High-Speed Resource Allocation Algorithm Using a Coherent Ising Machine for NOMA Systems

Non-orthogonal multiple access (NOMA) technique is important for achieving a high data rate in next-generation wireless communications. A key challenge to fully utilizing the effectiveness of the NOMA technique is the optimization of the resource allocation (RA), e.g., channel and power. However, th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on vehicular technology Ročník 73; číslo 1; s. 1 - 17
Hlavní autoři: Otsuka, Teppei, Li, Aohan, Takesue, Hiroki, Inaba, Kensuke, Aihara, Kazuyuki, Hasegawa, Mikio
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Non-orthogonal multiple access (NOMA) technique is important for achieving a high data rate in next-generation wireless communications. A key challenge to fully utilizing the effectiveness of the NOMA technique is the optimization of the resource allocation (RA), e.g., channel and power. However, this RA optimization problem is NP-hard, and obtaining a good approximation of a solution with a low computational complexity algorithm is not easy. To overcome this problem, we propose the coherent Ising machine (CIM) based optimization method for channel allocation in NOMA systems. The CIM is an Ising system that can deliver fair approximate solutions to combinatorial optimization problems at high speed (millisecond order) by operating optimization algorithms based on mutually connected photonic neural networks. The performance of our proposed method was evaluated using a simulation model of the CIM. We compared the performance of our proposed method to simulated annealing, a conventional-NOMA pairing scheme, deep Q learning based scheme, and an exhaustive search scheme. Simulation results indicate that our proposed method is superior in terms of speed and the attained optimal solutions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2023.3300920