_1007_s42979_021_00687_5
crossref_primary_10_1109_TNNLS_2021_3106399
crossref_primary_10_1016_j_compbiomed_2023_107237
crossref_primary_10_1016_j_eswa_2023_119745
crossref_primary_10_1016_j_compbiomed_2022_106520
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_1016_j_jksuci_2024_102205
crossref_primary_10_1016_j_knosys_2024_112550
crossref_primary_10_1080_10255842_2022_2112185
crossref_primary_10_3390_rs14030805
crossref_primary_10_1007_s10489_022_04446_8
crossref_primary_10_3390_biomimetics8030310
crossref_primary_10_3390_s25030863
crossref_primary_10_1109_ACCESS_2021_3138403
crossref_primary_10_1111_exsy_13330
crossref_primary_10_1016_j_cie_2021_107904
crossref_primary_10_1016_j_health_2023_100200
crossref_primary_10_3390_math10152742
crossref_primary_10_1007_s00521_023_08997_w
crossref_primary_10_1007_s11042_023_17580_3
crossref_primary_10_3390_s21227542
crossref_primary_10_1007_s10586_024_04988_1
crossref_primary_10_1093_jcde_qwad009
crossref_primary_10_1134_S0361768821050066
crossref_primary_10_1016_j_ins_2021_12_086
crossref_primary_10_1109_JIOT_2023_3317089
crossref_primary_10_1007_s12530_023_09557_2
crossref_primary_10_1016_j_eswa_2022_118293
crossref_primary_10_1016_j_micpro_2023_104778
crossref_primary_10_1007_s10489_021_02776_7
crossref_primary_10_3390_sym15020316
crossref_primary_10_1007_s00500_022_06826_1
crossref_primary_10_1016_j_rineng_2025_105154
crossref_primary_10_1016_j_imu_2022_100941
crossref_primary_10_1109_ACCESS_2023_3310429
crossref_primary_10_1016_j_knosys_2022_109446
crossref_primary_10_1111_exsy_12949
crossref_primary_10_1016_j_bdr_2025_100556
crossref_primary_10_32604_cmc_2023_033039
crossref_primary_10_3390_biomimetics9030187
crossref_primary_10_1109_ACCESS_2023_3287484
crossref_primary_10_1016_j_asoc_2022_108736
crossref_primary_10_1016_j_engstruct_2021_113108
crossref_primary_10_1016_j_bspc_2023_105423
crossref_primary_10_1016_j_rineng_2025_104866
crossref_primary_10_1111_exsy_12786
crossref_primary_10_1016_j_imu_2021_100825
crossref_primary_10_3390_biomedicines11061723
crossref_primary_10_1109_ACCESS_2023_3290895
crossref_primary_10_1371_journal_pone_0275727
crossref_primary_10_1016_j_asoc_2024_111546
crossref_primary_10_1016_j_eswa_2023_122701
crossref_primary_10_3233_JIFS_236372
crossref_primary_10_3233_JIFS_221036
crossref_primary_10_1016_j_chemolab_2023_104880
crossref_primary_10_1007_s42235_025_00656_1
crossref_primary_10_1016_j_artmed_2024_102886
crossref_primary_10_1007_s10586_022_03725_w
crossref_primary_10_3390_math13030449
crossref_primary_10_1007_s11831_022_09853_1
crossref_primary_10_1016_j_bspc_2022_104534
crossref_primary_10_1016_j_bspc_2023_104718
crossref_primary_10_1007_s11227_024_06088_8
crossref_primary_10_1371_journal_pone_0260232
crossref_primary_10_1002_int_22979
crossref_primary_10_1007_s41870_023_01380_x
crossref_primary_10_1016_j_asoc_2022_109023
crossref_primary_10_1016_j_eswa_2023_121582
Cites_doi 10.1002/er.5747
10.1016/j.cmpb.2017.11.021
10.1109/ACCESS.2019.2953800
10.1016/j.asoc.2016.08.011
10.1016/j.eswa.2019.112976
10.1016/j.cie.2020.106628
10.1016/j.chemolab.2020.104054
10.1007/s00521-015-1920-1
10.1016/j.compstruc.2012.07.010
10.1109/ICTCS.2017.43
10.1016/j.neucom.2016.03.101
10.1080/10798587.2017.1342400
10.1007/s13042-019-00931-8
10.1016/j.eswa.2019.113103
10.1016/j.swevo.2020.100665
10.1016/j.chaos.2020.109853
10.1016/j.asoc.2017.04.042
10.1007/s10489-018-1334-8
10.1109/ACCESS.2019.2906757
10.1038/scientificamerican0792-66
10.1016/j.asoc.2019.106031
10.1007/s00330-020-06829-2
10.1016/j.knosys.2020.106270
10.1080/10798587.2017.1307626
10.1016/j.eswa.2019.112824
10.1109/CEC.2014.6900380
10.1016/j.asoc.2015.07.023
10.1016/j.ins.2014.06.009
10.2991/ijcis.d.200219.001
10.1109/ACCESS.2020.2992752
10.3389/fpubh.2020.00357
10.1016/j.neucom.2017.04.053
10.1016/j.eswa.2020.113249
10.1016/j.asoc.2017.11.006
10.1016/j.patrec.2016.03.014
10.1016/j.knosys.2017.04.004
10.1016/j.jss.2017.02.044
10.1016/j.swevo.2011.02.002
10.1016/j.patrec.2013.01.026
10.1016/j.bbe.2020.08.008
10.1016/j.neucom.2015.06.083
10.1007/s10710-019-09358-0
10.1016/j.swevo.2018.02.021
10.1007/s10489-018-1261-8
10.1016/j.eswa.2005.09.024
10.1016/j.compeleceng.2018.04.014
10.1016/j.eswa.2014.05.009
10.1109/CEC.2018.8477769
10.1016/j.eswa.2020.113364
10.1007/s00521-013-1433-8
10.1016/j.asoc.2015.07.028
10.1016/j.eswa.2018.09.015
10.1109/ICSMC.1997.637339
10.1016/j.asoc.2015.06.004
10.1016/j.knosys.2020.106131
10.1016/j.ins.2015.06.044
10.1007/s13369-020-04486-7
10.1016/j.eswa.2017.04.033
10.1109/ACCESS.2020.2999093
10.1038/s41598-020-71294-2
10.1016/j.future.2017.05.044
10.1016/j.advengsoft.2013.12.007
10.1007/s00500-016-2442-1
10.1016/j.eswa.2018.08.051
10.1007/s10479-016-2331-0
10.1109/ACCESS.2020.2985596
10.1016/j.asoc.2018.10.054
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 5, 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 5, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2020.106553
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2020_106553
S0950705120306821
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-d640a3c78f529b61b57c9b6348b0ba539a4b7b16b03735f6a5c3e4f25798b7bf3
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604529100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:43:44 EST 2025
Sat Nov 29 07:04:10 EST 2025
Tue Nov 18 21:58:38 EST 2025
Tue Jul 16 04:30:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Combinatorial Optimization
Feature selection
Binary Dragonfly Algorithm
Artificial Intelligence
Classification
Data mining
Algorithm
Optimization
Particle Swarm Optimization
Binary Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-d640a3c78f529b61b57c9b6348b0ba539a4b7b16b03735f6a5c3e4f25798b7bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6908-1038
0000-0002-1443-9458
PQID 2490264547
PQPubID 2035257
ParticipantIDs proquest_journals_2490264547
crossref_citationtrail_10_1016_j_knosys_2020_106553
crossref_primary_10_1016_j_knosys_2020_106553
elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106553
PublicationCentury 2000
PublicationDate 2021-01-05
PublicationDateYYYYMMDD 2021-01-05
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Wan, Wang, Ye, Lai (b45) 2016; 49
Hammouri, Mafarja, Al-Betar (b69) 2020; 203
Neggaz, Ewees, Elaziz, Mafarja (b68) 2020; 145
Hariharan, Sindhu, Vijean (b67) 2018; 155
Kennedy (b8) 2011
J. Pierezan, L. Dos Santos Coelho, Coyote optimization algorithm: A new metaheuristic for global optimization problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC, 2018, pp. 1–8.
Derrac, García, Hui (b84) 2014; 289
Aljarah, Habib, Faris (b3) 2020; 147
Eskandar, Sadollah, Bahreininejad, Hamdi (b10) 2012; 110–111
Kanti Ghosh, Guha, Ghosh (b48) 2020
Ribeiro, da Silva, Mariani, Coelho (b64) 2020; 135
J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: Computational Cybernetics and Simulation 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, 1997, pp. 4104–4108.
Hu, Ao, Bai (b21) 2020; 8
Mafarja, Mirjalili (b58) 2017; 260
Chen, Tang, Mo (b87) 2020
Iwendi, Bashir, Peshkar (b90) 2020; 8
Wang, Yang, Ni (b13) 2015; 34
Neggaz, Houssein, Hussain (b76) 2020; 152
Tubishat, Abushariah, Idris, Aljarah (b59) 2019; 49
Abdel-Basset, Abdle-Fatah, Sangaiah (b20) 2018
R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: 2014 IEEE Congress on Evolutionary Computation, CEC, 2014, pp. 1658–1665.
(b75) 2019
Chantar, Mafarja, Alsawalqah (b54) 2019
Kanimozhi, Manjula (b36) 2017
Huang, Wang (b41) 2006; 31
Mafarja, Aljarah, Faris (b71) 2019; 117
Jude Hemanth, Anitha (b42) 2019; 75
KS, Murugan (b19) 2017; 83
Shaban, Rabie, Saleh, Abo-Elsoud (b61) 2020; 205
Tuncer, Dogan, Ozyurt (b63) 2020; 203
Ji, Lu, Sun (b39) 2020; 8
Arora, Anand (b5) 2019; 116
Ma, Xia (b32) 2017; 58
M.M. Mafarja, D. Eleyan, I. Jaber, et al. Binary dragonfly algorithm for feature selectionn, in: 2017 International Conference on New Trends in Computing Sciences, ICTCS, 2017, pp. 12–17.
Zhong, Chen, Peng (b6) 2020; 13
Sayed, Tharwat, Hassanien (b25) 2019; 49
Zawbaa, Emary, Grosan, Snasel (b53) 2018; 42
Derrac, García, Molina, F. (b86) 2011; 1
Emary, Zawbaa, Hassanien (b70) 2016; 213
Emary, Zawbaa, Hassanien (b52) 2016; 172
He, Xie, Wong, Wang (b77) 2018; 78
Baynath, Soyjaudah, Khan (b50) 2018
Mafarja, Mirjalili (b57) 2018; 62
Zhang, Xu, Yu (b23) 2020; 141
Ahmed, Ghosh, Singh (b28) 2020; 8
Too, Abdullah (b44) 2020
Thom de Souza, de Macedo, dos Santos Coelho (b81) 2020; 107
Al-Tashi, Kadir, Rais (b7) 2019; 7
Ghaemi, Feizi-Derakhshi (b12) 2014; 41
Patel, Savsani (b14) 2015; 324
Mirjalili, Mirjalili, Lewis (b51) 2014; 69
Alazzam, Sharieh, Sabri (b30) 2020; 148
Erdal Tümer, Akkuş (b35) 2019; 34
Al-Madi, Faris, Mirjalili (b72) 2019
(b88) 2020
Xue, NanWang, Niu (b34) 2019; 60
Zhang, Liu, Wang (b46) 2020
Wang, Deb, Cui (b16) 2015
Qiu (b40) 2019
Wang, Yang, Wang (b26) 2020; 21
Lian, Zhang, Jiang, Goss (b33) 2018; 137
Sayed, Hassanien, Azar (b79) 2017
Carrasco, García, Rueda (b85) 2020; 54
Yousri, Rezk, Fathy (b22) 2020
AbdEl-Fattah Sayed, Nabil, Badr (b27) 2016; 77
Holl (b9) 1992; 267
Aljarah, Faris, Mirjalili (b18) 2018; 22
da Silva, Ribeiro, Mariani, Coelho (b65) 2020; 139
Sahlol, Yousri, Ewees, Al-Qaness, Damasevicius, Elaziz (b89) 2020
Han, Zhou, Zhou (b1) 2019; 7
Emary, Zawbaa (b73) 2018
Tubishat, Idris (b60) 2019
Shareef, Ibrahim, Mutlag (b15) 2015; 36
Too, Abdullah (b47) 2020
Abdel-Basset, El-Shahat, El-henawy (b56) 2020; 139
Quiroz, Banerjee, Dascalu, Lau (b2) 2017
Too, Abdullah (b49) 2020; 0
Wang, Jing, Niu (b29) 2017; 126
Hancer, Xue, Karaboga, Zhang (b4) 2015; 36
(b74) 2019
Xue, Tang, Pang, Liu (b38) 2020; 88
Too, Abdullah (b55) 2020
Hansen, Kern (b82) 2004
Krömer, Platoš, Nowaková, Snášel (b43) 2018; 265
Gupta, Sundaram, Khanna (b24) 2018; 68
Jain, Mittal, Thakur, M.K. (b62) 2020; 40
De Stefano, Fontanella, Marrocco, Scotto di Freca (b31) 2014; 35
Fang, Cai, Sun (b37) 2018; 55
Li, Zhang, Yin (b11) 2014; 24
Mirjalili (b17) 2016; 27
Iwendi (10.1016/j.knosys.2020.106553_b90) 2020; 8
Too (10.1016/j.knosys.2020.106553_b44) 2020
Emary (10.1016/j.knosys.2020.106553_b70) 2016; 213
Xue (10.1016/j.knosys.2020.106553_b38) 2020; 88
Shaban (10.1016/j.knosys.2020.106553_b61) 2020; 205
Ghaemi (10.1016/j.knosys.2020.106553_b12) 2014; 41
10.1016/j.knosys.2020.106553_b66
Mafarja (10.1016/j.knosys.2020.106553_b71) 2019; 117
Patel (10.1016/j.knosys.2020.106553_b14) 2015; 324
De Stefano (10.1016/j.knosys.2020.106553_b31) 2014; 35
Krömer (10.1016/j.knosys.2020.106553_b43) 2018; 265
Wang (10.1016/j.knosys.2020.106553_b26) 2020; 21
Al-Tashi (10.1016/j.knosys.2020.106553_b7) 2019; 7
Lian (10.1016/j.knosys.2020.106553_b33) 2018; 137
Mirjalili (10.1016/j.knosys.2020.106553_b51) 2014; 69
Too (10.1016/j.knosys.2020.106553_b47) 2020
Too (10.1016/j.knosys.2020.106553_b49) 2020; 0
Chantar (10.1016/j.knosys.2020.106553_b54) 2019
Neggaz (10.1016/j.knosys.2020.106553_b68) 2020; 145
Carrasco (10.1016/j.knosys.2020.106553_b85) 2020; 54
Yousri (10.1016/j.knosys.2020.106553_b22) 2020
Qiu (10.1016/j.knosys.2020.106553_b40) 2019
Abdel-Basset (10.1016/j.knosys.2020.106553_b56) 2020; 139
Ahmed (10.1016/j.knosys.2020.106553_b28) 2020; 8
Ribeiro (10.1016/j.knosys.2020.106553_b64) 2020; 135
Sayed (10.1016/j.knosys.2020.106553_b25) 2019; 49
KS (10.1016/j.knosys.2020.106553_b19) 2017; 83
Aljarah (10.1016/j.knosys.2020.106553_b18) 2018; 22
Too (10.1016/j.knosys.2020.106553_b55) 2020
Eskandar (10.1016/j.knosys.2020.106553_b10) 2012; 110–111
Zhang (10.1016/j.knosys.2020.106553_b46) 2020
Derrac (10.1016/j.knosys.2020.106553_b84) 2014; 289
Jude Hemanth (10.1016/j.knosys.2020.106553_b42) 2019; 75
da Silva (10.1016/j.knosys.2020.106553_b65) 2020; 139
Sahlol (10.1016/j.knosys.2020.106553_b89) 2020
Li (10.1016/j.knosys.2020.106553_b11) 2014; 24
Abdel-Basset (10.1016/j.knosys.2020.106553_b20) 2018
Hu (10.1016/j.knosys.2020.106553_b21) 2020; 8
Mafarja (10.1016/j.knosys.2020.106553_b58) 2017; 260
Shareef (10.1016/j.knosys.2020.106553_b15) 2015; 36
Wang (10.1016/j.knosys.2020.106553_b16) 2015
Gupta (10.1016/j.knosys.2020.106553_b24) 2018; 68
Hariharan (10.1016/j.knosys.2020.106553_b67) 2018; 155
Zhong (10.1016/j.knosys.2020.106553_b6) 2020; 13
Alazzam (10.1016/j.knosys.2020.106553_b30) 2020; 148
Jain (10.1016/j.knosys.2020.106553_b62) 2020; 40
(10.1016/j.knosys.2020.106553_b75) 2019
Emary (10.1016/j.knosys.2020.106553_b73) 2018
Erdal Tümer (10.1016/j.knosys.2020.106553_b35) 2019; 34
Derrac (10.1016/j.knosys.2020.106553_b86) 2011; 1
Han (10.1016/j.knosys.2020.106553_b1) 2019; 7
Mirjalili (10.1016/j.knosys.2020.106553_b17) 2016; 27
(10.1016/j.knosys.2020.106553_b88) 2020
Fang (10.1016/j.knosys.2020.106553_b37) 2018; 55
Ma (10.1016/j.knosys.2020.106553_b32) 2017; 58
Zawbaa (10.1016/j.knosys.2020.106553_b53) 2018; 42
Neggaz (10.1016/j.knosys.2020.106553_b76) 2020; 152
Tubishat (10.1016/j.knosys.2020.106553_b60) 2019
Sayed (10.1016/j.knosys.2020.106553_b79) 2017
Wang (10.1016/j.knosys.2020.106553_b13) 2015; 34
Hansen (10.1016/j.knosys.2020.106553_b82) 2004
Baynath (10.1016/j.knosys.2020.106553_b50) 2018
Hammouri (10.1016/j.knosys.2020.106553_b69) 2020; 203
Wang (10.1016/j.knosys.2020.106553_b29) 2017; 126
Ji (10.1016/j.knosys.2020.106553_b39) 2020; 8
Al-Madi (10.1016/j.knosys.2020.106553_b72) 2019
10.1016/j.knosys.2020.106553_b78
(10.1016/j.knosys.2020.106553_b74) 2019
Tubishat (10.1016/j.knosys.2020.106553_b59) 2019; 49
Kanti Ghosh (10.1016/j.knosys.2020.106553_b48) 2020
Mafarja (10.1016/j.knosys.2020.106553_b57) 2018; 62
Zhang (10.1016/j.knosys.2020.106553_b23) 2020; 141
Huang (10.1016/j.knosys.2020.106553_b41) 2006; 31
AbdEl-Fattah Sayed (10.1016/j.knosys.2020.106553_b27) 2016; 77
Thom de Souza (10.1016/j.knosys.2020.106553_b81) 2020; 107
Arora (10.1016/j.knosys.2020.106553_b5) 2019; 116
Holl (10.1016/j.knosys.2020.106553_b9) 1992; 267
Emary (10.1016/j.knosys.2020.106553_b52) 2016; 172
Kanimozhi (10.1016/j.knosys.2020.106553_b36) 2017
Wan (10.1016/j.knosys.2020.106553_b45) 2016; 49
He (10.1016/j.knosys.2020.106553_b77) 2018; 78
Chen (10.1016/j.knosys.2020.106553_b87) 2020
Quiroz (10.1016/j.knosys.2020.106553_b2) 2017
Kennedy (10.1016/j.knosys.2020.106553_b8) 2011
Tuncer (10.1016/j.knosys.2020.106553_b63) 2020; 203
Aljarah (10.1016/j.knosys.2020.106553_b3) 2020; 147
Xue (10.1016/j.knosys.2020.106553_b34) 2019; 60
10.1016/j.knosys.2020.106553_b83
10.1016/j.knosys.2020.106553_b80
Hancer (10.1016/j.knosys.2020.106553_b4) 2015; 36
References_xml – start-page: 1
  year: 2015
  end-page: 20
  ident: b16
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2018
  ident: b50
  article-title: Feature selection and representation of evolutionary algorithm on keystroke dynamics
  publication-title: Intell. Autom. Soft Comput.
– volume: 34
  year: 2019
  ident: b35
  article-title: Application of radial basis function networks with feature selection for GDP per capita estimation based on academic parameters
  publication-title: Comput. Syst. Sci. Eng.
– volume: 49
  start-page: 188
  year: 2019
  end-page: 205
  ident: b25
  article-title: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection
  publication-title: Appl. Intell.
– volume: 107
  year: 2020
  ident: b81
  article-title: Binary coyote optimization algorithm for feature selection
  publication-title: Pattern Recognit,
– volume: 324
  start-page: 217
  year: 2015
  end-page: 246
  ident: b14
  article-title: Heat transfer search (HTS): a novel optimization algorithm
  publication-title: Inf. Sci.
– volume: 41
  start-page: 6676
  year: 2014
  end-page: 6687
  ident: b12
  article-title: Forest optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 126
  start-page: 8
  year: 2017
  end-page: 19
  ident: b29
  article-title: A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data
  publication-title: Knowl.-Based Syst.
– volume: 213
  start-page: 54
  year: 2016
  end-page: 65
  ident: b70
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
– volume: 54
  year: 2020
  ident: b85
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
– volume: 7
  start-page: 39496
  year: 2019
  end-page: 39508
  ident: b7
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
– volume: 34
  start-page: 736
  year: 2015
  end-page: 743
  ident: b13
  article-title: A human learning optimization algorithm and its application to multi-dimensional knapsack problems
  publication-title: Appl. Soft Comput.
– volume: 55
  year: 2018
  ident: b37
  article-title: Feature selection method based on class discriminative degree for intelligent medical diagnosis
  publication-title: CMC-Comput. Mater. Contin.
– volume: 83
  start-page: 63
  year: 2017
  end-page: 78
  ident: b19
  article-title: Memory based hybrid dragonfly algorithm for numerical optimization problems
  publication-title: Expert Syst. Appl.
– volume: 77
  start-page: 21
  year: 2016
  end-page: 27
  ident: b27
  article-title: A binary clonal flower pollination algorithm for feature selection
  publication-title: Pattern Recognit. Lett.
– volume: 116
  start-page: 147
  year: 2019
  end-page: 160
  ident: b5
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Syst. Appl.
– reference: J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: Computational Cybernetics and Simulation 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, 1997, pp. 4104–4108.
– volume: 68
  start-page: 412
  year: 2018
  end-page: 424
  ident: b24
  article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm
  publication-title: Comput. Electr. Eng.
– volume: 289
  start-page: 41
  year: 2014
  end-page: 58
  ident: b84
  article-title: Analyzing convergence performance of evolutionary algorithms: A statistical approach
  publication-title: Inf. Sci.
– volume: 147
  year: 2020
  ident: b3
  article-title: A dynamic locality multi-objective salp swarm algorithm for feature selection
  publication-title: Comput. Ind. Eng.
– volume: 139
  year: 2020
  ident: b56
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Syst. Appl.
– volume: 42
  start-page: 29
  year: 2018
  end-page: 42
  ident: b53
  article-title: Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach
  publication-title: Swarm Evol. Comput.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b51
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: b52
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: b58
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– reference: M.M. Mafarja, D. Eleyan, I. Jaber, et al. Binary dragonfly algorithm for feature selectionn, in: 2017 International Conference on New Trends in Computing Sciences, ICTCS, 2017, pp. 12–17.
– volume: 203
  year: 2020
  ident: b63
  article-title: An automated residual exemplar local binary pattern and iterative relieff based COVID-19 detection method using chest X-ray image
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 58
  start-page: 328
  year: 2017
  end-page: 338
  ident: b32
  article-title: A tribe competition-based genetic algorithm for feature selection in pattern classification
  publication-title: Appl. Soft Comput.
– volume: 60
  start-page: 741
  year: 2019
  end-page: 756
  ident: b34
  article-title: Robust re-weighted multi-view feature selection
  publication-title: Comput. Mater. Contin.
– start-page: 760
  year: 2011
  end-page: 766
  ident: b8
  article-title: Particle swarm optimization
  publication-title: Encyclopedia of Machine Learning
– volume: 141
  year: 2020
  ident: b23
  article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection
  publication-title: Expert Syst. Appl.
– volume: 75
  start-page: 21
  year: 2019
  end-page: 28
  ident: b42
  article-title: Modified genetic algorithm approaches for classification of abnormal magnetic resonance brain tumour images
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 393
  year: 2020
  end-page: 405
  ident: b26
  article-title: Big data service architecture: A survey
  publication-title: J. Internet Technol.
– year: 2020
  ident: b46
  article-title: Boosted binary Harris hawks optimizer and feature selection
  publication-title: Eng. Comput.
– volume: 203
  year: 2020
  ident: b69
  article-title: An improved dragonfly algorithm for feature selection
  publication-title: Knowl.-Based Syst.
– volume: 110–111
  start-page: 151
  year: 2012
  end-page: 166
  ident: b10
  article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
– volume: 40
  start-page: 1391
  year: 2020
  end-page: 1405
  ident: b62
  article-title: A deep learning approach to detect Covid-19 coronavirus with X-ray images
  publication-title: Biocybern. Biomed. Eng.
– start-page: 1
  year: 2018
  end-page: 20
  ident: b73
  article-title: Feature selection via Lèvy Antlion optimization
  publication-title: PAA Pattern Anal. Appl.
– start-page: 11302
  year: 2020
  end-page: 11322
  ident: b22
  article-title: Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approach
  publication-title: Int. J. Energy Res.
– volume: 155
  start-page: 39
  year: 2018
  end-page: 51
  ident: b67
  article-title: Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification
  publication-title: Comput, Methods Programs Biomed,
– year: 2020
  ident: b87
  article-title: A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: a multi-center study
  publication-title: Eur. Radiol.
– volume: 148
  year: 2020
  ident: b30
  article-title: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer
  publication-title: Expert Syst. Appl.
– start-page: 282
  year: 2004
  end-page: 291
  ident: b82
  article-title: Evaluating the CMA evolution strategy on multimodal test functions
  publication-title: Parallel Problem Solving from Nature - PPSN VIII
– year: 2019
  ident: b40
  article-title: A novel multi-swarm particle swarm optimization for feature selection
  publication-title: Genet. Program. Evolvable Mach.
– volume: 0
  start-page: 1
  year: 2020
  end-page: 25
  ident: b49
  article-title: Binary atom search optimisation approaches for feature selection
  publication-title: Connect. Sci.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b86
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– year: 2019
  ident: b74
  article-title: UCI Machine Learning Repository
– volume: 49
  start-page: 1688
  year: 2019
  end-page: 1707
  ident: b59
  article-title: Improved whale optimization algorithm for feature selection in Arabic sentiment analysis
  publication-title: Appl. Intell.
– start-page: 1
  year: 2017
  end-page: 9
  ident: b2
  article-title: Feature selection for activity recognition from smartphone accelerometer data
  publication-title: Intell. Autom. Soft Comput.
– volume: 152
  year: 2020
  ident: b76
  article-title: An efficient henry gas solubility optimization for feature selection
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 166833
  year: 2019
  end-page: 166859
  ident: b1
  article-title: Binary symbiotic organism search algorithm for feature selection and analysis
  publication-title: IEEE Access
– start-page: 1
  year: 2018
  end-page: 16
  ident: b20
  article-title: An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment
  publication-title: Clust. Comput.
– volume: 31
  start-page: 231
  year: 2006
  end-page: 240
  ident: b41
  article-title: A GA-based feature selection and parameters optimizationfor support vector machines
  publication-title: Expert Syst. Appl.
– volume: 137
  start-page: 636
  year: 2018
  end-page: 651
  ident: b33
  article-title: An approach for optimized feature selection in large-scale software product lines
  publication-title: J. Syst. Softw.
– volume: 49
  start-page: 248
  year: 2016
  end-page: 258
  ident: b45
  article-title: A feature selection method based on modified binary coded ant colony optimization algorithm
  publication-title: Appl. Soft Comput.
– year: 2020
  ident: b47
  article-title: Chaotic atom search optimization for feature selection
  publication-title: Arab. J. Sci. Eng.
– volume: 35
  start-page: 130
  year: 2014
  end-page: 141
  ident: b31
  article-title: A GA-based feature selection approach with an application to handwritten character recognition
  publication-title: Pattern Recognit. Lett.
– year: 2019
  ident: b54
  article-title: Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification
  publication-title: Neural Comput Appl.
– volume: 8
  start-page: 85989
  year: 2020
  end-page: 86002
  ident: b39
  article-title: Bio-inspired feature selection: An improved binary particle swarm optimization approach
  publication-title: IEEE Access
– volume: 8
  year: 2020
  ident: b90
  article-title: COVID-19 patient health prediction using boosted random forest algorithm
  publication-title: Front. Publ. Health
– volume: 8
  start-page: 102629
  year: 2020
  end-page: 102645
  ident: b28
  article-title: Hybrid of harmony search algorithm and ring theory-based evolutionary algorithm for feature selection
  publication-title: IEEE Access
– reference: R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: 2014 IEEE Congress on Evolutionary Computation, CEC, 2014, pp. 1658–1665.
– volume: 88
  year: 2020
  ident: b38
  article-title: Self-adaptive parameter and strategy based particle swarm optimization for large-scale feature selection problems with multiple classifiers
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 247
  year: 2020
  end-page: 258
  ident: b6
  article-title: Feature selection based on a novel improved tree growth algorithm
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 145
  year: 2020
  ident: b68
  article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b48
  article-title: Atom search optimization with simulated annealing – a hybrid metaheuristic approach for feature selection
– year: 2019
  ident: b60
  article-title: Explicit and implicit aspect extraction using whale optimization algorithm and hybrid approach
  publication-title: Int. Conf. Ind. Enterp. Syst. Eng.
– reference: J. Pierezan, L. Dos Santos Coelho, Coyote optimization algorithm: A new metaheuristic for global optimization problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC, 2018, pp. 1–8.
– volume: 135
  year: 2020
  ident: b64
  article-title: Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil
  publication-title: Chaos Solitons Fractals
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b9
  article-title: Genetic algorithms
  publication-title: Sci. Am.
– volume: 117
  start-page: 267
  year: 2019
  end-page: 286
  ident: b71
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 315
  year: 2015
  end-page: 333
  ident: b15
  article-title: Lightning search algorithm
  publication-title: Appl. Soft Comput.
– volume: 139
  year: 2020
  ident: b65
  article-title: Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables
  publication-title: Chaos Solitons Fractals
– volume: 62
  start-page: 441
  year: 2018
  end-page: 453
  ident: b57
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: b72
  article-title: Binary multi-verse optimization algorithm for global optimization and discrete problems
  publication-title: Int. J. Mach. Learn. Cybern.
– year: 2019
  ident: b75
  article-title: Datasets — Feature Selection @ ASU
– volume: 265
  start-page: 205
  year: 2018
  end-page: 222
  ident: b43
  article-title: Optimal column subset selection for image classification by genetic algorithms
  publication-title: Ann. Oper. Res.
– start-page: 1
  year: 2020
  end-page: 31
  ident: b44
  article-title: A new and fast rival genetic algorithm for feature selection
  publication-title: J. Supercomput.
– volume: 8
  start-page: 65891
  year: 2020
  end-page: 65910
  ident: b21
  article-title: An improved Harris’s hawks optimization for SAR target recognition and stock market index prediction
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  end-page: 18
  ident: b79
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput. App.l
– volume: 24
  start-page: 1867
  year: 2014
  end-page: 1877
  ident: b11
  article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behavior
  publication-title: Neural Comput. Appl.
– year: 2020
  ident: b89
  article-title: COVID-19 image classification using deep features and fractional-order marine predators algorithm
  publication-title: Sci. Rep.
– volume: 205
  year: 2020
  ident: b61
  article-title: A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: b88
  article-title: Coronavirus Update (Live): 18 447 723 Cases and 697, 244 Deaths from COVID-19 Virus Pandemic - Worldometer
– volume: 36
  start-page: 334
  year: 2015
  end-page: 348
  ident: b4
  article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection
  publication-title: Appl. Soft Comput.
– year: 2020
  ident: b55
  article-title: Opposition based competitive grey wolf optimizer for EMG feature selection
  publication-title: Evol. Intell.
– volume: 78
  start-page: 77
  year: 2018
  end-page: 86
  ident: b77
  article-title: A novel binary artificial bee colony algorithm for the set-union knapsack problem
  publication-title: Future Gener. Comput. Syst.
– start-page: 1
  year: 2017
  end-page: 9
  ident: b36
  article-title: An intelligent incremental filtering feature selection and clustering algorithm for effective classification
  publication-title: Intell. Autom. Soft Comput.
– volume: 22
  start-page: 1
  year: 2018
  end-page: 15
  ident: b18
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b17
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
– start-page: 11302
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b22
  article-title: Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approach
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5747
– volume: 155
  start-page: 39
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b67
  article-title: Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification
  publication-title: Comput, Methods Programs Biomed,
  doi: 10.1016/j.cmpb.2017.11.021
– volume: 7
  start-page: 166833
  year: 2019
  ident: 10.1016/j.knosys.2020.106553_b1
  article-title: Binary symbiotic organism search algorithm for feature selection and analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953800
– volume: 49
  start-page: 248
  year: 2016
  ident: 10.1016/j.knosys.2020.106553_b45
  article-title: A feature selection method based on modified binary coded ant colony optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.08.011
– volume: 141
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b23
  article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112976
– volume: 147
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b3
  article-title: A dynamic locality multi-objective salp swarm algorithm for feature selection
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106628
– volume: 203
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b63
  article-title: An automated residual exemplar local binary pattern and iterative relieff based COVID-19 detection method using chest X-ray image
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104054
– volume: 55
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b37
  article-title: Feature selection method based on class discriminative degree for intelligent medical diagnosis
  publication-title: CMC-Comput. Mater. Contin.
– year: 2020
  ident: 10.1016/j.knosys.2020.106553_b55
  article-title: Opposition based competitive grey wolf optimizer for EMG feature selection
  publication-title: Evol. Intell.
– volume: 27
  start-page: 1053
  year: 2016
  ident: 10.1016/j.knosys.2020.106553_b17
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 10.1016/j.knosys.2020.106553_b10
  article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– ident: 10.1016/j.knosys.2020.106553_b66
  doi: 10.1109/ICTCS.2017.43
– volume: 213
  start-page: 54
  year: 2016
  ident: 10.1016/j.knosys.2020.106553_b70
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.101
– start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2020.106553_b2
  article-title: Feature selection for activity recognition from smartphone accelerometer data
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.1080/10798587.2017.1342400
– year: 2019
  ident: 10.1016/j.knosys.2020.106553_b72
  article-title: Binary multi-verse optimization algorithm for global optimization and discrete problems
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-00931-8
– volume: 145
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b68
  article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113103
– volume: 54
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b85
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100665
– year: 2019
  ident: 10.1016/j.knosys.2020.106553_b60
  article-title: Explicit and implicit aspect extraction using whale optimization algorithm and hybrid approach
  publication-title: Int. Conf. Ind. Enterp. Syst. Eng.
– volume: 135
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b64
  article-title: Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109853
– volume: 58
  start-page: 328
  year: 2017
  ident: 10.1016/j.knosys.2020.106553_b32
  article-title: A tribe competition-based genetic algorithm for feature selection in pattern classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.042
– volume: 49
  start-page: 1688
  year: 2019
  ident: 10.1016/j.knosys.2020.106553_b59
  article-title: Improved whale optimization algorithm for feature selection in Arabic sentiment analysis
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1334-8
– volume: 7
  start-page: 39496
  year: 2019
  ident: 10.1016/j.knosys.2020.106553_b7
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– year: 2020
  ident: 10.1016/j.knosys.2020.106553_b88
– start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2020.106553_b16
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
– volume: 267
  start-page: 66
  year: 1992
  ident: 10.1016/j.knosys.2020.106553_b9
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 88
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b38
  article-title: Self-adaptive parameter and strategy based particle swarm optimization for large-scale feature selection problems with multiple classifiers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106031
– year: 2020
  ident: 10.1016/j.knosys.2020.106553_b87
  article-title: A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: a multi-center study
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06829-2
– volume: 205
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b61
  article-title: A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106270
– start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2020.106553_b36
  article-title: An intelligent incremental filtering feature selection and clustering algorithm for effective classification
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.1080/10798587.2017.1307626
– volume: 139
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b56
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112824
– ident: 10.1016/j.knosys.2020.106553_b83
  doi: 10.1109/CEC.2014.6900380
– volume: 36
  start-page: 334
  year: 2015
  ident: 10.1016/j.knosys.2020.106553_b4
  article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.07.023
– volume: 289
  start-page: 41
  year: 2014
  ident: 10.1016/j.knosys.2020.106553_b84
  article-title: Analyzing convergence performance of evolutionary algorithms: A statistical approach
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.06.009
– volume: 13
  start-page: 247
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b6
  article-title: Feature selection based on a novel improved tree growth algorithm
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.d.200219.001
– volume: 8
  start-page: 85989
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b39
  article-title: Bio-inspired feature selection: An improved binary particle swarm optimization approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992752
– volume: 8
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b90
  article-title: COVID-19 patient health prediction using boosted random forest algorithm
  publication-title: Front. Publ. Health
  doi: 10.3389/fpubh.2020.00357
– volume: 260
  start-page: 302
  year: 2017
  ident: 10.1016/j.knosys.2020.106553_b58
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 148
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b30
  article-title: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113249
– volume: 34
  year: 2019
  ident: 10.1016/j.knosys.2020.106553_b35
  article-title: Application of radial basis function networks with feature selection for GDP per capita estimation based on academic parameters
  publication-title: Comput. Syst. Sci. Eng.
– volume: 62
  start-page: 441
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b57
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.006
– volume: 77
  start-page: 21
  year: 2016
  ident: 10.1016/j.knosys.2020.106553_b27
  article-title: A binary clonal flower pollination algorithm for feature selection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.03.014
– volume: 126
  start-page: 8
  year: 2017
  ident: 10.1016/j.knosys.2020.106553_b29
  article-title: A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.04.004
– volume: 137
  start-page: 636
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b33
  article-title: An approach for optimized feature selection in large-scale software product lines
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2017.02.044
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.knosys.2020.106553_b86
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 35
  start-page: 130
  year: 2014
  ident: 10.1016/j.knosys.2020.106553_b31
  article-title: A GA-based feature selection approach with an application to handwritten character recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.01.026
– year: 2020
  ident: 10.1016/j.knosys.2020.106553_b46
  article-title: Boosted binary Harris hawks optimizer and feature selection
  publication-title: Eng. Comput.
– volume: 40
  start-page: 1391
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b62
  article-title: A deep learning approach to detect Covid-19 coronavirus with X-ray images
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.08.008
– start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b50
  article-title: Feature selection and representation of evolutionary algorithm on keystroke dynamics
  publication-title: Intell. Autom. Soft Comput.
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.knosys.2020.106553_b52
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– year: 2019
  ident: 10.1016/j.knosys.2020.106553_b40
  article-title: A novel multi-swarm particle swarm optimization for feature selection
  publication-title: Genet. Program. Evolvable Mach.
  doi: 10.1007/s10710-019-09358-0
– volume: 42
  start-page: 29
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b53
  article-title: Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.021
– year: 2020
  ident: 10.1016/j.knosys.2020.106553_b48
– volume: 49
  start-page: 188
  year: 2019
  ident: 10.1016/j.knosys.2020.106553_b25
  article-title: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1261-8
– volume: 0
  start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b49
  article-title: Binary atom search optimisation approaches for feature selection
  publication-title: Connect. Sci.
– volume: 31
  start-page: 231
  year: 2006
  ident: 10.1016/j.knosys.2020.106553_b41
  article-title: A GA-based feature selection and parameters optimizationfor support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.09.024
– volume: 68
  start-page: 412
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b24
  article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2018.04.014
– volume: 41
  start-page: 6676
  year: 2014
  ident: 10.1016/j.knosys.2020.106553_b12
  article-title: Forest optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.05.009
– ident: 10.1016/j.knosys.2020.106553_b80
  doi: 10.1109/CEC.2018.8477769
– volume: 152
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b76
  article-title: An efficient henry gas solubility optimization for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113364
– volume: 24
  start-page: 1867
  year: 2014
  ident: 10.1016/j.knosys.2020.106553_b11
  article-title: Animal migration optimization: an optimization algorithm inspired by animal migration behavior
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1433-8
– volume: 36
  start-page: 315
  year: 2015
  ident: 10.1016/j.knosys.2020.106553_b15
  article-title: Lightning search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.07.028
– volume: 117
  start-page: 267
  year: 2019
  ident: 10.1016/j.knosys.2020.106553_b71
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.015
– ident: 10.1016/j.knosys.2020.106553_b78
  doi: 10.1109/ICSMC.1997.637339
– start-page: 282
  year: 2004
  ident: 10.1016/j.knosys.2020.106553_b82
  article-title: Evaluating the CMA evolution strategy on multimodal test functions
– volume: 34
  start-page: 736
  year: 2015
  ident: 10.1016/j.knosys.2020.106553_b13
  article-title: A human learning optimization algorithm and its application to multi-dimensional knapsack problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.004
– volume: 21
  start-page: 393
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b26
  article-title: Big data service architecture: A survey
  publication-title: J. Internet Technol.
– volume: 203
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b69
  article-title: An improved dragonfly algorithm for feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106131
– year: 2019
  ident: 10.1016/j.knosys.2020.106553_b54
  article-title: Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification
  publication-title: Neural Comput Appl.
– start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b73
  article-title: Feature selection via Lèvy Antlion optimization
  publication-title: PAA Pattern Anal. Appl.
– volume: 324
  start-page: 217
  year: 2015
  ident: 10.1016/j.knosys.2020.106553_b14
  article-title: Heat transfer search (HTS): a novel optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.06.044
– year: 2020
  ident: 10.1016/j.knosys.2020.106553_b47
  article-title: Chaotic atom search optimization for feature selection
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04486-7
– volume: 107
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b81
  article-title: Binary coyote optimization algorithm for feature selection
  publication-title: Pattern Recognit,
– start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b20
  article-title: An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment
  publication-title: Clust. Comput.
– volume: 83
  start-page: 63
  year: 2017
  ident: 10.1016/j.knosys.2020.106553_b19
  article-title: Memory based hybrid dragonfly algorithm for numerical optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.033
– volume: 139
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b65
  article-title: Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables
  publication-title: Chaos Solitons Fractals
– volume: 8
  start-page: 102629
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b28
  article-title: Hybrid of harmony search algorithm and ring theory-based evolutionary algorithm for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999093
– start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b44
  article-title: A new and fast rival genetic algorithm for feature selection
  publication-title: J. Supercomput.
– year: 2020
  ident: 10.1016/j.knosys.2020.106553_b89
  article-title: COVID-19 image classification using deep features and fractional-order marine predators algorithm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71294-2
– start-page: 760
  year: 2011
  ident: 10.1016/j.knosys.2020.106553_b8
  article-title: Particle swarm optimization
– year: 2019
  ident: 10.1016/j.knosys.2020.106553_b75
– volume: 78
  start-page: 77
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b77
  article-title: A novel binary artificial bee colony algorithm for the set-union knapsack problem
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.05.044
– year: 2019
  ident: 10.1016/j.knosys.2020.106553_b74
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.knosys.2020.106553_b51
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 60
  start-page: 741
  year: 2019
  ident: 10.1016/j.knosys.2020.106553_b34
  article-title: Robust re-weighted multi-view feature selection
  publication-title: Comput. Mater. Contin.
– volume: 22
  start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b18
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2442-1
– volume: 116
  start-page: 147
  year: 2019
  ident: 10.1016/j.knosys.2020.106553_b5
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.051
– start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2020.106553_b79
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput. App.l
– volume: 265
  start-page: 205
  year: 2018
  ident: 10.1016/j.knosys.2020.106553_b43
  article-title: Optimal column subset selection for image classification by genetic algorithms
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-016-2331-0
– volume: 8
  start-page: 65891
  year: 2020
  ident: 10.1016/j.knosys.2020.106553_b21
  article-title: An improved Harris’s hawks optimization for SAR target recognition and stock market index prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985596
– volume: 75
  start-page: 21
  year: 2019
  ident: 10.1016/j.knosys.2020.106553_b42
  article-title: Modified genetic algorithm approaches for classification of abnormal magnetic resonance brain tumour images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.054
SSID ssj0002218
Score 2.6030192
Snippet The rapid expansion of information science has caused the issue of “the curse of dimensionality”, which will negatively affect the performance of the machine...
The rapid expansion of information science has caused the issue of "the curse of dimensionality", which will negatively affect the performance of the machine...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106553
SubjectTerms Algorithm
Algorithms
Artificial Intelligence
Binary Dragonfly Algorithm
Binary Optimization
Case studies
Classification
Combinatorial Optimization
Coronaviruses
COVID-19
Data mining
Datasets
Feature selection
Information retrieval
Information science
Learning
Learning strategies
Machine learning
Novels
Optimization
Particle Swarm Optimization
Viral diseases
Title A Hyper Learning Binary Dragonfly Algorithm for Feature Selection: A COVID-19 Case Study
URI https://dx.doi.org/10.1016/j.knosys.2020.106553
https://www.proquest.com/docview/2490264547
Volume 212
WOSCitedRecordID wos000604529100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENZAyoELb4ZCYXRguGTM2JJtWdxMmk4LmZSZpkxuHkuWQ0Jxghug_fesXk7Lq3DgYidSbMfaT7ur1T4Qel6RpKpEyQKiYKUTS5EFgup5RWoQt0KyujIp80dsPM6mU_7OmbJPTTkB1jTZ2Rlf_VdSQxsQW4fO_gO5u5tCA3wGosMRyA7HvyJ83t-HtWXrM6fO-q9tyO1uW850DMh5Pz-ZLdv5-sMn42OolUC9i3BkKuI4V4-8Pzh8f7AbRLw_ADln3A0vbQC_9ba4QMvBymWE7hT0ydLu6MDzv6l5R9V5uwC930ZkH6lzVcG3i3YHEhm7Q7IxhvmAGM-DNl5I1roYBix0uWSV5a0ZA2U-DvlF5kucE7Vln9Evmbq1LyxefmyW8DKwpie6MU1sluHLObTHh8Xe8WhUTIbTyYvV50CXF9Pb8K7WynW0RVjCsx7ayg-G0zed0CbEmIK7_-2jLI0r4M8P_p0W84M8N0rK5A665VYXOLeouIuuqeYeuu0rd2A3iPfRNMcGJNiDBFuQ4A4kuAMJBpBgBxLcgeQVzrGHCNYQwQYiD9Dx3nAy2A9cjY1AUhqvgyqNw5JKltUJ4SKNRMIknGmciVCUCeVlLJiIUhFSRpM6LRNJVVwDo-cZdNT0Ieo1y0Y9QjiUYSx5QmsiyliWFedK1qzOoqhmPKnUNqJ-zArpEtDrOignhfc0XBR2pAs90oUd6W0UdFetbAKWK37PPDkKp0Ra5bAAOF1x5Y6nXuHmM_THPCQm693jP3c_QTc3s2QH9dbtF_UU3ZBf1_PT9pmD23cdh5og
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hyper+Learning+Binary+Dragonfly+Algorithm+for+Feature+Selection%3A+A+COVID-19+Case+Study&rft.jtitle=Knowledge-based+systems&rft.au=Too%2C+Jingwei&rft.au=Mirjalili%2C+Seyedali&rft.date=2021-01-05&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=212&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2020.106553&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon