Dual-decoder graph autoencoder for unsupervised graph representation learning

Unsupervised graph representation learning is a challenging task that embeds graph data into a low-dimensional space without label guidance. Recently, graph autoencoders have been proven to be an effective way to solve this problem in some attributed networks. However, most existing graph autoencode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 234; S. 107564
Hauptverfasser: Sun, Dengdi, Li, Dashuang, Ding, Zhuanlian, Zhang, Xingyi, Tang, Jin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 25.12.2021
Elsevier Science Ltd
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Unsupervised graph representation learning is a challenging task that embeds graph data into a low-dimensional space without label guidance. Recently, graph autoencoders have been proven to be an effective way to solve this problem in some attributed networks. However, most existing graph autoencoder-based embedding algorithms only reconstruct the feature maps of nodes or the affinity matrix but do not fully leverage the latent information encoded in the low-dimensional representation. In this study, we propose a dual-decoder graph autoencoder model for attributed graph embedding. The proposed framework embeds the graph topological structure and node attributes into a compact representation, and then the two decoders are trained to reconstruct the node attributes and graph structures simultaneously. The experimental results on clustering and link prediction tasks strongly support the conclusion that the proposed model outperforms the state-of-the-art approaches.
AbstractList Unsupervised graph representation learning is a challenging task that embeds graph data into a low-dimensional space without label guidance. Recently, graph autoencoders have been proven to be an effective way to solve this problem in some attributed networks. However, most existing graph autoencoder-based embedding algorithms only reconstruct the feature maps of nodes or the affinity matrix but do not fully leverage the latent information encoded in the low-dimensional representation. In this study, we propose a dual-decoder graph autoencoder model for attributed graph embedding. The proposed framework embeds the graph topological structure and node attributes into a compact representation, and then the two decoders are trained to reconstruct the node attributes and graph structures simultaneously. The experimental results on clustering and link prediction tasks strongly support the conclusion that the proposed model outperforms the state-of-the-art approaches.
ArticleNumber 107564
Author Ding, Zhuanlian
Zhang, Xingyi
Li, Dashuang
Sun, Dengdi
Tang, Jin
Author_xml – sequence: 1
  givenname: Dengdi
  surname: Sun
  fullname: Sun, Dengdi
  email: sundengdi@163.com
  organization: Key Laboratory of Intelligent Computing & Signal Processing (ICSP), Ministry of Education, School of Artificial Intelligence, Anhui University, Hefei, 230601, China
– sequence: 2
  givenname: Dashuang
  surname: Li
  fullname: Li, Dashuang
  email: lidashuang96@163.com
  organization: Anhui Provincial Key Laboratory of Multimodal Cognitive Computing, School of Computer Science and Technology, Anhui University, Hefei, 230601, China
– sequence: 3
  givenname: Zhuanlian
  surname: Ding
  fullname: Ding, Zhuanlian
  email: dingzhuanlian@163.com
  organization: School of Internet, Anhui University, Hefei, 230039, China
– sequence: 4
  givenname: Xingyi
  orcidid: 0000-0002-5052-000X
  surname: Zhang
  fullname: Zhang, Xingyi
  email: xyzhanghust@gmail.com
  organization: Key Laboratory of Intelligent Computing & Signal Processing (ICSP), Ministry of Education, School of Artificial Intelligence, Anhui University, Hefei, 230601, China
– sequence: 5
  givenname: Jin
  surname: Tang
  fullname: Tang, Jin
  email: tangjin@ahu.edu.cn
  organization: Anhui Provincial Key Laboratory of Multimodal Cognitive Computing, School of Computer Science and Technology, Anhui University, Hefei, 230601, China
BookMark eNqFkLtOwzAUhi1UJErhDRgiMaf4EjsNAxIqV6mIBWbLcY6LS7CDnVTq2-MqnRhgOtLR_53Ld4omzjtA6ILgOcFEXG3mn87HXZxTTElqlVwUR2hKFiXNywJXEzTFFcd5iTk5QacxbjDGlJLFFL3cDarNG9C-gZCtg-o-MjX0HtzYMT5kg4tDB2FrIzSHSIAuQATXq956l7WggrNufYaOjWojnB_qDL0_3L8tn_LV6-Pz8naVa8aKPtelKRg0XJc1ADeVMgaIYbXmlSiYwdhQwRpcV1BXRHDNIF1fAxYl4yUVwGbocpzbBf89QOzlxg_BpZWSikQwUVQipYoxpYOPMYCRXbBfKuwkwXIvTm7kKE7uxclRXMKuf2Hajn_2Qdn2P_hmhCG9v7UQZNQ2yYTGBtC9bLz9e8APNoyP0w
CitedBy_id crossref_primary_10_3390_math12050697
crossref_primary_10_1016_j_ins_2023_119840
crossref_primary_10_1016_j_eswa_2025_128328
crossref_primary_10_1016_j_eswa_2024_125911
crossref_primary_10_1016_j_neucom_2024_127703
crossref_primary_10_1016_j_patcog_2025_111988
crossref_primary_10_1016_j_knosys_2024_111592
crossref_primary_10_1109_TETCI_2024_3369849
crossref_primary_10_1016_j_neucom_2022_10_007
crossref_primary_10_1016_j_asoc_2022_109193
crossref_primary_10_1109_TSC_2025_3562325
crossref_primary_10_1016_j_neucom_2024_128264
crossref_primary_10_1109_TNNLS_2024_3358801
crossref_primary_10_3390_e25040567
crossref_primary_10_1007_s00530_024_01346_4
crossref_primary_10_1016_j_ins_2023_119042
crossref_primary_10_1007_s10618_025_01106_6
crossref_primary_10_1016_j_knosys_2023_110701
crossref_primary_10_1016_j_neunet_2023_06_045
crossref_primary_10_1016_j_ymeth_2023_02_002
crossref_primary_10_3390_math11234788
crossref_primary_10_1007_s12559_022_10098_0
crossref_primary_10_1109_JSTARS_2024_3374813
crossref_primary_10_3390_buildings14072223
crossref_primary_10_1109_TNNLS_2024_3401449
crossref_primary_10_1016_j_compeleceng_2025_110242
crossref_primary_10_1016_j_neucom_2023_02_036
crossref_primary_10_3390_jmse13071231
crossref_primary_10_1016_j_engappai_2025_111822
Cites_doi 10.1109/TKDE.2018.2807452
10.24963/ijcai.2020/411
10.1609/aaai.v34i04.5984
10.24963/ijcai.2018/362
10.1145/3097983.3098061
10.1109/TKDE.2016.2598561
10.1109/ICDM.2018.8626170
10.1145/2806416.2806512
10.1109/MSP.2012.2235192
10.1007/s10618-010-0210-x
10.1109/TKDE.2018.2849727
10.1109/ICCV.2019.00662
10.1609/aaai.v28i1.8950
10.1145/3132847.3132919
10.24963/ijcai.2019/509
10.1109/ICCV.2017.612
10.1609/aaai.v30i1.10179
10.1109/TIT.1982.1056489
10.1016/j.knosys.2018.03.022
10.1145/3132847.3132967
10.1145/3366423.3380079
10.1145/2736277.2741093
10.1002/nav.3800020109
10.1109/TKDE.2018.2819980
10.1109/TKDE.2017.2733530
10.1145/2939672.2939754
10.1145/3159652.3159706
10.1145/2939672.2939751
10.1109/TKDE.2015.2391115
10.1016/j.acha.2010.04.005
10.1145/2623330.2623726
10.1109/TKDE.2015.2492567
10.1145/3018661.3018667
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Dec 25, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Dec 25, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.107564
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_107564
S0950705121008261
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-c7f43ed5c7bee5f9affe1f3bc59643f00f263d0b9eb9165c3e950be06735726e3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709963300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:43:42 EST 2025
Sat Nov 29 07:04:53 EST 2025
Tue Nov 18 21:11:20 EST 2025
Fri Feb 23 02:45:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph clustering
Graph representation learning
Graph autoencoder
Graph neural networks
Graph embedding
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-c7f43ed5c7bee5f9affe1f3bc59643f00f263d0b9eb9165c3e950be06735726e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5052-000X
PQID 2616536496
PQPubID 2035257
ParticipantIDs proquest_journals_2616536496
crossref_primary_10_1016_j_knosys_2021_107564
crossref_citationtrail_10_1016_j_knosys_2021_107564
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107564
PublicationCentury 2000
PublicationDate 2021-12-25
PublicationDateYYYYMMDD 2021-12-25
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-25
  day: 25
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Cui, Wang, Pei, Zhu (b5) 2019; 31
Hamilton, Ying, Leskovec (b35) 2017
Daokun, Jie, Xingquan, Chengqi (b7) 2017
H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, C. Zhang, Binarized attributed network embedding, in: Proceedings of 2018 IEEE International Conference on Data Mining, 2018, pp. 1476–1481.
A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Proceedings of Advances in Neural Information Processing Systems, Vol. 14, 2001, pp. 849–856.
Kingma, Welling (b40) 2013
Pan, Wu, Zhu (b1) 2015; 27
Fan, Wang, Shi, Lu, Lin, Wang (b42) 2020
Tian, Gao, Cui, Chen, Liu (b49) 2014
Maaten, Hinton (b43) 2008; 9
Lloyd (b46) 1982; 28
J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, LINE: Large-scale information network embedding, in: Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 1067–1077.
Goyal, Ferrara (b52) 2018; 151
Shi, Li, Zhang, Sun, Yu (b6) 2017; 29
J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, J. Tang, Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec, in: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 2018, pp. 459–467.
Xue, Zhong, Li, Chen, Zhai, Kong (b34) 2021
S. Cao, W. Lu, Q. Xu, Deep neural networks for learning graph representations, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, Vol. 16, 2016, pp. 1145–1152.
Cai, Zheng, Chang (b51) 2018; 30
S. Cao, W. Lu, Q. Xu, GraRep: Learning graph representations with global structural information, in: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015, pp. 891–900.
Chen, Zhong, Li, Wang, Qian, Tu (b31) 2021
Perozzi, Al-Rfou, Skiena (b8) 2014
Shuman, Narang, Frossard, Ortega, Vandergheynst (b37) 2013; 30
Shen, Chung (b30) 2019
Tang, Liu (b44) 2010; 23
Sen, Namata, Bilgic, Getoor, Gallagher, Eliassi-Rad (b55) 2008; 29
Lu, Getoor (b54) 2005
X. Huang, J. Li, X. Hu, Label informed attributed network embedding, in: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, 2017, pp. 731–739.
A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceeding of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data, Vol. 2016, 2016, pp. 855–864.
Hammond, Vandergheynst, Gribonval (b39) 2011; 30
M. Ou, P. Cui, J. Pei, Z. Zhang, W. Zhu, Asymmetric transitivity preserving graph embedding, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1105–1114.
Kingma, Ba (b45) 2014
R. Xia, Y. Pan, L. Du, J. Yin, Robust multi-view spectral clustering via low-rank and sparse decomposition, in: Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014, pp. 2149–2155.
Pan, Wu, Zhu, Zhang, Yu (b2) 2016; 28
X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, S. Yang, Community preserving network embedding, in: Proceedings of the 27th AAAI Conference on Artificial Intelligence, Vol. 17, 2017, pp. 3239–3270.
J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, H. Liu, Attributed network embedding for learning in a dynamic environment, in: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 387–396.
K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, H. Huang, Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5736–5745.
C. Wang, S. Pan, G. Long, X. Zhu, J. Jiang, MGAE: Marginalized graph autoencoder for graph clustering, in: Proceedings of the 26th ACM International Conference on Information and Knowledge Management, 2017, pp. 889–898.
Cao, Zheng, Shi, Li, Wu (b3) 2016
L.F. Ribeiro, P.H. Saverese, D.R. Figueiredo, struc2vec: Learning node representations from structural identity, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 385–394.
Kipf, Welling (b14) 2016
C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, C. Zhang, Attributed graph clustering: A deep attentional embedding approach, in: Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019, pp. 3670–3676.
C. Yang, Z. Liu, D. Zhao, M. Sun, E.Y. Chang, Network representation learning with rich text information, in: Proceedings of the 24th International Joint Conference on Artificial Intelligence, Vol. 2015, 2015, pp. 2111–2117.
G. Namata, B. London, L. Getoor, B. Huang, U. EDU, Query-driven active surveying for collective classification, in: Proceedings of the 10th International Workshop on Mining and Learning with Graphs, Vol. 8, 2012.
F. Nie, X. Wang, H. Huang, Clustering and projected clustering with adaptive neighbors, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 977–986.
Li, Han, Wu (b38) 2018
Chen, Perozzi, Hu, Skiena (b23) 2017
Kipf, Welling (b16) 2016
Liao, He, Zhang, Chua (b26) 2018; 30
Obdrzalek, Matas (b57) 2002
LeCun (b58) 1998
Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b15) 2017
Kuhn (b53) 1955; 2
Gui, Liu, Tao, Jiang, Norick, Kaplan, Han (b22) 2017; 29
J. Park, M. Lee, H.J. Chang, K. Lee, J.Y. Choi, Symmetric graph convolutional autoencoder for unsupervised graph representation learning, in: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019, pp. 6518–6527.
A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. Schardl, C. Leiserson, Evolvegcn: Evolving graph convolutional networks for dynamic graphs, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 5363–5370.
J. Cheng, Q. Wang, Z. Tao, D.-Y. Xie, Q. Gao, Multi-view attribute graph convolution networks for clustering, in: Proceedings of the 29th International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence, 2020, pp. 2973–2979.
S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding, in: Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018.
Li, Li (b36) 2009; 44
Obdrzalek (10.1016/j.knosys.2021.107564_b57) 2002
Cui (10.1016/j.knosys.2021.107564_b5) 2019; 31
Tian (10.1016/j.knosys.2021.107564_b49) 2014
10.1016/j.knosys.2021.107564_b17
10.1016/j.knosys.2021.107564_b18
10.1016/j.knosys.2021.107564_b19
Xue (10.1016/j.knosys.2021.107564_b34) 2021
10.1016/j.knosys.2021.107564_b10
10.1016/j.knosys.2021.107564_b11
10.1016/j.knosys.2021.107564_b12
10.1016/j.knosys.2021.107564_b56
10.1016/j.knosys.2021.107564_b13
Cao (10.1016/j.knosys.2021.107564_b3) 2016
10.1016/j.knosys.2021.107564_b50
Li (10.1016/j.knosys.2021.107564_b36) 2009; 44
Shi (10.1016/j.knosys.2021.107564_b6) 2017; 29
Hamilton (10.1016/j.knosys.2021.107564_b35) 2017
Shen (10.1016/j.knosys.2021.107564_b30) 2019
Kingma (10.1016/j.knosys.2021.107564_b40) 2013
Pan (10.1016/j.knosys.2021.107564_b1) 2015; 27
Chen (10.1016/j.knosys.2021.107564_b31) 2021
10.1016/j.knosys.2021.107564_b47
Lu (10.1016/j.knosys.2021.107564_b54) 2005
Daokun (10.1016/j.knosys.2021.107564_b7) 2017
10.1016/j.knosys.2021.107564_b48
Perozzi (10.1016/j.knosys.2021.107564_b8) 2014
Tang (10.1016/j.knosys.2021.107564_b44) 2010; 23
Veličković (10.1016/j.knosys.2021.107564_b15) 2017
Shuman (10.1016/j.knosys.2021.107564_b37) 2013; 30
Goyal (10.1016/j.knosys.2021.107564_b52) 2018; 151
10.1016/j.knosys.2021.107564_b41
Chen (10.1016/j.knosys.2021.107564_b23) 2017
Gui (10.1016/j.knosys.2021.107564_b22) 2017; 29
Kipf (10.1016/j.knosys.2021.107564_b16) 2016
10.1016/j.knosys.2021.107564_b32
10.1016/j.knosys.2021.107564_b33
Hammond (10.1016/j.knosys.2021.107564_b39) 2011; 30
Kipf (10.1016/j.knosys.2021.107564_b14) 2016
10.1016/j.knosys.2021.107564_b4
10.1016/j.knosys.2021.107564_b9
Li (10.1016/j.knosys.2021.107564_b38) 2018
Sen (10.1016/j.knosys.2021.107564_b55) 2008; 29
Kuhn (10.1016/j.knosys.2021.107564_b53) 1955; 2
10.1016/j.knosys.2021.107564_b28
10.1016/j.knosys.2021.107564_b29
Cai (10.1016/j.knosys.2021.107564_b51) 2018; 30
Kingma (10.1016/j.knosys.2021.107564_b45) 2014
LeCun (10.1016/j.knosys.2021.107564_b58) 1998
Maaten (10.1016/j.knosys.2021.107564_b43) 2008; 9
Lloyd (10.1016/j.knosys.2021.107564_b46) 1982; 28
Pan (10.1016/j.knosys.2021.107564_b2) 2016; 28
10.1016/j.knosys.2021.107564_b20
Liao (10.1016/j.knosys.2021.107564_b26) 2018; 30
10.1016/j.knosys.2021.107564_b21
10.1016/j.knosys.2021.107564_b24
10.1016/j.knosys.2021.107564_b25
Fan (10.1016/j.knosys.2021.107564_b42) 2020
10.1016/j.knosys.2021.107564_b27
References_xml – volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b43
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 151
  start-page: 78
  year: 2018
  end-page: 94
  ident: b52
  article-title: Graph embedding techniques, applications, and performance: A survey
  publication-title: Knowl. Based Syst.
– volume: 23
  start-page: 447
  year: 2010
  end-page: 478
  ident: b44
  article-title: Leveraging social media networks for classification
  publication-title: Data Min. Knowl. Discov.
– reference: A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Proceedings of Advances in Neural Information Processing Systems, Vol. 14, 2001, pp. 849–856.
– year: 2021
  ident: b34
  article-title: Dynamic network embedding survey
– start-page: 1
  year: 2021
  end-page: 12
  ident: b31
  article-title: Effective deep attributed network representation learning with topology adapted smoothing
  publication-title: IEEE Trans. Cybern.
– volume: 29
  start-page: 93
  year: 2008
  end-page: 106
  ident: b55
  article-title: Collective classification in network data
  publication-title: AI Mag.
– reference: S. Cao, W. Lu, Q. Xu, GraRep: Learning graph representations with global structural information, in: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015, pp. 891–900.
– reference: L.F. Ribeiro, P.H. Saverese, D.R. Figueiredo, struc2vec: Learning node representations from structural identity, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 385–394.
– reference: J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, H. Liu, Attributed network embedding for learning in a dynamic environment, in: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 387–396.
– reference: R. Xia, Y. Pan, L. Du, J. Yin, Robust multi-view spectral clustering via low-rank and sparse decomposition, in: Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014, pp. 2149–2155.
– reference: F. Nie, X. Wang, H. Huang, Clustering and projected clustering with adaptive neighbors, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 977–986.
– reference: J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, J. Tang, Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec, in: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 2018, pp. 459–467.
– reference: M. Ou, P. Cui, J. Pei, Z. Zhang, W. Zhu, Asymmetric transitivity preserving graph embedding, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1105–1114.
– year: 2018
  ident: b38
  article-title: Deeper insights into graph convolutional networks for semi-supervised learning
– year: 1998
  ident: b58
  article-title: The mnist database of handwritten digits
– year: 2017
  ident: b23
  article-title: Harp: Hierarchical representation learning for networks
– volume: 31
  start-page: 833
  year: 2019
  end-page: 852
  ident: b5
  article-title: A survey on network embedding
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2016
  ident: b16
  article-title: Variational graph auto-encoders
– reference: C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, C. Zhang, Attributed graph clustering: A deep attentional embedding approach, in: Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019, pp. 3670–3676.
– start-page: 3
  year: 2017
  end-page: 28
  ident: b7
  article-title: Network representation learning: A survey
  publication-title: IEEE Trans. Big Data
– reference: A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceeding of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data, Vol. 2016, 2016, pp. 855–864.
– reference: J. Park, M. Lee, H.J. Chang, K. Lee, J.Y. Choi, Symmetric graph convolutional autoencoder for unsupervised graph representation learning, in: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019, pp. 6518–6527.
– year: 2019
  ident: b30
  article-title: Deep network embedding for graph representation learning in signed networks
  publication-title: IEEE Trans. Cybern.
– volume: 44
  start-page: 153
  year: 2009
  end-page: 162
  ident: b36
  article-title: Note on the normalized Laplacian eigenvalues of signed graphs
  publication-title: Aust. J. Comb.
– start-page: 449
  year: 2016
  end-page: 460
  ident: b3
  article-title: Link prediction in schema-rich heterogeneous information network
  publication-title: Proceedings of the 20th Pacific Asia Conference on Knowledge Discovery and Data Mining
– start-page: 189
  year: 2005
  end-page: 207
  ident: b54
  article-title: Link-based classification
  publication-title: Proceeding of Advanced Methods for Knowledge Discovery from Complex Data
– reference: S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding, in: Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018.
– reference: K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, H. Huang, Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5736–5745.
– reference: G. Namata, B. London, L. Getoor, B. Huang, U. EDU, Query-driven active surveying for collective classification, in: Proceedings of the 10th International Workshop on Mining and Learning with Graphs, Vol. 8, 2012.
– reference: J. Cheng, Q. Wang, Z. Tao, D.-Y. Xie, Q. Gao, Multi-view attribute graph convolution networks for clustering, in: Proceedings of the 29th International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence, 2020, pp. 2973–2979.
– year: 2014
  ident: b45
  article-title: Adam: A method for stochastic optimization
– reference: X. Huang, J. Li, X. Hu, Label informed attributed network embedding, in: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, 2017, pp. 731–739.
– year: 2017
  ident: b15
  article-title: Graph attention networks
– reference: X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, S. Yang, Community preserving network embedding, in: Proceedings of the 27th AAAI Conference on Artificial Intelligence, Vol. 17, 2017, pp. 3239–3270.
– volume: 27
  start-page: 2933
  year: 2015
  end-page: 2946
  ident: b1
  article-title: CogBoost: Boosting for fast cost-sensitive graph classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 28
  start-page: 715
  year: 2016
  end-page: 728
  ident: b2
  article-title: Joint structure feature exploration and regularization for multi-task graph classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: b53
  article-title: The hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
– volume: 29
  start-page: 17
  year: 2017
  end-page: 37
  ident: b6
  article-title: A survey of heterogeneous information network analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2016
  ident: b14
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2013
  ident: b40
  article-title: Auto-encoding variational bayes
– reference: C. Yang, Z. Liu, D. Zhao, M. Sun, E.Y. Chang, Network representation learning with rich text information, in: Proceedings of the 24th International Joint Conference on Artificial Intelligence, Vol. 2015, 2015, pp. 2111–2117.
– reference: J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, LINE: Large-scale information network embedding, in: Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 1067–1077.
– volume: 30
  start-page: 1616
  year: 2018
  end-page: 1637
  ident: b51
  article-title: A comprehensive survey of graph embedding: Problems, techniques, and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, C. Zhang, Binarized attributed network embedding, in: Proceedings of 2018 IEEE International Conference on Data Mining, 2018, pp. 1476–1481.
– year: 2014
  ident: b8
  article-title: Deepwalk: online learning of social representations
– volume: 30
  start-page: 2257
  year: 2018
  end-page: 2270
  ident: b26
  article-title: Attributed social network embedding
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: C. Wang, S. Pan, G. Long, X. Zhu, J. Jiang, MGAE: Marginalized graph autoencoder for graph clustering, in: Proceedings of the 26th ACM International Conference on Information and Knowledge Management, 2017, pp. 889–898.
– year: 2017
  ident: b35
  article-title: Representation learning on graphs: Methods and applications
– start-page: 1293
  year: 2014
  end-page: 1299
  ident: b49
  article-title: Learning deep representations for graph clustering
  publication-title: Proceedings of the 24th AAAI Conference on Artificial Intelligence, Vol. 14
– volume: 30
  start-page: 129
  year: 2011
  end-page: 150
  ident: b39
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 29
  start-page: 2428
  year: 2017
  end-page: 2441
  ident: b22
  article-title: Embedding learning with events in heterogeneous information networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2020
  ident: b42
  article-title: One2multi graph autoencoder for multi-view graph clustering
  publication-title: Proceedings of the World Wide Web Conference 2020
– reference: S. Cao, W. Lu, Q. Xu, Deep neural networks for learning graph representations, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, Vol. 16, 2016, pp. 1145–1152.
– reference: A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. Schardl, C. Leiserson, Evolvegcn: Evolving graph convolutional networks for dynamic graphs, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 5363–5370.
– volume: 28
  start-page: 129
  year: 1982
  end-page: 136
  ident: b46
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inform. Theory
– start-page: 3
  year: 2002
  ident: b57
  article-title: Object recognition using local affine frames on distinguished regions
  publication-title: Proceedings of the 13th British Machine Vision Conference, Vol. 1
– volume: 30
  start-page: 83
  year: 2013
  end-page: 98
  ident: b37
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
– volume: 30
  start-page: 1616
  year: 2018
  ident: 10.1016/j.knosys.2021.107564_b51
  article-title: A comprehensive survey of graph embedding: Problems, techniques, and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2807452
– ident: 10.1016/j.knosys.2021.107564_b32
  doi: 10.24963/ijcai.2020/411
– start-page: 189
  year: 2005
  ident: 10.1016/j.knosys.2021.107564_b54
  article-title: Link-based classification
– ident: 10.1016/j.knosys.2021.107564_b33
  doi: 10.1609/aaai.v34i04.5984
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.knosys.2021.107564_b43
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.knosys.2021.107564_b13
– year: 2021
  ident: 10.1016/j.knosys.2021.107564_b34
– year: 2016
  ident: 10.1016/j.knosys.2021.107564_b16
– ident: 10.1016/j.knosys.2021.107564_b17
  doi: 10.24963/ijcai.2018/362
– ident: 10.1016/j.knosys.2021.107564_b21
  doi: 10.1145/3097983.3098061
– ident: 10.1016/j.knosys.2021.107564_b48
– volume: 29
  start-page: 93
  year: 2008
  ident: 10.1016/j.knosys.2021.107564_b55
  article-title: Collective classification in network data
  publication-title: AI Mag.
– volume: 29
  start-page: 17
  year: 2017
  ident: 10.1016/j.knosys.2021.107564_b6
  article-title: A survey of heterogeneous information network analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2598561
– ident: 10.1016/j.knosys.2021.107564_b29
  doi: 10.1109/ICDM.2018.8626170
– start-page: 1293
  year: 2014
  ident: 10.1016/j.knosys.2021.107564_b49
  article-title: Learning deep representations for graph clustering
– ident: 10.1016/j.knosys.2021.107564_b11
  doi: 10.1145/2806416.2806512
– volume: 30
  start-page: 83
  issue: 3
  year: 2013
  ident: 10.1016/j.knosys.2021.107564_b37
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2235192
– volume: 23
  start-page: 447
  year: 2010
  ident: 10.1016/j.knosys.2021.107564_b44
  article-title: Leveraging social media networks for classification
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-010-0210-x
– volume: 31
  start-page: 833
  year: 2019
  ident: 10.1016/j.knosys.2021.107564_b5
  article-title: A survey on network embedding
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2849727
– start-page: 3
  year: 2002
  ident: 10.1016/j.knosys.2021.107564_b57
  article-title: Object recognition using local affine frames on distinguished regions
– ident: 10.1016/j.knosys.2021.107564_b20
  doi: 10.1109/ICCV.2019.00662
– ident: 10.1016/j.knosys.2021.107564_b50
  doi: 10.1609/aaai.v28i1.8950
– ident: 10.1016/j.knosys.2021.107564_b27
  doi: 10.1145/3132847.3132919
– ident: 10.1016/j.knosys.2021.107564_b18
  doi: 10.24963/ijcai.2019/509
– year: 2014
  ident: 10.1016/j.knosys.2021.107564_b8
– year: 2017
  ident: 10.1016/j.knosys.2021.107564_b23
– ident: 10.1016/j.knosys.2021.107564_b41
  doi: 10.1109/ICCV.2017.612
– ident: 10.1016/j.knosys.2021.107564_b47
  doi: 10.1609/aaai.v30i1.10179
– volume: 28
  start-page: 129
  year: 1982
  ident: 10.1016/j.knosys.2021.107564_b46
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 151
  start-page: 78
  year: 2018
  ident: 10.1016/j.knosys.2021.107564_b52
  article-title: Graph embedding techniques, applications, and performance: A survey
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.03.022
– ident: 10.1016/j.knosys.2021.107564_b19
  doi: 10.1145/3132847.3132967
– year: 2013
  ident: 10.1016/j.knosys.2021.107564_b40
– year: 2020
  ident: 10.1016/j.knosys.2021.107564_b42
  article-title: One2multi graph autoencoder for multi-view graph clustering
  publication-title: Proceedings of the World Wide Web Conference 2020
  doi: 10.1145/3366423.3380079
– year: 2017
  ident: 10.1016/j.knosys.2021.107564_b15
– ident: 10.1016/j.knosys.2021.107564_b10
  doi: 10.1145/2736277.2741093
– year: 2019
  ident: 10.1016/j.knosys.2021.107564_b30
  article-title: Deep network embedding for graph representation learning in signed networks
  publication-title: IEEE Trans. Cybern.
– year: 2014
  ident: 10.1016/j.knosys.2021.107564_b45
– volume: 2
  start-page: 83
  year: 1955
  ident: 10.1016/j.knosys.2021.107564_b53
  article-title: The hungarian method for the assignment problem
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800020109
– volume: 30
  start-page: 2257
  year: 2018
  ident: 10.1016/j.knosys.2021.107564_b26
  article-title: Attributed social network embedding
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2819980
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2021.107564_b31
  article-title: Effective deep attributed network representation learning with topology adapted smoothing
  publication-title: IEEE Trans. Cybern.
– volume: 29
  start-page: 2428
  year: 2017
  ident: 10.1016/j.knosys.2021.107564_b22
  article-title: Embedding learning with events in heterogeneous information networks
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2733530
– year: 1998
  ident: 10.1016/j.knosys.2021.107564_b58
– ident: 10.1016/j.knosys.2021.107564_b9
  doi: 10.1145/2939672.2939754
– ident: 10.1016/j.knosys.2021.107564_b24
  doi: 10.1145/3159652.3159706
– year: 2016
  ident: 10.1016/j.knosys.2021.107564_b14
– ident: 10.1016/j.knosys.2021.107564_b12
  doi: 10.1145/2939672.2939751
– year: 2018
  ident: 10.1016/j.knosys.2021.107564_b38
– volume: 44
  start-page: 153
  year: 2009
  ident: 10.1016/j.knosys.2021.107564_b36
  article-title: Note on the normalized Laplacian eigenvalues of signed graphs
  publication-title: Aust. J. Comb.
– volume: 27
  start-page: 2933
  year: 2015
  ident: 10.1016/j.knosys.2021.107564_b1
  article-title: CogBoost: Boosting for fast cost-sensitive graph classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2391115
– start-page: 449
  year: 2016
  ident: 10.1016/j.knosys.2021.107564_b3
  article-title: Link prediction in schema-rich heterogeneous information network
– ident: 10.1016/j.knosys.2021.107564_b25
– volume: 30
  start-page: 129
  issue: 2
  year: 2011
  ident: 10.1016/j.knosys.2021.107564_b39
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.04.005
– ident: 10.1016/j.knosys.2021.107564_b4
  doi: 10.1145/2623330.2623726
– start-page: 3
  year: 2017
  ident: 10.1016/j.knosys.2021.107564_b7
  article-title: Network representation learning: A survey
  publication-title: IEEE Trans. Big Data
– ident: 10.1016/j.knosys.2021.107564_b56
– year: 2017
  ident: 10.1016/j.knosys.2021.107564_b35
– volume: 28
  start-page: 715
  year: 2016
  ident: 10.1016/j.knosys.2021.107564_b2
  article-title: Joint structure feature exploration and regularization for multi-task graph classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2492567
– ident: 10.1016/j.knosys.2021.107564_b28
  doi: 10.1145/3018661.3018667
SSID ssj0002218
Score 2.4793408
Snippet Unsupervised graph representation learning is a challenging task that embeds graph data into a low-dimensional space without label guidance. Recently, graph...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107564
SubjectTerms Affinity
Algorithms
Attributes
Clustering
Decoders
Embedding
Feature maps
Graph autoencoder
Graph clustering
Graph embedding
Graph neural networks
Graph representation learning
Graph representations
Graphical representations
Learning
Machine learning
Representation
Title Dual-decoder graph autoencoder for unsupervised graph representation learning
URI https://dx.doi.org/10.1016/j.knosys.2021.107564
https://www.proquest.com/docview/2616536496
Volume 234
WOSCitedRecordID wos000709963300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3oh9gHJAXFZeJY4dJ8cVdMWjFCS6UsTFSmJ7t0uVlrZZLVd-OePYzmZ5LRy4RK3jpMnMl_FkOvMNQs9CKpU21T0JlxTTJI5wyjjFSVGSUlZUy6KlzB_zySTN8-zDYPDN18Kcz3ldpxcX2fK_qhrGQNmmdPYf1N2dFAbgMygdtqB22P6V4l82xRxLZWrVV_stH_V-0WwWhrDSjJi0wqZeN0tjJNbgbtopLbmlL0SqfTOJk77v-taH37BZ-qQjge588o-NM2D1iZx1eT6ujn192hTubMZrdo1UPpnReQ-gXfg6hxlfZ_2QBIlMeoctX7ZxMl8r483TZYKSDTyGmIeOZlZZs5ty8PNpmPXtMnFRTmtZo1_aext6ODv4XC_gpg_MxcAgZ5YZ_Sq99uS9ODoej8V0lE-fL79g03nM_EPv2rDcQFuEsywdoq3D16P8TbeeE9JGibvr9gWYbZbgzz_8Owfnh6W-9V-md9Ft9-IRHFrA3EMDVd9Hd3xTj8AJ8QF618dP0IIj6OEnAPwEffy4KVfxE3j8PETHR6Ppi1fY9dzAVRzTDa64prGSrOKlUkxnhdYq0nFZMUPcpsNQkySWYZmpEl4sWBUrEEupTLsjxkmi4kdoWC9q9RgFRDPCioRFGqQSUV5qVsDruK4q-BLJchvFXlCicoT0pi_KXPjMwzNhxSuMeIUV7zbC3VFLS8hyzXzudSCcU2mdRQEYuubIPa8y4Z5v2J_AXccJzZKdP-_eRbcuH409NNysGvUE3azON7P16qnD2HfkSqV2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-decoder+graph+autoencoder+for+unsupervised+graph+representation+learning&rft.jtitle=Knowledge-based+systems&rft.au=Sun%2C+Dengdi&rft.au=Li%2C+Dashuang&rft.au=Ding%2C+Zhuanlian&rft.au=Zhang%2C+Xingyi&rft.date=2021-12-25&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=234&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2021.107564&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon