Computational Complexity Optimization of Neural Network-Based Equalizers in Digital Signal Processing: A Comprehensive Approach

Experimental results based on offline processing reported at optical conferences increasingly rely on neural network-based equalizers for accurate data recovery. However, achieving low-complexity implementations that are efficient for real-time digital signal processing remains a challenge. This pap...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of lightwave technology Ročník 42; číslo 12; s. 4177 - 4201
Hlavní autori: Freire, Pedro, Srivallapanondh, Sasipim, Spinnler, Bernhard, Napoli, Antonio, Costa, Nelson, Prilepsky, Jaroslaw E., Turitsyn, Sergei K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 15.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0733-8724, 1558-2213
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Experimental results based on offline processing reported at optical conferences increasingly rely on neural network-based equalizers for accurate data recovery. However, achieving low-complexity implementations that are efficient for real-time digital signal processing remains a challenge. This paper addresses this critical need by proposing a systematic approach to designing and evaluating low-complexity neural network equalizers. Our approach focuses on three key phases: training, inference, and hardware synthesis. We provide a comprehensive review of existing methods for reducing complexity in each phase, enabling informed choices during design. For the training and inference phases, we introduce a novel methodology for quantifying complexity. This includes new metrics that bridge software-to-hardware considerations, revealing the relationship between complexity and specific neural network architectures and hyperparameters. We guide the calculation of these metrics for both feed-forward and recurrent layers, highlighting the appropriate choice depending on the application's focus (software or hardware). Finally, to demonstrate the practical benefits of our approach, we showcase how the computational complexity of neural network equalizers can be significantly reduced and measured for both teacher (biLSTM+CNN) and student (1D-CNN) architectures in different scenarios. This work aims to standardize the estimation and optimization of computational complexity for neural networks applied to real-time digital signal processing, paving the way for more efficient and deployable optical communication systems.
AbstractList Experimental results based on offline processing reported at optical conferences increasingly rely on neural network-based equalizers for accurate data recovery. However, achieving low-complexity implementations that are efficient for real-time digital signal processing remains a challenge. This paper addresses this critical need by proposing a systematic approach to designing and evaluating low-complexity neural network equalizers. Our approach focuses on three key phases: training, inference, and hardware synthesis. We provide a comprehensive review of existing methods for reducing complexity in each phase, enabling informed choices during design. For the training and inference phases, we introduce a novel methodology for quantifying complexity. This includes new metrics that bridge software-to-hardware considerations, revealing the relationship between complexity and specific neural network architectures and hyperparameters. We guide the calculation of these metrics for both feed-forward and recurrent layers, highlighting the appropriate choice depending on the application's focus (software or hardware). Finally, to demonstrate the practical benefits of our approach, we showcase how the computational complexity of neural network equalizers can be significantly reduced and measured for both teacher (biLSTM+CNN) and student (1D-CNN) architectures in different scenarios. This work aims to standardize the estimation and optimization of computational complexity for neural networks applied to real-time digital signal processing, paving the way for more efficient and deployable optical communication systems.
Author Srivallapanondh, Sasipim
Turitsyn, Sergei K.
Prilepsky, Jaroslaw E.
Freire, Pedro
Napoli, Antonio
Spinnler, Bernhard
Costa, Nelson
Author_xml – sequence: 1
  givenname: Pedro
  orcidid: 0000-0003-3145-1018
  surname: Freire
  fullname: Freire, Pedro
  email: p.freiredecarvalhosourza@aston.ac.uk
  organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K
– sequence: 2
  givenname: Sasipim
  orcidid: 0009-0001-9465-8801
  surname: Srivallapanondh
  fullname: Srivallapanondh, Sasipim
  organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K
– sequence: 3
  givenname: Bernhard
  orcidid: 0000-0001-9578-0297
  surname: Spinnler
  fullname: Spinnler, Bernhard
  email: anapoli@infinera.com
  organization: Infinera R&D, Munich, Germany
– sequence: 4
  givenname: Antonio
  orcidid: 0000-0002-9264-9274
  surname: Napoli
  fullname: Napoli, Antonio
  organization: Infinera R&D, Munich, Germany
– sequence: 5
  givenname: Nelson
  orcidid: 0000-0002-8678-5691
  surname: Costa
  fullname: Costa, Nelson
  email: ncosta@infinera.com
  organization: Infinera Unipessoal, Carnaxide, Portugal
– sequence: 6
  givenname: Jaroslaw E.
  orcidid: 0000-0002-3035-4112
  surname: Prilepsky
  fullname: Prilepsky, Jaroslaw E.
  organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K
– sequence: 7
  givenname: Sergei K.
  orcidid: 0000-0003-0101-3834
  surname: Turitsyn
  fullname: Turitsyn, Sergei K.
  organization: Aston Institute of Photonic Technologies, Aston University, Birmingham, U.K
BookMark eNp9kDtPwzAURi0EEuWxMzBYYk7xK3HCVkp5qSpIwBw5yU1xSeNgOzy68NdJGwbEwGRd-XzfvTp7aLs2NSB0RMmQUpKc3k4fh4wwMeQ8juI42kIDGoZxwBjl22hAJOdBLJnYRXvOLQihQsRygL7GZtm0XnltalXh9VTBh_af-K7xeqlXmx9sSjyD1nbEDPy7sS_BuXJQ4Mlrqyq9AuuwrvGFnmvfMQ96vi67tyYH53Q9P8OjTbWFZ6idfgM8ahprVP58gHZKVTk4_Hn30dPl5HF8HUzvrm7Go2mQcy58kCtVCBqFkaJSlJAXXIgsVlQULEtEBhAWTEqQJJFRGYqMJFGY5aXKKGe05BnfRyd9b7f2tQXn04VpbXelSzmRoehcCdFRUU_l1jhnoUxz3bvxVukqpSRdy0472eladvojuwuSP8HG6qWyn_9FjvuIBoBfuEgiKin_BpLujss
CODEN JLTEDG
CitedBy_id crossref_primary_10_3390_math12111755
crossref_primary_10_1109_ACCESS_2024_3482005
crossref_primary_10_1109_ACCESS_2025_3584331
crossref_primary_10_1016_j_neucom_2025_131373
crossref_primary_10_1049_gtd2_70102
crossref_primary_10_5194_npg_31_535_2024
crossref_primary_10_1016_j_icte_2025_04_016
crossref_primary_10_1364_AO_545671
crossref_primary_10_1109_JLT_2024_3487204
crossref_primary_10_1016_j_optcom_2024_131418
crossref_primary_10_1109_ACCESS_2024_3413717
crossref_primary_10_1109_JLT_2024_3451242
crossref_primary_10_3103_S1068335624601602
crossref_primary_10_1021_acs_jcim_5c00267
crossref_primary_10_1108_JM2_05_2025_0199
crossref_primary_10_1016_j_future_2025_107777
crossref_primary_10_3390_biomimetics10090617
crossref_primary_10_1109_OJCOMS_2025_3586560
crossref_primary_10_3390_s25154825
crossref_primary_10_1016_j_phycom_2024_102576
crossref_primary_10_1016_j_asr_2024_04_055
crossref_primary_10_1109_LPT_2024_3424495
crossref_primary_10_1109_LAWP_2025_3539500
crossref_primary_10_1016_j_engappai_2025_110395
crossref_primary_10_1016_j_iot_2025_101493
crossref_primary_10_1109_JLT_2024_3519782
crossref_primary_10_1109_JLT_2025_3599665
crossref_primary_10_1109_ACCESS_2024_3491499
crossref_primary_10_1109_JLT_2025_3550277
Cites_doi 10.1109/ACCESS.2021.3079639
10.1007/978-3-7908-1866-6_11
10.1016/j.protcy.2013.12.159
10.5220/0010606100002992
10.3389/frai.2021.676564
10.1016/S0165-1684(00)00030-X
10.1145/3527156
10.1016/S0005-1098(00)00050-9
10.1109/72.279181
10.1364/ofc.2021.m3g.2
10.1364/OFC.2022.Th2A.35
10.23919/OFC49934.2023.10116725
10.1109/ECOC52684.2021.9605870
10.1007/s00163-020-00336-7
10.1049/icp.2023.2276
10.21437/Interspeech.2017-1164
10.1109/JLT.2015.2508502
10.1007/978-3-030-49076-8_3
10.1364/OFC.2023.M1F.5
10.1016/0098-3004(93)90090-R
10.1109/ICASSP.1995.480470
10.1109/JLT.2023.3234327
10.1109/JLT.2023.3272011
10.1016/j.pce.2006.03.020
10.2307/2003354
10.1609/aaai.v35i12.17286
10.1016/j.procs.2020.01.079
10.1109/CVPR.2017.643
10.1109/JLT.2021.3056869
10.48550/arxiv.1811.06965
10.1109/MWSCAS.2017.8053243
10.48550/ARXIV.1706.03762
10.1049/cp.2019.0947
10.1038/s41598-022-12563-0
10.1109/CompComm.2016.7925210
10.1038/s41377-022-00717-8
10.1109/JLT.2021.3096286
10.1137/07070111X
10.3390/jimaging9020046
10.1109/ICCD.2006.4380833
10.1145/3444943
10.1109/IROS.2017.8202133
10.1109/ISVLSI49217.2020.00027
10.1007/BF02457822
10.1109/TC.2010.200
10.1162/neco.1997.9.8.1735
10.1109/CVPR.2019.00881
10.1109/TSMCC.2009.2038279
10.1142/S0218126603001045
10.1364/OE.423747
10.1162/089976600300015015
10.1109/ECOC48923.2020.9333417
10.1109/JSTQE.2009.2035931
10.1109/JLT.2020.2973718
10.1109/18.605580
10.1007/s12200-022-00013-8
10.1109/TNNLS.2017.2766162
10.1109/72.182695
10.1109/JLT.2021.3051609
10.1038/s41467-018-07210-0
10.1109/JLT.2020.2991028
10.1364/OE.26.032765
10.1109/82.298385
10.1364/OE.463450
10.1109/5.720251
10.1109/82.539000
10.1109/CVPRW53098.2021.00268
10.1109/JLT.2023.3337604
10.1109/JPROC.2017.2761740
10.1145/1167350.1167440
10.1109/JLT.2021.3108006
10.1109/JSTQE.2022.3174268
10.1109/JLT.2014.2301492
10.1109/ARITH.2007.24
10.1109/TNNLS.2019.2910073
10.1016/j.ymssp.2020.107398
10.1109/LPT.2014.2375960
10.1109/5.726790
10.1109/MSP.2007.361611
10.1109/CIT.2008.Workshops.65
10.1016/j.neunet.2007.04.016
10.1109/CVPR.2016.90
10.1007/978-3-319-91734-4_4
10.1145/2858965.2814290
10.1109/JLT.2021.3092415
10.1364/OE.27.002387
10.1038/s41586-020-2764-0
10.1007/978-1-4757-2370-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2024.3386886
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 4201
ExternalDocumentID 10_1109_JLT_2024_3386886
10496171
Genre orig-research
GrantInformation_xml – fundername: EU Horizon 2020 Program
– fundername: European Union' Horizon Europe Research and Innovation Programme
  grantid: 101092766
– fundername: EPSRC Project TRANSNET
– fundername: Leverhulme Trust
  grantid: RP-2018-063
  funderid: 10.13039/501100000275
– fundername: Marie Sklodowska-Curie
  grantid: 813144; 956713
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c334t-caad41656a174fecd344b8a14d2b94bee5d277e70976f54b0965bcfab1321f3b3
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001263599200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8724
IngestDate Mon Jun 30 10:12:59 EDT 2025
Tue Nov 18 22:06:27 EST 2025
Sat Nov 29 02:11:48 EST 2025
Wed Aug 27 02:05:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-caad41656a174fecd344b8a14d2b94bee5d277e70976f54b0965bcfab1321f3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9578-0297
0000-0002-3035-4112
0000-0002-8678-5691
0000-0002-9264-9274
0000-0003-0101-3834
0009-0001-9465-8801
0000-0003-3145-1018
OpenAccessLink https://ieeexplore.ieee.org/document/10496171
PQID 3075415544
PQPubID 85485
PageCount 25
ParticipantIDs proquest_journals_3075415544
crossref_citationtrail_10_1109_JLT_2024_3386886
ieee_primary_10496171
crossref_primary_10_1109_JLT_2024_3386886
PublicationCentury 2000
PublicationDate 2024-06-15
PublicationDateYYYYMMDD 2024-06-15
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref58
ref53
ref52
Veit (ref106) 2016
Malkoff (ref18) 1989
ref54
Baalen (ref24) 2020; 33
Voon (ref123) 2021; 10
Staff (ref73) 1997; 59
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref43
Wu (ref72) 2018
Pedro (ref88) 2024
Gysel (ref20) 2016
ref49
ref8
Padmajarani (ref90) 2015; 2
ref9
ref4
ref3
Jahani (ref70) 2009
ref6
ref5
Nichols (ref59) 2021
ref101
ref40
ref35
ref34
ref37
Hubara (ref115)
ref31
ref30
ref33
ref32
You (ref77) 2020
ref38
Li (ref121) 2019
Sun (ref103) 2020
Zhou (ref120) 2017
ref23
Lipton (ref96) 2015
ref26
ref25
ref22
ref21
ref28
ref27
Finn (ref41) 2017
(ref83) 2021
Xu (ref36) 2020
Luo (ref12) 1998
Banner (ref113) 2018; 31
ref13
ref15
ref14
ref97
ref11
ref99
ref10
ref98
ref17
ref16
ref19
Han (ref122) 2015
ref93
ref92
ref95
ref91
ref89
Looks (ref62) 2017
ref86
ref85
ref87
Przewlocka-Rus (ref94) 2022
Goyal (ref119) 2021
Kahrs (ref7) 1998
Ba (ref108) 2016
ref82
ref81
ref84
ref80
ref79
ref78
ref109
Maass (ref29) 1994
ref107
ref75
ref104
ref105
ref102
ref76
Chang (ref117) 2020
ref2
ref1
Taras (ref55) 2018
ref71
ref111
ref112
ref110
ref68
ref67
Li (ref74) 2019
ref69
ref118
ref64
ref63
ref116
ref66
Freire (ref39) 2022
ref65
ref114
Wu (ref100) 2018
ref60
ref61
References_xml – ident: ref4
  doi: 10.1109/ACCESS.2021.3079639
– ident: ref8
  doi: 10.1007/978-3-7908-1866-6_11
– ident: ref35
  doi: 10.1016/j.protcy.2013.12.159
– year: 2020
  ident: ref117
  article-title: MSP: An FPGA-specific mixed-scheme, multi-precision deep neural network quantization framework
– ident: ref65
  doi: 10.5220/0010606100002992
– ident: ref71
  doi: 10.3389/frai.2021.676564
– ident: ref13
  doi: 10.1016/S0165-1684(00)00030-X
– ident: ref60
  doi: 10.1145/3527156
– ident: ref34
  doi: 10.1016/S0005-1098(00)00050-9
– ident: ref95
  doi: 10.1109/72.279181
– year: 2016
  ident: ref108
  article-title: Layer normalization
– ident: ref58
  doi: 10.1364/ofc.2021.m3g.2
– year: 2024
  ident: ref88
  article-title: Code to estimate computational complexity of neural network applications in signal processing
– volume-title: Proc. Opt. Fiber Commun. Conf.
  year: 2022
  ident: ref39
  article-title: Domain adaptation: The key enabler of neural network equalizers in coherent optical systems
  doi: 10.1364/OFC.2022.Th2A.35
– start-page: 550
  volume-title: Proc. 30th Int. Conf. Neural Inform. Process. Syst.
  year: 2016
  ident: ref106
  article-title: Residual networks behave like ensembles of relatively shallow networks
– ident: ref54
  doi: 10.23919/OFC49934.2023.10116725
– ident: ref75
  doi: 10.1109/ECOC52684.2021.9605870
– ident: ref30
  doi: 10.1007/s00163-020-00336-7
– ident: ref43
  doi: 10.1049/icp.2023.2276
– year: 2015
  ident: ref96
  article-title: A critical review of recurrent neural networks for sequence learning
– start-page: 4466
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref115
  article-title: Accurate post training quantization with small calibration sets
– ident: ref21
  doi: 10.21437/Interspeech.2017-1164
– volume: 10
  start-page: 12
  issue: 1
  year: 2021
  ident: ref123
  article-title: Performance analysis of CPU, GPU and TPU for deep learning applications
  publication-title: Int. J. Des., Anal. Tools Intergrated Circuits Syst.
– ident: ref14
  doi: 10.1109/JLT.2015.2508502
– ident: ref111
  doi: 10.1007/978-3-030-49076-8_3
– volume: 31
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref113
  article-title: Scalable methods for 8-bit training of neural networks
– volume-title: Applied Neural Networks for Signal Processing
  year: 1998
  ident: ref12
– ident: ref42
  doi: 10.1364/OFC.2023.M1F.5
– year: 2015
  ident: ref122
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
– ident: ref47
  doi: 10.1016/0098-3004(93)90090-R
– ident: ref78
  doi: 10.1109/ICASSP.1995.480470
– ident: ref15
  doi: 10.1109/JLT.2023.3234327
– ident: ref56
  doi: 10.1109/JLT.2023.3272011
– ident: ref64
  doi: 10.1016/j.pce.2006.03.020
– year: 2017
  ident: ref120
  article-title: Incremental network quantization: Towards lossless CNNs with low-precision weights
– year: 2019
  ident: ref121
  article-title: Additive powers-of-two quantization: An efficient non-uniform discretization for neural networks
– volume: 33
  start-page: 5741
  year: 2020
  ident: ref24
  article-title: Bayesian bits: Unifying quantization and pruning
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref110
  doi: 10.2307/2003354
– ident: ref112
  doi: 10.1609/aaai.v35i12.17286
– ident: ref46
  doi: 10.1016/j.procs.2020.01.079
– ident: ref22
  doi: 10.1109/CVPR.2017.643
– ident: ref16
  doi: 10.1109/JLT.2021.3056869
– ident: ref63
  doi: 10.48550/arxiv.1811.06965
– ident: ref99
  doi: 10.1109/MWSCAS.2017.8053243
– ident: ref107
  doi: 10.48550/ARXIV.1706.03762
– year: 2017
  ident: ref62
  article-title: Deep learning with dynamic computation graphs
– volume-title: Applications of Digital Signal Processing to Audio and Acoustics
  year: 1998
  ident: ref7
– ident: ref52
  doi: 10.1049/cp.2019.0947
– ident: ref49
  doi: 10.1038/s41598-022-12563-0
– ident: ref82
  doi: 10.1109/CompComm.2016.7925210
– ident: ref85
  doi: 10.1038/s41377-022-00717-8
– year: 2009
  ident: ref70
  article-title: ZOT-MK: A new algorithm for big integer multiplication
– year: 2020
  ident: ref103
  article-title: A review of designs and applications of echo state networks
– ident: ref28
  doi: 10.1109/JLT.2021.3096286
– ident: ref51
  doi: 10.1137/07070111X
– year: 2022
  ident: ref94
  article-title: Power-of-two quantization for low bitwidth and hardware compliant neural networks
– ident: ref44
  doi: 10.3390/jimaging9020046
– volume: 2
  start-page: 1
  issue: 9
  year: 2015
  ident: ref90
  article-title: FPGA implementation of multiplier using shift and add technique
  publication-title: Int. J. Adv. Electron. Comput. Sci.
– ident: ref69
  doi: 10.1109/ICCD.2006.4380833
– ident: ref25
  doi: 10.1145/3444943
– ident: ref38
  doi: 10.1109/IROS.2017.8202133
– ident: ref57
  doi: 10.1109/ISVLSI49217.2020.00027
– ident: ref1
  doi: 10.1007/BF02457822
– year: 2021
  ident: ref83
  article-title: Ultrascale architecture DSP slice
– ident: ref91
  doi: 10.1109/TC.2010.200
– ident: ref97
  doi: 10.1162/neco.1997.9.8.1735
– year: 2020
  ident: ref77
  article-title: Shiftaddnet: A hardware-inspired deep network
– ident: ref114
  doi: 10.1109/CVPR.2019.00881
– ident: ref6
  doi: 10.1109/TSMCC.2009.2038279
– year: 2019
  ident: ref74
  article-title: Additive powers-of-two quantization: An efficient non-uniform discretization for neural networks
– ident: ref80
  doi: 10.1142/S0218126603001045
– year: 2021
  ident: ref119
  article-title: Fixed-point quantization of convolutional neural networks for quantized inference on embedded platforms
– ident: ref84
  doi: 10.1364/OE.423747
– ident: ref98
  doi: 10.1162/089976600300015015
– ident: ref45
  doi: 10.1109/ECOC48923.2020.9333417
– ident: ref50
  doi: 10.1109/ECOC52684.2021.9605870
– ident: ref68
  doi: 10.1109/JSTQE.2009.2035931
– ident: ref48
  doi: 10.1109/JLT.2020.2973718
– ident: ref23
  doi: 10.1109/18.605580
– ident: ref87
  doi: 10.1007/s12200-022-00013-8
– ident: ref102
  doi: 10.1109/TNNLS.2017.2766162
– ident: ref116
  doi: 10.1109/72.182695
– start-page: 5363
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref72
  article-title: Deep k-means: Re-training and parameter sharing with harder cluster assignments for compressing deep convolutions
– ident: ref109
  doi: 10.1109/JLT.2021.3051609
– ident: ref9
  doi: 10.1038/s41467-018-07210-0
– year: 2018
  ident: ref100
  article-title: On the statistical challenges of echo state networks and some potential remedies
– ident: ref40
  doi: 10.1109/JLT.2020.2991028
– ident: ref27
  doi: 10.1364/OE.26.032765
– ident: ref79
  doi: 10.1109/82.298385
– ident: ref53
  doi: 10.1364/OE.463450
– volume: 59
  year: 1997
  ident: ref73
  article-title: Gate count capacity metrics for FPGAS
– ident: ref5
  doi: 10.1109/5.720251
– ident: ref92
  doi: 10.1109/82.539000
– start-page: 248
  volume-title: Proc. 2nd Int. Conf. Neural Inform. Process. Syst.
  year: 1989
  ident: ref18
  article-title: A neural network for real-time signal processing
– ident: ref76
  doi: 10.1109/CVPRW53098.2021.00268
– ident: ref118
  doi: 10.1109/JLT.2023.3337604
– year: 2018
  ident: ref55
  article-title: Quantization error as a metric for dynamic precision scaling in neural net training
– ident: ref19
  doi: 10.1109/JPROC.2017.2761740
– ident: ref33
  doi: 10.1145/1167350.1167440
– ident: ref37
  doi: 10.1109/JLT.2021.3108006
– start-page: 1
  volume-title: Proc. IEEE Opt. Fiber Commun. Conf. Exhib.
  year: 2020
  ident: ref36
  article-title: Transfer learning aided neural networks for nonlinear equalization in short-reach direct detection systems
– ident: ref66
  doi: 10.1109/JSTQE.2022.3174268
– start-page: 1126
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2017
  ident: ref41
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– ident: ref17
  doi: 10.1109/JLT.2014.2301492
– year: 2021
  ident: ref59
  article-title: A survey and empirical evaluation of parallel deep learning frameworks
– year: 2016
  ident: ref20
  article-title: Hardware-oriented approximation of convolutional neural networks
– ident: ref89
  doi: 10.3389/frai.2021.676564
– ident: ref93
  doi: 10.1109/ARITH.2007.24
– ident: ref31
  doi: 10.1109/TNNLS.2019.2910073
– ident: ref3
  doi: 10.1016/j.ymssp.2020.107398
– ident: ref11
  doi: 10.1109/LPT.2014.2375960
– ident: ref2
  doi: 10.1109/5.726790
– ident: ref67
  doi: 10.1109/MSP.2007.361611
– start-page: 183
  volume-title: Proc. 7th Int. Conf. Neural Inform. Process. Syst.
  year: 1994
  ident: ref29
  article-title: On the computational complexity of networks of spiking neurons
– ident: ref32
  doi: 10.1109/CIT.2008.Workshops.65
– ident: ref104
  doi: 10.1016/j.neunet.2007.04.016
– ident: ref105
  doi: 10.1109/CVPR.2016.90
– ident: ref10
  doi: 10.1007/978-3-319-91734-4_4
– ident: ref61
  doi: 10.1145/2858965.2814290
– ident: ref26
  doi: 10.1109/JLT.2021.3092415
– ident: ref101
  doi: 10.1364/OE.27.002387
– ident: ref86
  doi: 10.1038/s41586-020-2764-0
– ident: ref81
  doi: 10.1007/978-1-4757-2370-0
SSID ssj0014487
Score 2.6248076
Snippet Experimental results based on offline processing reported at optical conferences increasingly rely on neural network-based equalizers for accurate data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4177
SubjectTerms Artificial neural networks
Communications systems
Complexity
computational complexity
Data recovery
Digital signal processing
Equalizers
Hardware
hardware estimation
Inference
Measurement
Neural networks
nonlinear equalizer
Optimization
Real time
Signal processing
Software
Task analysis
Training
Title Computational Complexity Optimization of Neural Network-Based Equalizers in Digital Signal Processing: A Comprehensive Approach
URI https://ieeexplore.ieee.org/document/10496171
https://www.proquest.com/docview/3075415544
Volume 42
WOSCitedRecordID wos001263599200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2213
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014487
  issn: 0733-8724
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4qCl58i_VFDl48bN1tZptdb_WFiFTBCr0tea0WtJW2CnrxrzuTTYsgCt52IQkL305mJpnvG8YOHMmQZaoZmcTmEZgyjRSUJkoM6Z0rqnuPfbMJ2W5n3W5-G8jqngvjnPPFZ65Oj_4u3w7MKx2VoYVDjh4Xk51ZKZsVWWt6ZYB5hudGSyHQxBswuZOM86Or6w5mgg2oYz7WzIg2_c0H-aYqP3Zi714ulv_5YStsKcSRvFUBv8pmXH-NLYeYkgeLHa2xBV_iaUbr7LNq4BAO_zi9kRjm-J3f4LbxHPiYfFByEuzAEe2qQjw6QUdn-bmnX35gtMh7fX7We6BuI_yu90CLBboBusFj3vJLD91jVRrPW0G1fIPdX5x3Ti-j0H4hMkLAODJKWSBxHoVZS-mMFQA6UwnYhs5BO5fahpROxhjRlClo0pHRplQaE9ykFFpssrn-oO-2GC-dVSpzOrdCg5CxikFDgv5TSJUaSGrsaAJIYYI2ObXIeCp8jhLnBUJYEIRFgLDGDqczXipdjj_GbhBk38ZVaNXY7gT0IljuqMA9L_VBFmz_Mm2HLdLqVC-WpLtsbjx8dXts3ryNe6Phvv8pvwAnO-Cq
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hWgSXprzUUCh74MLBYGfH2O4tbUE8QkAiSNysfRkilQTlUalc-OudWW8QEqISN1vaXVv6PDsz3vm-AdhxLEOWq4PIJLaI0FRppLAyUWJY71xx3Xvsm01k3W5-c1NcBrK658I453zxmdvjS3-Wb4dmyr_KyMKxII9Lyc4Hbp0V6FrPhwaUaXh2dCYlGXkLZ6eScbF_2ulRLtjCPcrIDnImTr_wQr6tyqu92DuYo8Y7X-0zfAqRpGjX0C_DnBusQCNElSLY7HgFFnyRpxmvwlPdwiH8_hN8x3KYk7_igjaO-8DIFMNKsGQHjejWNeLRD3J1Vhx6AuYjxYuiPxC_-rfcb0Rc9W95sUA4IEf4XbT90iN3VxfHi3bQLV-D66PD3s_jKDRgiIyUOImMUhZZnkdR3lI5YyWizlWCtqUL1M6ltpVlLosppqlS1Kwko02lNKW4SSW1XIf5wXDgvoConFUqd7qwUqPMYhWjxoQwlJlKDSZN2J8BUpqgTs5NMn6XPkuJi5IgLBnCMkDYhN3nGQ-1Msd_xq4xZC_G1Wg1YXMGehlsd1zSrpf6MAs33pi2DYvHvfNO2Tnpnn2FJX4SV48l6SbMT0ZTtwUfzZ9Jfzz65j_Qf_8E4_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Complexity+Optimization+of+Neural+Network-Based+Equalizers+in+Digital+Signal+Processing%3A+A+Comprehensive+Approach&rft.jtitle=Journal+of+lightwave+technology&rft.au=Freire%2C+Pedro&rft.au=Srivallapanondh%2C+Sasipim&rft.au=Spinnler%2C+Bernhard&rft.au=Napoli%2C+Antonio&rft.date=2024-06-15&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=42&rft.issue=12&rft.spage=4177&rft.epage=4201&rft_id=info:doi/10.1109%2FJLT.2024.3386886&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2024_3386886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon