A robust density peaks clustering algorithm with density-sensitive similarity

Density peaks clustering (DPC) algorithm is proposed to identify the cluster centers quickly by drawing a decision-graph without any prior knowledge. Meanwhile, DPC obtains arbitrary clusters with fewer parameters and no iteration. However, DPC has some shortcomings to be addressed before it is wide...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 200; s. 106028
Hlavní autoři: Xu, Xiao, Ding, Shifei, Wang, Lijuan, Wang, Yanru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 20.07.2020
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Density peaks clustering (DPC) algorithm is proposed to identify the cluster centers quickly by drawing a decision-graph without any prior knowledge. Meanwhile, DPC obtains arbitrary clusters with fewer parameters and no iteration. However, DPC has some shortcomings to be addressed before it is widely applied. Firstly, DPC is not suitable for manifold datasets because these datasets have multiple density peaks in one cluster. Secondly, the cut-off distance parameter has a great influence on the algorithm, especially on small-scale datasets. Thirdly, the method of decision-graph will cause uncertain cluster centers, which leads to wrong clustering. To address these issues, we propose a robust density peaks clustering algorithm with density-sensitive similarity (RDPC-DSS) to find accurate cluster centers on the manifold datasets. With density-sensitive similarity, the influence of the parameters on the clustering results is reduced. In addition, a novel density clustering index (DCI) instead of the decision-graph is designed to automatically determine the number of cluster centers. Extensive experimental results show that RDPC-DSS outperforms DPC and other state-of-the-art algorithms on the manifold datasets.
AbstractList Density peaks clustering (DPC) algorithm is proposed to identify the cluster centers quickly by drawing a decision-graph without any prior knowledge. Meanwhile, DPC obtains arbitrary clusters with fewer parameters and no iteration. However, DPC has some shortcomings to be addressed before it is widely applied. Firstly, DPC is not suitable for manifold datasets because these datasets have multiple density peaks in one cluster. Secondly, the cut-off distance parameter has a great influence on the algorithm, especially on small-scale datasets. Thirdly, the method of decision-graph will cause uncertain cluster centers, which leads to wrong clustering. To address these issues, we propose a robust density peaks clustering algorithm with density-sensitive similarity (RDPC-DSS) to find accurate cluster centers on the manifold datasets. With density-sensitive similarity, the influence of the parameters on the clustering results is reduced. In addition, a novel density clustering index (DCI) instead of the decision-graph is designed to automatically determine the number of cluster centers. Extensive experimental results show that RDPC-DSS outperforms DPC and other state-of-the-art algorithms on the manifold datasets.
ArticleNumber 106028
Author Xu, Xiao
Ding, Shifei
Wang, Yanru
Wang, Lijuan
Author_xml – sequence: 1
  givenname: Xiao
  surname: Xu
  fullname: Xu, Xiao
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 2
  givenname: Shifei
  surname: Ding
  fullname: Ding, Shifei
  email: dingsf@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 3
  givenname: Lijuan
  surname: Wang
  fullname: Wang, Lijuan
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 4
  givenname: Yanru
  surname: Wang
  fullname: Wang, Yanru
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
BookMark eNqFUMtOwzAQtFCRKIU_4BCJc4rtPOxwQKoqXlIRFzhbjrMpblO72G5R_h6XwIUDXHak1czszpyikbEGELogeEowKa9W07WxvvdTiulhVWLKj9CYcEZTluNqhMa4KnDKcEFO0Kn3K4wxpYSP0dMscbbe-ZA0YLwOfbIFufaJ6uIOnDbLRHZL63R42yQfcf7wUv-Feg-J1xvdyUjpz9BxKzsP5984Qa93ty_zh3TxfP84ny1SlWV5SBVjUkpeSM4YoSq-WEpZZjWtcS0payVkkFPIZZWrgmJctRkvmooWlCngmGcTdDn4bp1934EPYmV3zsSTguYxcMZivsi6HljKWe8dtELpIIO2JjipO0GwONQnVmKoTxzqE0N9UZz_Em-d3kjX_ye7GWQQ4-81OOGVBqOg0Q5UEI3Vfxt8AoQHjvM
CitedBy_id crossref_primary_10_1016_j_ins_2023_119788
crossref_primary_10_1016_j_knosys_2020_106350
crossref_primary_10_1016_j_jnca_2024_104043
crossref_primary_10_1016_j_eswa_2025_127639
crossref_primary_10_1016_j_eswa_2024_125934
crossref_primary_10_1109_TFUZZ_2024_3397808
crossref_primary_10_1111_exsy_70011
crossref_primary_10_4018_IJIIT_385734
crossref_primary_10_1109_TPAMI_2022_3213574
crossref_primary_10_1016_j_knosys_2020_106532
crossref_primary_10_1109_TCYB_2025_3536087
crossref_primary_10_3233_JIFS_213502
crossref_primary_10_1080_09540091_2021_2012422
crossref_primary_10_2478_amns_2023_2_00099
crossref_primary_10_1007_s00500_021_05835_w
crossref_primary_10_1016_j_ins_2022_03_027
crossref_primary_10_1007_s11390_023_2984_5
crossref_primary_10_1016_j_eswa_2024_124782
crossref_primary_10_1007_s10489_021_02278_6
crossref_primary_10_1002_ett_4695
crossref_primary_10_1016_j_neucom_2021_12_019
crossref_primary_10_3390_s25123609
crossref_primary_10_1016_j_ins_2022_11_091
crossref_primary_10_1016_j_ins_2023_03_012
crossref_primary_10_1109_ACCESS_2020_3021903
crossref_primary_10_1016_j_engappai_2021_104396
crossref_primary_10_1016_j_knosys_2022_109374
crossref_primary_10_1108_K_07_2023_1309
crossref_primary_10_1007_s10489_022_03493_5
crossref_primary_10_1007_s10489_025_06376_7
crossref_primary_10_1016_j_eswa_2022_116892
crossref_primary_10_1016_j_engstruct_2022_114059
crossref_primary_10_1007_s12559_021_09906_w
crossref_primary_10_1007_s13042_020_01231_2
crossref_primary_10_1111_ecog_06158
crossref_primary_10_1016_j_neucom_2023_126633
crossref_primary_10_1016_j_ijar_2022_12_002
crossref_primary_10_1016_j_ins_2021_09_048
crossref_primary_10_1016_j_patcog_2022_109238
crossref_primary_10_1016_j_energy_2021_121843
crossref_primary_10_1016_j_ins_2022_12_078
crossref_primary_10_1155_2022_7846630
crossref_primary_10_1108_DTA_08_2021_0222
Cites_doi 10.1016/j.inffus.2017.09.013
10.1016/j.patcog.2017.06.023
10.1126/science.1242072
10.1007/s10994-015-5524-x
10.1109/TII.2016.2628747
10.1109/TCYB.2018.2817480
10.1016/j.knosys.2011.01.009
10.1016/j.knosys.2018.10.001
10.1016/j.neucom.2018.02.072
10.1016/j.eswa.2017.11.020
10.1109/ACV.1994.341300
10.1016/j.neucom.2018.02.055
10.1109/ACCESS.2017.2780109
10.1016/j.patrec.2016.01.009
10.1109/ACCESS.2018.2888616
10.1109/TIFS.2018.2796999
10.1016/j.knosys.2017.07.027
10.1016/j.ins.2018.03.031
10.1016/j.knosys.2018.10.022
10.1016/j.ins.2019.08.060
10.1016/j.patcog.2016.04.018
10.1016/j.ins.2016.03.011
10.1126/science.1136800
10.1016/j.neucom.2015.11.091
10.1016/j.knosys.2016.02.001
10.1109/ACCESS.2019.2929948
10.1007/s00779-016-0954-4
10.1016/j.knosys.2018.05.034
10.1016/0377-0427(87)90125-7
10.1007/s00500-016-2435-0
10.1016/j.ins.2018.07.034
10.1109/TSMCB.2012.2188509
10.1016/j.ins.2016.01.071
10.1016/j.bspc.2018.09.013
10.1016/j.neucom.2016.01.102
10.1007/s13042-014-0255-z
10.1016/j.knosys.2017.07.010
10.1007/s13042-016-0603-2
10.1145/2939672.2939779
10.1109/TIP.2009.2025923
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 20, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 20, 2020
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2020.106028
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2020_106028
S0950705120303257
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-c77aaa85a87712c7406aa63b2b0ba27fae3e42e4a94c52009f385d92527ce8083
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537319700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:46:58 EST 2025
Sat Nov 29 07:07:26 EST 2025
Tue Nov 18 19:50:36 EST 2025
Fri Feb 23 02:47:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Density-sensitive similarity
Clustering validity index
Automatic clustering
DPC algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-c77aaa85a87712c7406aa63b2b0ba27fae3e42e4a94c52009f385d92527ce8083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440937002
PQPubID 2035257
ParticipantIDs proquest_journals_2440937002
crossref_citationtrail_10_1016_j_knosys_2020_106028
crossref_primary_10_1016_j_knosys_2020_106028
elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106028
PublicationCentury 2000
PublicationDate 2020-07-20
PublicationDateYYYYMMDD 2020-07-20
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-20
  day: 20
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Li, Wong (b18) 2019; 49
Li, Tang (b38) 2018; 95
Lai, Chen, Yang (b6) 2019
Xu, Xu, Wunsch (b44) 2012; 42
Wang, Yang, Liu (b1) 2019; 163
Wu, Wilamowski (b37) 2017; 13
Gao, Zhao, Chen (b24) 2016
Ienco, Bordogna (b4) 2018; 22
Liu, Wang, Yu (b27) 2018; 450
hen, Li, Wang (b36) 2016; 60
Mehmood, Zhang, Bie (b35) 2016; 208
Xu, Ding, Shi (b30) 2018; 158
Sampat, Wang, Gupta (b49) 2009; 18
Frey, Dueck (b11) 2007; 315
Jacques, Preda (b10) 2018; 291
Wang, Zuo, Wang (b15) 2016; 179
Deng, Ye, Ma (b5) 2020; 508
Rousseeuw (b29) 1987; 20
Du, Ding, Jia (b25) 2016; 99
Masud, Huang, Wei (b14) 2018; 466
Chen, He (b31) 2016; 345
Yang, Zhu, Huang (b40) 2011; 24
Meng, Yuan, Yan (b17) 2019
Zhang, Yang, Li (b2) 2019; 163
Nene, Nayar, Murase (b45) 1996
Liang, Chen (b20) 2016; 73
Jiang, Yan, Yu (b48) 2015; 6
Wang, Ding, Jia (b41) 2019; 7
Shi, Otto, Jain (b7) 2018; 13
Zeng, Chen, Zhou (b9) 2019; 48
Ivannikova, Park, Hämäläinen (b8) 2018; 42
Ding, Du, Sun (b16) 2017; 133
Graham, Allinson (b46) 1998
M. Kai, Y. Zhu, M. Carman, et al. Overcoming key weaknesses of distance-based neighbourhood methods using a data dependent dissimilarity measure, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1205-1214.
Zhao, Deng, Ngo (b12) 2018; 291
Rodriguez, Laio (b13) 2014; 344
Bie, Mehmood, Ruan (b23) 2016; 20
Zhang, Li (b22) 2015
Xu, Ding, Du (b19) 2018; 9
Vinh, Epps, Bailey (b3) 2010; 11
Xu, Ding, Xu (b21) 2018
Wang, Bo, Jiao (b28) 2007; 35
Zhou, Pei (b34) 2016; 73
Bai, Cheng, Liang (b39) 2017; 71
Liu, Ma, Yu (b32) 2017; 133
Wang, Zhu, Zhou (b33) 2017; 6
Xie, Gao, Xie (b26) 2016; 354
Chen, Ting, Washio (b43) 2015; 100
F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, 1994, pp. 138-142.
Jacques (10.1016/j.knosys.2020.106028_b10) 2018; 291
hen (10.1016/j.knosys.2020.106028_b36) 2016; 60
10.1016/j.knosys.2020.106028_b47
Chen (10.1016/j.knosys.2020.106028_b43) 2015; 100
Meng (10.1016/j.knosys.2020.106028_b17) 2019
Wang (10.1016/j.knosys.2020.106028_b33) 2017; 6
Li (10.1016/j.knosys.2020.106028_b18) 2019; 49
Ienco (10.1016/j.knosys.2020.106028_b4) 2018; 22
10.1016/j.knosys.2020.106028_b42
Wang (10.1016/j.knosys.2020.106028_b41) 2019; 7
Sampat (10.1016/j.knosys.2020.106028_b49) 2009; 18
Liang (10.1016/j.knosys.2020.106028_b20) 2016; 73
Bie (10.1016/j.knosys.2020.106028_b23) 2016; 20
Chen (10.1016/j.knosys.2020.106028_b31) 2016; 345
Masud (10.1016/j.knosys.2020.106028_b14) 2018; 466
Li (10.1016/j.knosys.2020.106028_b38) 2018; 95
Wang (10.1016/j.knosys.2020.106028_b15) 2016; 179
Du (10.1016/j.knosys.2020.106028_b25) 2016; 99
Bai (10.1016/j.knosys.2020.106028_b39) 2017; 71
Xie (10.1016/j.knosys.2020.106028_b26) 2016; 354
Mehmood (10.1016/j.knosys.2020.106028_b35) 2016; 208
Liu (10.1016/j.knosys.2020.106028_b27) 2018; 450
Zhao (10.1016/j.knosys.2020.106028_b12) 2018; 291
Ding (10.1016/j.knosys.2020.106028_b16) 2017; 133
Xu (10.1016/j.knosys.2020.106028_b30) 2018; 158
Zhou (10.1016/j.knosys.2020.106028_b34) 2016; 73
Zeng (10.1016/j.knosys.2020.106028_b9) 2019; 48
Rodriguez (10.1016/j.knosys.2020.106028_b13) 2014; 344
Wu (10.1016/j.knosys.2020.106028_b37) 2017; 13
Shi (10.1016/j.knosys.2020.106028_b7) 2018; 13
Liu (10.1016/j.knosys.2020.106028_b32) 2017; 133
Xu (10.1016/j.knosys.2020.106028_b44) 2012; 42
Vinh (10.1016/j.knosys.2020.106028_b3) 2010; 11
Zhang (10.1016/j.knosys.2020.106028_b2) 2019; 163
Nene (10.1016/j.knosys.2020.106028_b45) 1996
Frey (10.1016/j.knosys.2020.106028_b11) 2007; 315
Rousseeuw (10.1016/j.knosys.2020.106028_b29) 1987; 20
Jiang (10.1016/j.knosys.2020.106028_b48) 2015; 6
Xu (10.1016/j.knosys.2020.106028_b19) 2018; 9
Wang (10.1016/j.knosys.2020.106028_b1) 2019; 163
Yang (10.1016/j.knosys.2020.106028_b40) 2011; 24
Xu (10.1016/j.knosys.2020.106028_b21) 2018
Zhang (10.1016/j.knosys.2020.106028_b22) 2015
Ivannikova (10.1016/j.knosys.2020.106028_b8) 2018; 42
Gao (10.1016/j.knosys.2020.106028_b24) 2016
Graham (10.1016/j.knosys.2020.106028_b46) 1998
Deng (10.1016/j.knosys.2020.106028_b5) 2020; 508
Wang (10.1016/j.knosys.2020.106028_b28) 2007; 35
Lai (10.1016/j.knosys.2020.106028_b6) 2019
References_xml – start-page: 5932
  year: 2019
  end-page: 5945
  ident: b17
  article-title: Indoor positioning of RBF neural network based on improved fast clustering algorithm combined with LM algorithm
  publication-title: IEEE Access
– volume: 60
  start-page: 486
  year: 2016
  end-page: 498
  ident: b36
  article-title: Effectively clustering by finding density backbone based-on KNN
  publication-title: Pattern Recognit.
– year: 1996
  ident: b45
  article-title: Columbia Object Image Library (Coil-20)
– volume: 48
  start-page: 69
  year: 2019
  end-page: 79
  ident: b9
  article-title: Color perception algorithm of medical images using density peak based hierarchical clustering
  publication-title: Biomed. Signal Process. Control
– volume: 100
  start-page: 677
  year: 2015
  end-page: 699
  ident: b43
  article-title: Half-space mass: a maximally robust and efficient data depth method
  publication-title: Mach. Learn.
– volume: 450
  start-page: 200
  year: 2018
  end-page: 226
  ident: b27
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Inform. Sci.
– volume: 466
  start-page: 129
  year: 2018
  end-page: 151
  ident: b14
  article-title: I-nice: A new approach for identifying the number of clusters and initial cluster centres
  publication-title: Inform. Sci.
– volume: 20
  start-page: 785
  year: 2016
  end-page: 793
  ident: b23
  article-title: Adaptive fuzzy clustering by fast search and find of density peaks
  publication-title: Pers. Ubiquitous Comput.
– start-page: 1
  year: 2018
  end-page: 13
  ident: b21
  article-title: A feasible density peaks clustering algorithm with a merging strategy
  publication-title: Soft Comput.
– volume: 6
  start-page: 197
  year: 2015
  end-page: 204
  ident: b48
  article-title: A chinese expert disambiguation method based on semi-supervised graph clustering
  publication-title: Int. J. Mach. Learn. Cybern.
– reference: M. Kai, Y. Zhu, M. Carman, et al. Overcoming key weaknesses of distance-based neighbourhood methods using a data dependent dissimilarity measure, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1205-1214.
– volume: 42
  start-page: 1243
  year: 2012
  end-page: 1256
  ident: b44
  article-title: A comparison study of validity indices on swarm-intelligence-based clustering
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 6
  start-page: 1718
  year: 2017
  end-page: 1729
  ident: b33
  article-title: From partition-based clustering to density-based clustering: fast find clusters with diverse shapes and densities in spatial databases
  publication-title: IEEE Access
– volume: 208
  start-page: 210
  year: 2016
  end-page: 217
  ident: b35
  article-title: Clustering by fast search and find of density peaks via heat diffusion
  publication-title: Neurocomputing
– volume: 35
  start-page: 1577
  year: 2007
  end-page: 1581
  ident: b28
  article-title: Density-sensitive spectral clustering
  publication-title: Acta Electron. Sin.
– volume: 345
  start-page: 271
  year: 2016
  end-page: 293
  ident: b31
  article-title: A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data
  publication-title: Inform. Sci.
– volume: 49
  start-page: 1680
  year: 2019
  end-page: 1693
  ident: b18
  article-title: Evolutionary multiobjective clustering and its applications to patient stratification
  publication-title: IEEE Trans. Cybern.
– volume: 133
  start-page: 208
  year: 2017
  end-page: 220
  ident: b32
  article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy
  publication-title: Knowl.-Based Syst.
– start-page: 1
  year: 2019
  end-page: 13
  ident: b6
  article-title: Efficient robust model fitting for multistructure data using global greedy search
  publication-title: IEEE Trans. Cybern.
– volume: 158
  start-page: 65
  year: 2018
  end-page: 74
  ident: b30
  article-title: An improved density peaks clustering algorithm with fast finding cluster centers
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 2837
  year: 2010
  end-page: 2854
  ident: b3
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 743
  year: 2018
  end-page: 754
  ident: b19
  article-title: DPCG: an efficient density peaks clustering algorithm based on grid
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 291
  start-page: 195
  year: 2018
  end-page: 206
  ident: b12
  article-title: K-means: a revisit
  publication-title: Neurocomputing
– volume: 7
  start-page: 101054
  year: 2019
  end-page: 101062
  ident: b41
  article-title: An improvement of spectral clustering via message passing and density sensitive similarity
  publication-title: IEEE Access
– volume: 22
  start-page: 1
  year: 2018
  end-page: 12
  ident: b4
  article-title: Fuzzy extensions of the dbscan clustering algorithm
  publication-title: Soft Comput.
– volume: 291
  start-page: 97
  year: 2018
  end-page: 108
  ident: b10
  article-title: Model-based co-clustering for functional data
  publication-title: Neurocomputing
– volume: 133
  start-page: 294
  year: 2017
  end-page: 313
  ident: b16
  article-title: An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood
  publication-title: Knowl.-Based Syst.
– volume: 508
  start-page: 1
  year: 2020
  end-page: 21
  ident: b5
  article-title: Low-rank local tangent space embedding for subspace clustering
  publication-title: Inform. Sci.
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: b29
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– reference: F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, 1994, pp. 138-142.
– volume: 163
  start-page: 776
  year: 2019
  end-page: 786
  ident: b2
  article-title: A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE
  publication-title: Knowl.-Based Syst.
– volume: 18
  start-page: 2385
  year: 2009
  end-page: 2401
  ident: b49
  article-title: Complex wavelet structural similarity: a new image similarity index
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 621
  year: 2011
  end-page: 628
  ident: b40
  article-title: Spectral clustering with density sensitive similarity function
  publication-title: Knowl.-Based Syst.
– volume: 179
  start-page: 219
  year: 2016
  end-page: 227
  ident: b15
  article-title: An improved density peaks-based clustering method for social circle discovery in social networks
  publication-title: Neurocomputing
– volume: 71
  start-page: 375
  year: 2017
  end-page: 386
  ident: b39
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognit.
– year: 2015
  ident: b22
  article-title: Extended fast search clustering algorithm: Widely density clusters, no density peaks
  publication-title: Comput. Sci. Inf. Technol.
– volume: 13
  start-page: 1626
  year: 2018
  end-page: 1640
  ident: b7
  article-title: Face clustering: representation and pairwise constraints
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: b11
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 13
  start-page: 1620
  year: 2017
  end-page: 1628
  ident: b37
  article-title: A fast density and grid based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Trans. Ind. Inf.
– volume: 42
  start-page: 24
  year: 2018
  end-page: 36
  ident: b8
  article-title: Revealing community structures by ensemble clustering using group diffusion
  publication-title: Inf. Fusion
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b13
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 95
  start-page: 236
  year: 2018
  end-page: 247
  ident: b38
  article-title: Comparative density peaks clustering
  publication-title: Expert Syst. Appl.
– volume: 73
  start-page: 52
  year: 2016
  end-page: 59
  ident: b34
  article-title: Delta-density based clustering with a divide-and-conquer strategy: 3DC clustering
  publication-title: Pattern Recognit. Lett.
– volume: 99
  start-page: 135
  year: 2016
  end-page: 145
  ident: b25
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl.-Based Syst.
– volume: 73
  start-page: 52
  year: 2016
  end-page: 59
  ident: b20
  article-title: Delta-density based clustering with a divide-and-conquer strategy: 3DC clustering
  publication-title: Pattern Recognit. Lett.
– volume: 354
  start-page: 19
  year: 2016
  end-page: 40
  ident: b26
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted k-nearest neighbors
  publication-title: Inform. Sci.
– start-page: 537
  year: 2016
  end-page: 543
  ident: b24
  article-title: Icfs: An improved fast search and find of density peaks clustering algorithm
  publication-title: 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech)
– volume: 163
  start-page: 1009
  year: 2019
  end-page: 1019
  ident: b1
  article-title: A study of graph-based system for multi-view clustering
  publication-title: Knowl.-Based Syst.
– start-page: 446
  year: 1998
  end-page: 456
  ident: b46
  article-title: Characterising virtual eigensignatures for general purpose face recognition
  publication-title: Face Recognition
– start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2020.106028_b6
  article-title: Efficient robust model fitting for multistructure data using global greedy search
  publication-title: IEEE Trans. Cybern.
– start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b21
  article-title: A feasible density peaks clustering algorithm with a merging strategy
  publication-title: Soft Comput.
– volume: 42
  start-page: 24
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b8
  article-title: Revealing community structures by ensemble clustering using group diffusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.09.013
– volume: 71
  start-page: 375
  year: 2017
  ident: 10.1016/j.knosys.2020.106028_b39
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.023
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.knosys.2020.106028_b13
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 100
  start-page: 677
  issue: 2–3
  year: 2015
  ident: 10.1016/j.knosys.2020.106028_b43
  article-title: Half-space mass: a maximally robust and efficient data depth method
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-015-5524-x
– volume: 13
  start-page: 1620
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2020.106028_b37
  article-title: A fast density and grid based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2628747
– volume: 49
  start-page: 1680
  issue: 5
  year: 2019
  ident: 10.1016/j.knosys.2020.106028_b18
  article-title: Evolutionary multiobjective clustering and its applications to patient stratification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2817480
– volume: 24
  start-page: 621
  issue: 5
  year: 2011
  ident: 10.1016/j.knosys.2020.106028_b40
  article-title: Spectral clustering with density sensitive similarity function
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.01.009
– volume: 163
  start-page: 776
  year: 2019
  ident: 10.1016/j.knosys.2020.106028_b2
  article-title: A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.001
– start-page: 446
  year: 1998
  ident: 10.1016/j.knosys.2020.106028_b46
  article-title: Characterising virtual eigensignatures for general purpose face recognition
– start-page: 537
  year: 2016
  ident: 10.1016/j.knosys.2020.106028_b24
  article-title: Icfs: An improved fast search and find of density peaks clustering algorithm
– volume: 291
  start-page: 195
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b12
  article-title: K-means: a revisit
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.072
– volume: 95
  start-page: 236
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b38
  article-title: Comparative density peaks clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.020
– ident: 10.1016/j.knosys.2020.106028_b47
  doi: 10.1109/ACV.1994.341300
– volume: 291
  start-page: 97
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b10
  article-title: Model-based co-clustering for functional data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.055
– volume: 6
  start-page: 1718
  year: 2017
  ident: 10.1016/j.knosys.2020.106028_b33
  article-title: From partition-based clustering to density-based clustering: fast find clusters with diverse shapes and densities in spatial databases
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780109
– volume: 73
  start-page: 52
  year: 2016
  ident: 10.1016/j.knosys.2020.106028_b20
  article-title: Delta-density based clustering with a divide-and-conquer strategy: 3DC clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.01.009
– start-page: 5932
  year: 2019
  ident: 10.1016/j.knosys.2020.106028_b17
  article-title: Indoor positioning of RBF neural network based on improved fast clustering algorithm combined with LM algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888616
– volume: 13
  start-page: 1626
  issue: 7
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b7
  article-title: Face clustering: representation and pairwise constraints
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2796999
– volume: 133
  start-page: 294
  year: 2017
  ident: 10.1016/j.knosys.2020.106028_b16
  article-title: An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.07.027
– volume: 450
  start-page: 200
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b27
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.03.031
– volume: 163
  start-page: 1009
  year: 2019
  ident: 10.1016/j.knosys.2020.106028_b1
  article-title: A study of graph-based system for multi-view clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.022
– volume: 508
  start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2020.106028_b5
  article-title: Low-rank local tangent space embedding for subspace clustering
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.08.060
– volume: 60
  start-page: 486
  year: 2016
  ident: 10.1016/j.knosys.2020.106028_b36
  article-title: Effectively clustering by finding density backbone based-on KNN
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.04.018
– volume: 35
  start-page: 1577
  issue: 8
  year: 2007
  ident: 10.1016/j.knosys.2020.106028_b28
  article-title: Density-sensitive spectral clustering
  publication-title: Acta Electron. Sin.
– volume: 354
  start-page: 19
  year: 2016
  ident: 10.1016/j.knosys.2020.106028_b26
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted k-nearest neighbors
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.03.011
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 10.1016/j.knosys.2020.106028_b11
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 179
  start-page: 219
  year: 2016
  ident: 10.1016/j.knosys.2020.106028_b15
  article-title: An improved density peaks-based clustering method for social circle discovery in social networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.091
– year: 1996
  ident: 10.1016/j.knosys.2020.106028_b45
– volume: 99
  start-page: 135
  year: 2016
  ident: 10.1016/j.knosys.2020.106028_b25
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.02.001
– volume: 7
  start-page: 101054
  year: 2019
  ident: 10.1016/j.knosys.2020.106028_b41
  article-title: An improvement of spectral clustering via message passing and density sensitive similarity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929948
– volume: 20
  start-page: 785
  year: 2016
  ident: 10.1016/j.knosys.2020.106028_b23
  article-title: Adaptive fuzzy clustering by fast search and find of density peaks
  publication-title: Pers. Ubiquitous Comput.
  doi: 10.1007/s00779-016-0954-4
– volume: 11
  start-page: 2837
  issue: 1
  year: 2010
  ident: 10.1016/j.knosys.2020.106028_b3
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– volume: 158
  start-page: 65
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b30
  article-title: An improved density peaks clustering algorithm with fast finding cluster centers
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.034
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.knosys.2020.106028_b29
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 22
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b4
  article-title: Fuzzy extensions of the dbscan clustering algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2435-0
– volume: 466
  start-page: 129
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b14
  article-title: I-nice: A new approach for identifying the number of clusters and initial cluster centres
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.07.034
– volume: 42
  start-page: 1243
  issue: 4
  year: 2012
  ident: 10.1016/j.knosys.2020.106028_b44
  article-title: A comparison study of validity indices on swarm-intelligence-based clustering
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2012.2188509
– year: 2015
  ident: 10.1016/j.knosys.2020.106028_b22
  article-title: Extended fast search clustering algorithm: Widely density clusters, no density peaks
  publication-title: Comput. Sci. Inf. Technol.
– volume: 345
  start-page: 271
  year: 2016
  ident: 10.1016/j.knosys.2020.106028_b31
  article-title: A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.01.071
– volume: 73
  start-page: 52
  year: 2016
  ident: 10.1016/j.knosys.2020.106028_b34
  article-title: Delta-density based clustering with a divide-and-conquer strategy: 3DC clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.01.009
– volume: 48
  start-page: 69
  year: 2019
  ident: 10.1016/j.knosys.2020.106028_b9
  article-title: Color perception algorithm of medical images using density peak based hierarchical clustering
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.09.013
– volume: 208
  start-page: 210
  year: 2016
  ident: 10.1016/j.knosys.2020.106028_b35
  article-title: Clustering by fast search and find of density peaks via heat diffusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.102
– volume: 6
  start-page: 197
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2020.106028_b48
  article-title: A chinese expert disambiguation method based on semi-supervised graph clustering
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-014-0255-z
– volume: 133
  start-page: 208
  year: 2017
  ident: 10.1016/j.knosys.2020.106028_b32
  article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.07.010
– volume: 9
  start-page: 743
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2020.106028_b19
  article-title: DPCG: an efficient density peaks clustering algorithm based on grid
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-016-0603-2
– ident: 10.1016/j.knosys.2020.106028_b42
  doi: 10.1145/2939672.2939779
– volume: 18
  start-page: 2385
  issue: 11
  year: 2009
  ident: 10.1016/j.knosys.2020.106028_b49
  article-title: Complex wavelet structural similarity: a new image similarity index
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2025923
SSID ssj0002218
Score 2.5297804
Snippet Density peaks clustering (DPC) algorithm is proposed to identify the cluster centers quickly by drawing a decision-graph without any prior knowledge....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106028
SubjectTerms Algorithms
Automatic clustering
Clustering
Clustering validity index
Datasets
Decisions
Density
Density-sensitive similarity
DPC algorithm
Manifolds
Parameter sensitivity
Prior knowledge
Robustness
Similarity
Title A robust density peaks clustering algorithm with density-sensitive similarity
URI https://dx.doi.org/10.1016/j.knosys.2020.106028
https://www.proquest.com/docview/2440937002
Volume 200
WOSCitedRecordID wos000537319700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg48CFb8RgIB-4Va5cJ6mTY4WG-BgTEgOFU_TqOCxdl1T5QPvzeY6dhK6CsQOXtHIcx-3vl-efX-z3CHnNQcy1BmCIL2d-mHEWZSpjWqZapIGYp136tm_H8uQkjOPos3vRXnfpBGRRhJeX0ea_Qo1lCLbZOnsDuIdGsQC_I-h4RNjx-E_ALyZVuWzrZpKatemosTcazuuJWrcmJkK3J3H9o6zy5uzCemFdPVZ3n2YlUZ1f5DjjzZutd74fe_cbM0Nf6oJAD5o8bg1ccQ7lII5dvpQvZ3mm89F1b0uP81U7UrMv_Q5F1f7uisB5J5dM8C2fImeSuwiyzrzaSKS9gcQZKLe7wXdst3UjrKbnRYk_YGpuMB2rb4fKvjKEDQsL-zVrq8S2kphWEtvKbbIvZBCh9d5fvD-KPwwDthCdG3jofb_DslsGuNubPymYK2N5J1BOH5B7bmZBF5YRD8ktXTwi9_usHdQZ8cfk04JaglAHPO0IQkeC0IEg1BCE7hCEjgR5Qr6-PTp98465pBpMeZ7fMCUlAIQBhFLOhJIo6ADm3lIs-RKEzEB72hfah8hXXUiuzAuDNBKBkEqHKNifkr2iLPQzQlPgCrUNnkfV7UsFc19BsAy09GAWzcQB8fo_KlEu4rxJfLJO_gbTAWHDVRsbceWa-rLHIHGq0arBBIl1zZWHPWSJe4DxvO9zlOzIiuc37MgLcnd8KA7JXlO1-iW5o342eV29cqT7BSNbnHA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+density+peaks+clustering+algorithm+with+density-sensitive+similarity&rft.jtitle=Knowledge-based+systems&rft.au=Xu%2C+Xiao&rft.au=Ding%2C+Shifei&rft.au=Wang%2C+Lijuan&rft.au=Wang%2C+Yanru&rft.date=2020-07-20&rft.issn=0950-7051&rft.volume=200&rft.spage=106028&rft_id=info:doi/10.1016%2Fj.knosys.2020.106028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2020_106028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon