Searches for the BSM scenarios at the LHC using decision tree-based machine learning algorithms: a comparative study and review of random forest, AdaBoost, XGBoost and LightGBM frameworks

Machine learning algorithms are now being extensively used in our daily lives, spanning across diverse industries as well as academia. In the field of high energy physics (HEP), the most common and challenging task is separating a rare signal from a much larger background. The boosted decision tree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Jg. 233; H. 15-16; S. 2425 - 2463
Hauptverfasser: Choudhury, Arghya, Mondal, Arpita, Sarkar, Subhadeep
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Schlagworte:
ISSN:1951-6355, 1951-6401
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!