Searches for the BSM scenarios at the LHC using decision tree-based machine learning algorithms: a comparative study and review of random forest, AdaBoost, XGBoost and LightGBM frameworks

Machine learning algorithms are now being extensively used in our daily lives, spanning across diverse industries as well as academia. In the field of high energy physics (HEP), the most common and challenging task is separating a rare signal from a much larger background. The boosted decision tree...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The European physical journal. ST, Special topics Ročník 233; číslo 15-16; s. 2425 - 2463
Hlavní autoři: Choudhury, Arghya, Mondal, Arpita, Sarkar, Subhadeep
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Témata:
ISSN:1951-6355, 1951-6401
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine learning algorithms are now being extensively used in our daily lives, spanning across diverse industries as well as academia. In the field of high energy physics (HEP), the most common and challenging task is separating a rare signal from a much larger background. The boosted decision tree algorithm has been a cornerstone of the high energy physics for analyzing event triggering, particle identification, jet tagging, object reconstruction, event classification, and other related tasks for quite some time. This article presents a comprehensive overview of research conducted by both HEP experimental and phenomenological groups that utilize decision tree algorithms in the context of the standard model and supersymmetry (SUSY). We also summarize the basic concept of machine learning and decision tree algorithm along with the working principle of random forest, AdaBoost and two gradient boosting frameworks, such as XGBoost and LightGBM. Using a case study of electroweakino production at the high-luminosity LHC, we demonstrate how these algorithms lead to improvement in the search sensitivity compared to traditional cut-based methods in both compressed and non-compressed R-parity conserving SUSY scenarios. The effect of different hyperparameters and their optimization, and feature importance study using SHapley values are discussed in detail.
AbstractList Machine learning algorithms are now being extensively used in our daily lives, spanning across diverse industries as well as academia. In the field of high energy physics (HEP), the most common and challenging task is separating a rare signal from a much larger background. The boosted decision tree algorithm has been a cornerstone of the high energy physics for analyzing event triggering, particle identification, jet tagging, object reconstruction, event classification, and other related tasks for quite some time. This article presents a comprehensive overview of research conducted by both HEP experimental and phenomenological groups that utilize decision tree algorithms in the context of the standard model and supersymmetry (SUSY). We also summarize the basic concept of machine learning and decision tree algorithm along with the working principle of random forest, AdaBoost and two gradient boosting frameworks, such as XGBoost and LightGBM. Using a case study of electroweakino production at the high-luminosity LHC, we demonstrate how these algorithms lead to improvement in the search sensitivity compared to traditional cut-based methods in both compressed and non-compressed R-parity conserving SUSY scenarios. The effect of different hyperparameters and their optimization, and feature importance study using SHapley values are discussed in detail.
Author Sarkar, Subhadeep
Mondal, Arpita
Choudhury, Arghya
Author_xml – sequence: 1
  givenname: Arghya
  orcidid: 0000-0001-9792-5496
  surname: Choudhury
  fullname: Choudhury, Arghya
  email: arghya@iitp.ac.in
  organization: Department of Physics, Indian Institute of Technology Patna
– sequence: 2
  givenname: Arpita
  surname: Mondal
  fullname: Mondal, Arpita
  organization: Department of Physics, Indian Institute of Technology Patna
– sequence: 3
  givenname: Subhadeep
  surname: Sarkar
  fullname: Sarkar, Subhadeep
  organization: Department of Physics, Indian Institute of Technology Patna
BookMark eNqNUU2P0zAQjdAisbvwGxiJK2EzcZw0SBy2FXSRuuKwIHGzZp1J49LYxXb347fx53BaEBIXONh-Y7038-x3lp1YZznLXmLxBrEqLni3CRcBsRFVXpRpoShm-cOT7BRbiXldFXjyGwspn2VnIWyKQtZlK06zHzdMXg8coHce4sAwv7mGoNmSNy4AxcPl6moB-2DsGjrWJhhnIXrm_JYCdzCSHoxl2KZediLRdu28icMY3gKBduOOPEVzxxDivnsEsh14vjN8D64Hn0o3TgY4xNdw2dHcuQl9XR7Agb4y6yEu59fQexr53vlv4Xn2tKdt4Be_zvPsy4f3nxdX-erT8uPicpVrIaqYdklVw_Vt3UuBFYm26ktKH0Kaseam0w2WmhBnJYpUyqrEpteyrRvkHkmcZ6-OfXfefd8nj2rj9t6mkUqUsm5li7JOrHdHlvYuBM-90iamRzsbPZmtwkJNeakpL3XMS6W81CEv9ZD0zV_6nTcj-cf_UM6OypAUds3-j79_SX8CRXqzkA
CitedBy_id crossref_primary_10_3390_medicina61030405
crossref_primary_10_1007_JHEP06_2025_258
crossref_primary_10_1088_1361_6471_ad975f
crossref_primary_10_1109_JSTARS_2025_3599905
crossref_primary_10_1103_PhysRevD_111_095004
crossref_primary_10_1016_j_jwpe_2025_108475
crossref_primary_10_1016_j_renene_2025_123447
crossref_primary_10_1103_3sxk_glsw
crossref_primary_10_1007_s42452_025_07161_4
crossref_primary_10_1016_j_buildenv_2025_112778
crossref_primary_10_1016_j_kscej_2025_100279
crossref_primary_10_3390_systems13090808
crossref_primary_10_1140_epjc_s10052_025_13748_3
crossref_primary_10_1016_j_eswa_2025_129593
crossref_primary_10_1140_epjs_s11734_024_01364_3
crossref_primary_10_1142_S0218301325500508
crossref_primary_10_1016_j_dajour_2025_100626
Cites_doi 10.1007/JHEP11(2015)050
10.1007/JHEP06(2024)176
10.1007/JHEP08(2022)124
10.1214/aos/1016218223
10.1140/epjc/s10052-019-7450-8
10.1140/epjc/s10052-023-11532-9
10.1007/JHEP09(2017)026
10.1007/JHEP02(2021)160
10.1007/JHEP12(2023)148
10.1140/epjp/i2019-12566-5
10.1146/annurev.nucl.012809.104427
10.1007/JHEP07(2020)126
10.1007/JHEP02(2021)143
10.1016/j.nuclphysb.2014.08.012
10.1088/1126-6708/2008/12/024
10.1103/PhysRevD.97.072016
10.1142/9789812839657_0001
10.1613/jair.1199
10.1007/JHEP09(2017)064
10.1016/B978-0-08-051054-5.50005-4
10.1016/j.physletb.2021.136480
10.1111/j.1365-2966.2007.12353.x
10.1016/j.envsoft.2024.105971
10.1088/0253-6102/71/8/955
10.1007/s11433-022-1927-9
10.1140/epjc/s10052-017-5167-0
10.1016/S0020-7373(87)80053-6
10.1103/PhysRevD.70.015007
10.1140/epjc/s10052-018-5697-0
10.1111/j.1365-2966.2009.14548.x
10.1007/JHEP07(2021)167
10.1088/1126-6708/2008/04/081
10.1006/jcss.1997.1504
10.1140/epjc/s10052-019-7437-5
10.1103/PhysRevD.93.094034
10.1016/j.nima.2005.09.022
10.1017/CBO9780511617270
10.1103/PhysRevD.94.055024
10.1007/JHEP07(2016)069
10.1088/1126-6708/2006/05/026
10.1016/j.patcog.2019.02.023
10.1103/PhysRevD.92.093007
10.1142/S0217751X19300199
10.1140/epjc/s10052-021-09761-x
10.1007/978-1-4613-8716-9_14
10.1023/A:1010933404324
10.1103/PhysRevLett.98.181802
10.1117/1.2819119
10.1007/JHEP09(2018)139
10.1088/1748-0221/8/02/P02013
10.1007/JHEP07(2019)135
10.1016/j.physletb.2012.08.021
10.1103/PhysRevD.89.037702
10.1140/epjc/s10052-019-6847-8
10.1007/JHEP03(2024)144
10.1007/978-3-642-04962-0_53
10.1007/JHEP01(2019)103
10.1140/epjc/s10052-017-4814-9
10.1016/j.nuclphysb.2019.114613
10.1140/epjc/s10052-011-1554-0
10.1088/1748-0221/13/05/P05011
10.1140/epjc/s10052-021-09900-4
10.1142/S0217751X22501974
10.1142/S0217751X20020030
10.1007/s41781-017-0002-8
10.1007/JHEP07(2015)038
10.1088/1742-6596/1085/4/042042
10.1007/JHEP02(2014)057
10.1103/PhysRevD.104.032006
10.1007/JHEP01(2017)110
10.1145/307400.307419
10.1007/s41781-018-0015-y
10.1007/JHEP07(2023)215
10.1088/1126-6708/2000/05/021
10.1007/JHEP04(2022)015
10.1145/3065386
10.1007/JHEP11(2018)085
10.1103/PhysRevD.78.012005
10.1140/epjc/s10052-023-11216-4
10.1007/JHEP07(2014)079
10.1007/JHEP05(2021)252
10.1103/PhysRevD.55.7020
10.1016/j.physrep.2005.08.006
10.1103/PhysRevD.105.095039
10.1201/9781315139470
10.1103/PhysRevD.82.112005
10.1088/1742-6596/664/8/082025
10.1007/JHEP05(2019)181
10.1016/j.physletb.2020.136041
10.1103/PhysRevD.100.115022
10.1103/PhysRevD.103.015003
10.1016/j.physletb.2012.08.020
10.1007/JHEP02(2019)066
10.1007/JHEP08(2019)110
10.1007/JHEP07(2021)075
10.1140/epjc/s10052-020-08509-3
10.1103/PhysRevD.96.095033
10.1103/PhysRevD.93.075035
10.1007/JHEP02(2024)004
10.1103/PhysRevD.96.075046
10.1103/PhysRevD.108.115010
10.1016/j.cpc.2011.12.026
10.1140/epjst/e2020-000198-1
10.1016/j.physletb.2018.06.028
10.5121/ijdkp.2015.5201
10.1007/JHEP06(2015)020
10.1103/PhysRevD.98.075022
10.1140/epjc/s10052-021-09749-7
10.1016/j.nima.2004.12.018
10.1103/PhysRevD.84.095006
10.1007/JHEP03(2021)211
10.1140/epjc/s10052-019-6800-x
10.1371/journal.pone.0118432
10.1007/JHEP09(2013)119
10.1007/JHEP07(2019)142
10.1103/PhysRevD.83.115019
10.1103/PhysRevD.95.075025
10.1007/JHEP02(2015)118
10.1146/annurev-nucl-101917-021019
10.1007/JHEP03(2011)012
10.1007/JHEP10(2021)063
10.1007/JHEP09(2021)080
10.1103/PhysRevD.102.015031
10.1088/1748-0221/15/12/P12012
10.1515/9781400881970-018
10.1103/PhysRevD.109.035001
10.1103/PhysRevLett.131.011802
10.1007/JHEP07(2014)019
10.1007/978-0-387-84858-7
10.1007/s10462-020-09896-5
10.1016/j.phpro.2012.03.160
10.1007/0-387-25465-X_40
10.1007/JHEP04(2021)174
10.1007/JHEP06(2012)006
10.1007/JHEP06(2023)031
10.1103/PhysRevD.108.035043
10.1007/JHEP05(2017)072
10.1140/epjc/s10052-013-2677-2
10.1007/JHEP01(2016)051
10.1140/epjc/s10052-014-3076-z
10.21468/SciPostPhys.7.6.075
10.1103/PhysRevD.69.093002
10.1140/epjc/s10052-017-5196-8
10.1140/epjc/s10052-013-2650-0
10.1142/S0218001406005137
10.1007/JHEP06(2023)060
10.1103/RevModPhys.91.045002
10.1140/epjc/s10052-013-2480-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1140/epjs/s11734-024-01308-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1951-6401
EndPage 2463
ExternalDocumentID 10_1140_epjs_s11734_024_01308_x
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
123
199
1N0
203
29G
29~
2J2
2JY
2KG
2KM
2LR
30V
4.4
406
408
40D
40E
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF0
QOS
R89
RED
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABJCF
ABRTQ
AFDZB
AFFHD
AFKRA
AFOHR
AHPBZ
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
EBLON
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c334t-c35a47e6b6f5314a394f2a195ace16e7dc712ca118213e7d54217fc59671ef1a3
IEDL.DBID M7S
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001321703200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1951-6355
IngestDate Sun Nov 02 05:16:16 EST 2025
Sat Nov 29 03:49:45 EST 2025
Tue Nov 18 22:29:27 EST 2025
Fri Feb 21 02:38:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15-16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-c35a47e6b6f5314a394f2a195ace16e7dc712ca118213e7d54217fc59671ef1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9792-5496
PQID 3256959156
PQPubID 2044459
PageCount 39
ParticipantIDs proquest_journals_3256959156
crossref_citationtrail_10_1140_epjs_s11734_024_01308_x
crossref_primary_10_1140_epjs_s11734_024_01308_x
springer_journals_10_1140_epjs_s11734_024_01308_x
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The European physical journal. ST, Special topics
PublicationTitleAbbrev Eur. Phys. J. Spec. Top
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BhattacherjeeBChakrabortyAChoudhuryAStatus of the MSSM Higgs sector using global analysis and direct search bounds, and future prospects at the high luminosity LHCPhys. Rev. D2015922015PhRvD..92i3007B10.1103/PhysRevD.92.093007arXiv:1504.04308
RenJWuLYangJMZhaoJExploring supersymmetry with machine learningNucl. Phys. B201994310.1016/j.nuclphysb.2019.114613arXiv:1708.06615
BhattacherjeeBSolankiPSearch for electroweakinos in R-parity violating SUSY with long-lived particles at HL-LHCJHEP2023121482023JHEP...12..148B10.1007/JHEP12(2023)148arXiv:2308.05804
SunYTodorovicSLiJReducing the overfitting of adaboost by controlling its data distribution skewnessInt. J. Pattern Recognit. Artif. Intell.2006201093111610.1142/S0218001406005137
H.-J. Yang, B.P. Roe, J. Zhu, Studies of boosted decision trees for miniboone particle identification. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 555, 370–385 (2005). https://doi.org/10.1016/j.nima.2005.09.022
CerianiLVermePThe origins of the gini index: extracts from variabilit e mutabilit, by corrado giniJ. Econ. Inequal.1912102012421443
D0 Collaboration, V.M. Abazov et al., Evidence for production of single top quarks. Phys. Rev. D 78, 012005 (2008). https://doi.org/10.1103/PhysRevD.78.012005. arXiv:0803.0739
BarmanRKBhattacherjeeBChakrabortyIChoudhuryAKhanNElectroweakino searches at the HL-LHC in the baryon number violating MSSMPhys. Rev. D20211032021PhRvD.103a5003B10.1103/PhysRevD.103.015003arXiv:2003.10920
LikhomanenkoTIltenPKhairullinERogozhnikovAUstyuzhaninAWilliamsMLHCb topological trigger reoptimizationJ. Phys. Conf. Ser.201566410.1088/1742-6596/664/8/082025arXiv:1510.00572
Cms phase 1 heavy flavour identification performance and developments, cms detector performance note, cms-dp-2017-013 (2017)
DjouadiAMaianiLMoreauGPolosaAQuevillonJRiquerVThe post-Higgs MSSM scenario: Habemus MSSM?Eur. Phys. J. C20137326502013EPJC...73.2650D10.1140/epjc/s10052-013-2650-0arXiv:1307.5205
DíazMARiveraMRojasNOn neutrino masses in the MSSM with BRpVNucl. Phys. B20148873383572014NuPhB.887..338D10.1016/j.nuclphysb.2014.08.012arXiv:1401.7357
TrifinopoulosSB-physics anomalies: the bridge between R -parity violating supersymmetry and flavored dark matterPhys. Rev. D20191002019PhRvD.100k5022T10.1103/PhysRevD.100.115022arXiv:1904.12940
ATLAS Collaboration, M. Aaboud et al., Search for the standard model Higgs boson produced in association with top quarks and decaying into a bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\bar{b}$$\end{document} pair in pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV with the ATLAS detector. Phys. Rev. D 97, 072016 (2018). https://doi.org/10.1103/PhysRevD.97.072016. arXiv:1712.08895
ATLAS Collaboration, G. Aad et al., Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the W-boson mass in s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV pp collisions with the ATLAS detector. JHEP 06, 031 (2023). https://doi.org/10.1007/JHEP06(2023)031. arXiv:2209.13935
A. Choudhury, A. Datta, Many faces of low mass neutralino dark matter in the unconstrained MSSM. LHC data and new signals. JHEP 06, 006 (2012). https://doi.org/10.1007/JHEP06(2012)006. arXiv:1203.4106
FerozFHobsonMPBridgesMMultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physicsMon. Not. R. Astron. Soc.2009398160116142009MNRAS.398.1601F10.1111/j.1365-2966.2009.14548.xarXiv:0809.3437
CMS Collaboration, A.M. Sirunyan et al., Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV. JHEP 07, 126 (2020). https://doi.org/10.1007/JHEP07(2020)126. arXiv:2001.07763
R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat, S. Palazzo, DijetGAN: a generative-adversarial network approach for the simulation of QCD Dijet events at the LHC. JHEP 08, 110 (2019). https://doi.org/10.1007/JHEP08(2019)110. arXiv:1903.02433
H.K. Dreiner, Y.S. Koay, D. Köhler, V.M. Lozano, J. Montejo Berlingen, S. Nangia et al., The ABC of RPV: classification of R-parity violating signatures at the LHC for small couplings. JHEP 07, 215 (2023). https://doi.org/10.1007/JHEP07(2023)215. arXiv:2306.07317
C. Bishop, Pattern recognition and machine learning 16, 140–155. 01 (2006). https://doi.org/10.1117/1.2819119
KronheimBSKucheraMPProsperHBKarboABayesian neural networks for fast SUSY predictionsPhys. Lett. B202181310.1016/j.physletb.2020.136041arXiv:2007.04506
CollaborationCMSChatrchyanSObservation of a new boson at a mass of 125 GeV with the CMS experiment at the LHCPhys. Lett. B201271630612012PhLB..716...30C10.1016/j.physletb.2012.08.021arXiv:1207.7235
ATLAS Collaboration, M. Aaboud et al., Performance of top-quark and W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W$$\end{document}-boson tagging with ATLAS in Run 2 of the LHC. Eur. Phys. J. C 79, 375 (2019). https://doi.org/10.1140/epjc/s10052-019-6847-8. arXiv:1808.07858
R.K. Barman, G. Bélanger, B. Bhattacherjee, R. Godbole, R. Sengupta, Current status of the light neutralino thermal dark matter in the phenomenological MSSM. arXiv:2402.07991
CMS Collaboration, A.M. Sirunyan et al., Search for R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-parity violating supersymmetry in pp collisions at s=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} =$$\end{document} 13 TeV using b jets in a final state with a single lepton, many jets, and high sum of large-radius jet masses. Phys. Lett. B 783, 114–139 (2018). https://doi.org/10.1016/j.physletb.2018.06.028. arXiv:1712.08920
Preface to special issue on “learning to discover”. Int. J. Mod. Phys. A 35, 2002003 (2020). https://doi.org/10.1142/S0217751X20020030
M.D. Schwartz, Modern machine learning and particle physics. arXiv:2103.12226
WeissGMProvostFLearning when training data are costly: the effect of class distribution on tree inductionJ. Artif. Intell. Res.20031931535410.1613/jair.1199
QuinlanJSimplifying decision treesInt. J. Man Mach. Stud.19872722123410.1016/S0020-7373(87)80053-6
GAMBIT Collaboration, P. Athron et al., Global fits of GUT-scale SUSY models with GAMBIT. Eur. Phys. J. C 77, 824 (2017). https://doi.org/10.1140/epjc/s10052-017-5167-0. arXiv:1705.07935
BagnaschiELikelihood analysis of the pMSSM11 in light of LHC 13-TeV dataEur. Phys. J. C2018782562018EPJC...78..256B10.1140/epjc/s10052-018-5697-0arXiv:1710.11091
ATLAS Collaboration, G. Aad et al., Search for supersymmetry in events with four or more charged leptons in 139 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ fb}^{-1}$$\end{document} of s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV pp collisions with the ATLAS detector, JHEP 07, 167 (2021). https://doi.org/10.1007/JHEP07(2021)167. arXiv:2103.11684
WangRAdaboost for feature selection, classification and its relation with svm, a reviewPhys. Procedia2012258008072012PhPro..25..800W10.1016/j.phpro.2012.03.160
M. Chakraborti, U. Chattopadhyay, S. Poddar, How light a Higgsino or a wino dark matter can become in a compressed scenario of MSSM. JHEP 09, 064 (2017). https://doi.org/10.1007/JHEP09(2017)064. arXiv:1702.03954
FriedmanJHastieTTibshiraniRAdditive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)Ann. Stat.20002833740710.1214/aos/1016218223
KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksCommun. ACM201260849010.1145/3065386
GrossmanYRakshitSNeutrino masses in R-parity violating supersymmetric modelsPhys. Rev. D2004692004PhRvD..69i3002G10.1103/PhysRevD.69.093002arXiv:hep-ph/0311310
M. Endo, K. Hamaguchi, S. Iwamoto, T. Kitahara, Supersymmetric interpretation of the muon g - 2 anomaly. JHEP 07, 075 (2021). https://doi.org/10.1007/JHEP07(2021)075. arXiv:2104.03217
CollaborationCMSChatrchyanSSearch for top-squark pair production in the single-lepton final state in pp collisions at s\documentclass
J Cogan (1308_CR100) 2015; 02
B Bhattacherjee (1308_CR161) 2023; 12
1308_CR75
PC Bhat (1308_CR44) 2011; 61
T Hastie (1308_CR57) 2009
A Mullin (1308_CR91) 2021; 02
D Das (1308_CR151) 2017; 96
1308_CR79
Y Sun (1308_CR175) 2006; 20
1308_CR78
Y Freund (1308_CR172) 1999; 14
E Bols (1308_CR107) 2020; 15
1308_CR176
1308_CR83
AS Cornell (1308_CR54) 2022; 04
GM Weiss (1308_CR62) 2003; 19
A Chakraborty (1308_CR104) 2019; 07
1308_CR170
PT Komiske (1308_CR103) 2017; 01
F Domingo (1308_CR150) 2019; 02
CMS Collaboration (1308_CR74) 2018; 1085
T Likhomanenko (1308_CR77) 2015; 664
Q Gu (1308_CR67) 2009
A Chakraborty (1308_CR146) 2016; 93
D Bourilkov (1308_CR46) 2020; 34
1308_CR84
1308_CR85
A Hammad (1308_CR52) 2024; 06
F Jorge (1308_CR123) 2022; 37
1308_CR163
1308_CR164
1308_CR93
RS Hundi (1308_CR148) 2011; 83
1308_CR167
1308_CR92
A Buckley (1308_CR89) 2012; 183
S Davidson (1308_CR142) 2000; 05
D Guest (1308_CR45) 2018; 68
A Choudhury (1308_CR86) 2024; 02
1308_CR160
1308_CR17
E Bagnaschi (1308_CR134) 2018; 78
1308_CR18
1308_CR15
1308_CR16
BS Kronheim (1308_CR90) 2021; 813
1308_CR19
1308_CR10
1308_CR98
1308_CR115
J Friedman (1308_CR168) 2000; 28
1308_CR117
1308_CR13
1308_CR118
1308_CR14
M Abdughani (1308_CR50) 2019; 71
1308_CR119
H Baer (1308_CR3) 2006
1308_CR11
S Caron (1308_CR87) 2017; 77
1308_CR99
1308_CR12
1308_CR110
1308_CR112
1308_CR113
L Ceriani (1308_CR165) 1912; 10
P Musella (1308_CR95) 2018; 2
R Trotta (1308_CR82) 2008; 12
C Bentéjac (1308_CR61) 2021; 54
M Bridges (1308_CR88) 2011; 03
1308_CR28
RK Barman (1308_CR136) 2019; 134
1308_CR29
1308_CR26
VV Gligorov (1308_CR76) 2013; 8
R Wang (1308_CR173) 2012; 25
1308_CR27
Y Freund (1308_CR174) 1997; 55
1308_CR20
W Altmannshofer (1308_CR147) 2020; 102
1308_CR21
A Choudhury (1308_CR178) 2013; 09
1308_CR105
1308_CR106
1308_CR24
1308_CR25
1308_CR108
1308_CR22
1308_CR109
1308_CR23
J Quinlan (1308_CR166) 1987; 27
1308_CR183
L Breiman (1308_CR171) 2001; 45
1308_CR186
1308_CR187
1308_CR188
CDF Collaboration (1308_CR36) 2010; 82
S Roy (1308_CR143) 1997; 55
CMS Collaboration (1308_CR122) 2013; 73
T Keck (1308_CR139) 2017; 1
1308_CR181
J Lin (1308_CR94) 2019; 05
1308_CR182
1308_CR37
H-J Yang (1308_CR169) 2005; 555
1308_CR38
1308_CR31
1308_CR32
1308_CR137
1308_CR138
1308_CR30
1308_CR35
1308_CR33
1308_CR34
J Ren (1308_CR96) 2019; 943
1308_CR130
1308_CR131
A Djouadi (1308_CR133) 2013; 73
P Baldi (1308_CR102) 2016; 93
1308_CR132
G Ke (1308_CR177) 2017; 30
S Trifinopoulos (1308_CR149) 2019; 100
BC Allanach (1308_CR144) 2008; 04
A Datta (1308_CR180) 2019; 01
1308_CR49
M Drees (1308_CR2) 2004
1308_CR42
1308_CR125
1308_CR43
1308_CR126
J Alwall (1308_CR184) 2014; 07
1308_CR40
1308_CR127
1308_CR41
1308_CR128
1308_CR1
1308_CR47
1308_CR5
1308_CR4
1308_CR7
1308_CR6
1308_CR120
1308_CR9
A Choudhury (1308_CR159) 2024; 109
L Breiman (1308_CR162) 1984
1308_CR8
1308_CR124
Y Grossman (1308_CR141) 2004; 69
MA Díaz (1308_CR145) 2014; 887
F Feroz (1308_CR81) 2009; 398
C Balazs (1308_CR121) 2004; 70
1308_CR59
F Feroz (1308_CR80) 2008; 384
M Niazkar (1308_CR60) 2024; 174
D Alvestad (1308_CR129) 2023; 83
1308_CR53
1308_CR158
1308_CR58
1308_CR55
A Krizhevsky (1308_CR111) 2012; 60
1308_CR56
S Caron (1308_CR97) 2019; 79
1308_CR152
1308_CR153
1308_CR154
L de Oliveira (1308_CR101) 2016; 07
1308_CR155
T Saito (1308_CR65) 2015
1308_CR156
1308_CR157
CMS Collaboration (1308_CR114) 2012; 716
RK Barman (1308_CR179) 2021; 103
R Barbier (1308_CR116) 2005; 420
Y Freund (1308_CR73) 1997; 55
G Cowan (1308_CR69) 2011; 71
1308_CR64
1308_CR63
B Bhattacherjee (1308_CR135) 2015; 92
H Baer (1308_CR140) 2022; 105
1308_CR68
1308_CR66
1308_CR71
1308_CR72
G Carleo (1308_CR48) 2019; 91
1308_CR70
A Hammad (1308_CR51) 2024; 03
CMS Collaboration (1308_CR39) 2014; 74
B Fuks (1308_CR185) 2013; 73
References_xml – reference: J. Bardhan, T. Mandal, S. Mitra, C. Neeraj, M. Patra, Unsupervised and lightly supervised learning in particle physics. arXiv:2403.13676
– reference: Y. Coadou, Boosted decision trees. arXiv:2206.09645
– reference: GligorovVVWilliamsMEfficient, reliable and fast high-level triggering using a bonsai boosted decision treeJINST20138P020132013JInst...8P2013G10.1088/1748-0221/8/02/P02013arXiv:1210.6861
– reference: S.M. Lundberg, G.G. Erion, S.-I. Lee, Consistent individualized feature attribution for tree ensembles. arXiv:1802.03888 (2018)
– reference: SunYTodorovicSLiJReducing the overfitting of adaboost by controlling its data distribution skewnessInt. J. Pattern Recognit. Artif. Intell.2006201093111610.1142/S0218001406005137
– reference: CollaborationCMSKhachatryanVObservation of the diphoton decay of the Higgs Boson and measurement of its propertiesEur. Phys. J. C201474307610.1140/epjc/s10052-014-3076-zarXiv:1407.0558
– reference: FerozFHobsonMPBridgesMMultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physicsMon. Not. R. Astron. Soc.2009398160116142009MNRAS.398.1601F10.1111/j.1365-2966.2009.14548.xarXiv:0809.3437
– reference: G.H.Y. LeCun, Y. Bengio, Deep learning
– reference: B. Bhattacherjee, P. Konar, V.S. Ngairangbam, P. Solanki, LLPNet: graph autoencoder for triggering light long-lived particles at HL-LHC. arXiv:2308.13611
– reference: HundiRSConstraints from neutrino masses and muon (g-2) in the bilinear R-parity violating supersymmetric modelPhys. Rev. D2011832011PhRvD..83k5019H10.1103/PhysRevD.83.115019arXiv:1101.2810
– reference: J. Dutta, P. Konar, S. Mondal, B. Mukhopadhyaya, S.K. Rai, Search for a compressed supersymmetric spectrum with a light Gravitino. JHEP 09, 026 (2017). https://doi.org/10.1007/JHEP09(2017)026. arXiv:1704.04617
– reference: Cms susy public result. https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS/index.html
– reference: CMS Collaboration, A. Zabi, J.W. Berryhill, E. Perez, A.D. Tapper, The phase-2 upgrade of the CMS level-1 trigger
– reference: BalazsCCarenaMWagnerCEMDark matter, light stops and electroweak baryogenesisPhys. Rev. D2004702004PhRvD..70a5007B10.1103/PhysRevD.70.015007arXiv:hep-ph/0403224
– reference: Heavy flavor identification at cms with deep neural networks (2020)
– reference: ATLAS Collaboration, M. Aaboud et al., Search for the standard model Higgs boson produced in association with top quarks and decaying into a bb¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\bar{b}$$\end{document} pair in pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV with the ATLAS detector. Phys. Rev. D 97, 072016 (2018). https://doi.org/10.1103/PhysRevD.97.072016. arXiv:1712.08895
– reference: BaerHKaoCBargerVJainRSenguptaDTataXDetecting heavy Higgs bosons from natural SUSY at a 100 TeV hadron colliderPhys. Rev. D20221052022PhRvD.105i5039B10.1103/PhysRevD.105.095039arXiv:2112.02232
– reference: CaronSHeskesTOttenSStienenBConstraining the parameters of high-dimensional models with active learningEur. Phys. J. C2019799442019EPJC...79..944C10.1140/epjc/s10052-019-7437-5arXiv:1905.08628
– reference: CMS Collaboration, A.M. Sirunyan et al., Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV. JHEP 07, 126 (2020). https://doi.org/10.1007/JHEP07(2020)126. arXiv:2001.07763
– reference: A. Choudhury, L. Darme, L. Roszkowski, E.M. Sessolo, S. Trojanowski, Muon g -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document} 2 and related phenomenology in constrained vector-like extensions of the MSSM. JHEP 05, 072 (2017). https://doi.org/10.1007/JHEP05(2017)072. arXiv:1701.08778
– reference: CollaborationCMSChatrchyanSSearch for top-squark pair production in the single-lepton final state in pp collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 8 TeVEur. Phys. J. C20137326772013EPJC...73.2677C10.1140/epjc/s10052-013-2677-2arXiv:1308.1586
– reference: J. Bendavid, Efficient Monte Carlo integration using boosted decision trees and generative deep neural networks. arXiv:1707.00028
– reference: ATLAS Collaboration, M. Aaboud et al., Performance of top-quark and W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W$$\end{document}-boson tagging with ATLAS in Run 2 of the LHC. Eur. Phys. J. C 79, 375 (2019). https://doi.org/10.1140/epjc/s10052-019-6847-8. arXiv:1808.07858
– reference: BourilkovDMachine and deep learning applications in particle physicsInt. J. Mod. Phys. A20203419300192019IJMPA..3430019B10.1142/S0217751X19300199arXiv:1912.08245
– reference: TrottaRFerozFHobsonMPRoszkowskiLRuiz de AustriRThe Impact of priors and observables on parameter inferences in the constrained MSSMJHEP2008120242008JHEP...12..024T10.1088/1126-6708/2008/12/024arXiv:0809.3792
– reference: KeckTFastBDT: a speed-optimized multivariate classification algorithm for the Belle II experimentComput. Softw. Big Sci.20171210.1007/s41781-017-0002-8
– reference: ATLAS Collaboration, M. Aaboud et al., Search for charged Higgs bosons decaying via H±→τ±ντ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\pm } \rightarrow \tau ^{\pm }\nu _{\tau }$$\end{document} in the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}+jets and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}+lepton final states with 36 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ fb}^{-1}$$\end{document} of pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collision data recorded at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13$$\end{document} TeV with the ATLAS experiment. JHEP 09, 139 (2018). https://doi.org/10.1007/JHEP09(2018)139. arXiv:1807.07915
– reference: ATLAS Collaboration, M. Aaboud et al., Search for charged Higgs bosons decaying into top and bottom quarks at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV with the ATLAS detector. JHEP 11, 085 (2018). https://doi.org/10.1007/JHEP11(2018)085. arXiv:1808.03599
– reference: C. gini, variabilità e mutabilità, (reprinted in memorie di metodologica statistica, eds. e. pizetti and t. salvemini, libreria eredi virgilio veschi, rome, 1955) (1912)
– reference: M. Chakraborti, U. Chattopadhyay, A. Choudhury, A. Datta, S. Poddar, Reduced LHC constraints for Higgsino-like heavier electroweakinos. JHEP 11, 050 (2015). https://doi.org/10.1007/JHEP11(2015)050. arXiv:1507.01395
– reference: M. Chakraborti, U. Chattopadhyay, A. Choudhury, A. Datta, S. Poddar, The electroweak sector of the pMSSM in the light of LHC - 8 TeV and other data. JHEP 07, 019 (2014). https://doi.org/10.1007/JHEP07(2014)019. arXiv:1404.4841
– reference: GuestDCranmerKWhitesonDDeep learning and its application to LHC physicsAnn. Rev. Nucl. Part. Sci.2018681611812018ARNPS..68..161G10.1146/annurev-nucl-101917-021019arXiv:1806.11484
– reference: CaronSKimJSRolbieckiKRuiz de AustriRStienenBThe BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learningEur. Phys. J. C2017772572017EPJC...77..257C10.1140/epjc/s10052-017-4814-9arXiv:1605.02797
– reference: N. Bhattacharyya, A. Choudhury, A. Datta, Low mass neutralino dark matter in mSUGRA and more general models in the light of LHC data. Phys. Rev. D 84, 095006 (2011). https://doi.org/10.1103/PhysRevD.84.095006. arXiv:1107.1997
– reference: ATLAS Collaboration, G. Aad et al., Evidence for tt¯tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\bar{t}t\bar{t}$$\end{document} production in the multilepton final state in proton–proton collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document}TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ TeV }$$\end{document} with the ATLAS detector. Eur. Phys. J. C 80, 1085 (2020). https://doi.org/10.1140/epjc/s10052-020-08509-3. arXiv:2007.14858
– reference: FreundYSchapireRAbeNA short introduction to boostingJ. Jpn. Soc. Artif. Intell.1999141612
– reference: BhattacherjeeBSolankiPSearch for electroweakinos in R-parity violating SUSY with long-lived particles at HL-LHCJHEP2023121482023JHEP...12..148B10.1007/JHEP12(2023)148arXiv:2308.05804
– reference: F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel et al., Scikit-learn: machine learning in python (2018)
– reference: de OliveiraLKaganMMackeyLNachmanBSchwartzmanAJet-images—deep learning editionJHEP20160706910.1007/JHEP07(2016)069arXiv:1511.05190
– reference: M. Frank, Y. Hicylmaz, S. Mondal, O. Ozdal, C.S. Un, Electron and muon magnetic moments and implications for dark matter and model characterisation in non-universal U(1) supersymmetric models. JHEP 10, 063 (2021). https://doi.org/10.1007/JHEP10(2021)063. arXiv:2107.04116
– reference: MullinANichollsSPaceyHParkerMWhiteMWilliamsSDoes SUSY have friends? A new approach for LHC event analysisJHEP2021021602021JHEP...02..160M10.1007/JHEP02(2021)160arXiv:1912.10625
– reference: R. Kumar Barman, G. Belanger, R.M. Godbole, Status of low mass LSP in SUSY, Eur. Phys. J. ST 229, 3159–3185 (2020). https://doi.org/10.1140/epjst/e2020-000198-1. arXiv:2010.11674
– reference: L.S. Shapley, 17. A Value for n-Person Games (Princeton University Press, Princeton, 1953), pp. 307–318. https://doi.org/10.1515/9781400881970-018
– reference: Atlas susy public result. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
– reference: N.V. Chawla, Data Mining for Imbalanced Datasets: An Overview (Springer US, Boston, 2005), pp.853–867. https://doi.org/10.1007/0-387-25465-X_40
– reference: DreesMRoyPGodboleRTheory and Phenomenology of Sparticles: An Account of Four-Dimensional N2004SingaporeWorld Scientific
– reference: H. Banerjee, B. Dutta, S. Roy, Supersymmetric gauged U(1)Lμ-Lτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm U {(1)}_{L_{\mu }-{L}_{\tau }}$$\end{document} model for electron and muon (g-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g - 2)$$\end{document} anomaly. JHEP 03, 211 (2021). https://doi.org/10.1007/JHEP03(2021)211. arXiv:2011.05083
– reference: AlvestadDFominNKerstenJMaelandSStrümkeIBeyond cuts in small signal scenarios: enhanced sneutrino detectability using machine learningEur. Phys. J. C2023833792023EPJC...83..379A10.1140/epjc/s10052-023-11532-9arXiv:2108.03125
– reference: CornellASDoorsamyWFuksBHarmsenGMasonLBoosted decision trees in the era of new physics: a smuon analysis case studyJHEP2022040152022JHEP...04..015C10.1007/JHEP04(2022)015arXiv:2109.11815
– reference: JorgeFRonaldRJesusSJuanMCarlosATop squark signal significance enhancement by different machine learning algorithmsInt. J. Mod. Phys. A202237225019710.1142/S0217751X22501974arXiv:2106.06813
– reference: M. Chakraborti, S. Iwamoto, J.S. Kim, R. Masełek, K. Sakurai, Supersymmetric explanation of the muon g - 2 anomaly with and without stable neutralino. JHEP 08, 124 (2022). https://doi.org/10.1007/JHEP08(2022)124. arXiv:2202.12928
– reference: P. Athron, C. Balazs, D.H.J. Jacob, W. Kotlarski, D. Stockinger, H. Stockinger-Kim, New physics explanations of aμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{a}_{\mu }$$\end{document} in light of the FNAL muon g - 2 measurement. JHEP 09, 080 (2021). https://doi.org/10.1007/JHEP09(2021)080. arXiv:2104.03691
– reference: ATLAS Collaboration, G. Aad et al., Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the W-boson mass in s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV pp collisions with the ATLAS detector. JHEP 06, 031 (2023). https://doi.org/10.1007/JHEP06(2023)031. arXiv:2209.13935
– reference: CarleoGCiracICranmerKDaudetLSchuldMTishbyNMachine learning and the physical sciencesRev. Mod. Phys.2019912019RvMP...91d5002C10.1103/RevModPhys.91.045002arXiv:1903.10563
– reference: KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksCommun. ACM201260849010.1145/3065386
– reference: R. Baruah, S. Mondal, S.K. Patra, S. Roy, Probing intractable beyond-standard-model parameter spaces armed with machine learning. arXiv:2404.02698
– reference: ChoudhuryAMondalAMondalSSarkarSImproving sensitivity of trilinear R-parity violating SUSY searches using machine learning at the LHCPhys. Rev. D20241092024PhRvD.109c5001C10.1103/PhysRevD.109.035001arXiv:2308.02697
– reference: CMS Collaboration, A. Tumasyan et al., Search for top squarks in the four-body decay mode with single lepton final states in proton-proton collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV. JHEP 06, 060 (2023). https://doi.org/10.1007/JHEP06(2023)060. arXiv:2301.08096
– reference: DomingoFDreinerHKKimJSKraussMELozanoMWangZSUpdating bounds on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-parity violating supersymmetry from meson oscillation dataJHEP2019020662019JHEP...02..066D393313310.1007/JHEP02(2019)066arXiv:1810.08228
– reference: F. Feroz, M.P. Hobson, M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398(09), 1601–1614 (2009). https://doi.org/10.1111/j.1365-2966.2009.14548.x. https://academic.oup.com/mnras/article-pdf/398/4/1601/3039078/mnras0398-1601.pdf
– reference: G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma et al., Lightgbm: a highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems, ed. by I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan et al., vol. 30 (Curran Associates, Inc., 2017)
– reference: DjouadiAMaianiLMoreauGPolosaAQuevillonJRiquerVThe post-Higgs MSSM scenario: Habemus MSSM?Eur. Phys. J. C20137326502013EPJC...73.2650D10.1140/epjc/s10052-013-2650-0arXiv:1307.5205
– reference: J. Cao, F. Li, J. Lian, Y. Pan, D. Zhang, Impact of LHC probes of SUSY and recent measurement of (g -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document} 2) on Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z} }_{3}$$\end{document}-NMSSM. Sci. China Phys. Mech. Astron. 65, 291012 (2022). https://doi.org/10.1007/s11433-022-1927-9. arXiv:2204.04710
– reference: GuQZhuLCaiZCaiZLiZKangZLiuYEvaluation measures of the classification performance of imbalanced data setsComputational Intelligence and Intelligent Systems2009BerlinSpringer46147110.1007/978-3-642-04962-0_53
– reference: E. Arganda, M. Epele, N.I. Mileo, R.A. Morales, Machine-learning performance on Higgs-pair production associated with dark matter at the LHC. arXiv:2401.03178
– reference: BreimanLRandom ForestsMach. Learn.20014553210.1023/A:1010933404324
– reference: ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). https://doi.org/10.1016/j.physletb.2012.08.020. arXiv:1207.7214
– reference: ATLAS Collaboration, G. Aad et al., Search for R-parity-violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using s=13TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13 { TeV}$$\end{document} proton–proton collision data. Eur. Phys. J. C 81, 1023 (2021). https://doi.org/10.1140/epjc/s10052-021-09761-x. arXiv:2106.09609
– reference: G. Cowan, Discovery sensitivity for a counting experiment with background uncertainty (2012)
– reference: BarmanRKBhattacherjeeBChakrabortyIChoudhuryAKhanNElectroweakino searches at the HL-LHC in the baryon number violating MSSMPhys. Rev. D20211032021PhRvD.103a5003B10.1103/PhysRevD.103.015003arXiv:2003.10920
– reference: Y. Freund, An adaptive version of the boost by majority algorithm. In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, pp. 102–113 (1999)
– reference: H. Baer, V. Barger, H. Serce, Anomalous muon magnetic moment, supersymmetry, naturalness, LHC search limits and the landscape. Phys. Lett. B 820, 136480 (2021). https://doi.org/10.1016/j.physletb.2021.136480. arXiv:2104.07597
– reference: CMS Collaboration, A.M. Sirunyan et al., Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV. JINST 13, P05011 (2018). https://doi.org/10.1088/1748-0221/13/05/P05011. arXiv:1712.07158
– reference: DavidsonSLosadaMNeutrino masses in the R(p) violating MSSMJHEP2000050212000JHEP...05..021D10.1088/1126-6708/2000/05/021arXiv:hep-ph/0005080
– reference: HammadANojiriMMStreamlined jet tagging network assisted by jet prong structureJHEP20240617610.1007/JHEP06(2024)176arXiv:2404.14677
– reference: TrifinopoulosSB-physics anomalies: the bridge between R -parity violating supersymmetry and flavored dark matterPhys. Rev. D20191002019PhRvD.100k5022T10.1103/PhysRevD.100.115022arXiv:1904.12940
– reference: FuksBKlasenMLampreaDRRotheringMPrecision predictions for electroweak superpartner production at hadron colliders with ResumminoEur. Phys. J. C20137324802013EPJC...73.2480F10.1140/epjc/s10052-013-2480-0arXiv:1304.0790
– reference: CowanGCranmerKGrossEVitellsOAsymptotic formulae for likelihood-based tests of new physicsEur. Phys. J. C20117115542011EPJC...71.1554C10.1140/epjc/s10052-011-1554-0arXiv:1007.1727
– reference: CMS Collaboration, A.M. Sirunyan et al., Search for top squarks in final states with two top quarks and several light-flavor jets in proton-proton collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV. Phys. Rev. D 104, 032006 (2021). https://doi.org/10.1103/PhysRevD.104.032006. arXiv:2102.06976
– reference: HEP ML Community, A living review of machine learning for particle physics
– reference: LikhomanenkoTIltenPKhairullinERogozhnikovAUstyuzhaninAWilliamsMLHCb topological trigger reoptimizationJ. Phys. Conf. Ser.201566410.1088/1742-6596/664/8/082025arXiv:1510.00572
– reference: M. Chakraborti, U. Chattopadhyay, S. Poddar, How light a Higgsino or a wino dark matter can become in a compressed scenario of MSSM. JHEP 09, 064 (2017). https://doi.org/10.1007/JHEP09(2017)064. arXiv:1702.03954
– reference: BentéjacCCsörgőAMartínez-MuñozGA comparative analysis of gradient boosting algorithmsArtif. Intell. Rev.2021541937196710.1007/s10462-020-09896-5
– reference: FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingJ. Comput. Syst. Sci.199755119139147305510.1006/jcss.1997.1504
– reference: ATLAS Collaboration, G. Aad et al., Search for new phenomena with top quark pairs in final states with one lepton, jets, and missing transverse momentum in pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV with the ATLAS detector. JHEP 04, 174 (2021). https://doi.org/10.1007/JHEP04(2021)174. arXiv:2012.03799
– reference: S.P. Martin, A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 18, 1–98 (1998). https://doi.org/10.1142/9789812839657_0001. arXiv:hep-ph/9709356
– reference: CMS Collaboration, A.M. Sirunyan et al., Search for charged Higgs bosons in the H±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ H}^{\pm }$$\end{document}→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow$$\end{document}τ±ντ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^{\pm }\nu _\tau$$\end{document} decay channel in proton-proton collisions at s=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} =$$\end{document} 13 TeV. JHEP 07, 142 (2019). https://doi.org/10.1007/JHEP07(2019)142. arXiv:1903.04560
– reference: NiazkarMMenapaceABrentanBPiraeiRJimenezDDhawanPApplications of xgboost in water resources engineering: a systematic literature review (Dec 2018-May 2023)Environ. Model. Softw.20241740210.1016/j.envsoft.2024.105971
– reference: CMS Collaboration, A.M. Sirunyan et al., Search for R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-parity violating supersymmetry in pp collisions at s=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} =$$\end{document} 13 TeV using b jets in a final state with a single lepton, many jets, and high sum of large-radius jet masses. Phys. Lett. B 783, 114–139 (2018). https://doi.org/10.1016/j.physletb.2018.06.028. arXiv:1712.08920
– reference: T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system. arXiv:1603.02754
– reference: S. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions (2017)
– reference: CollaborationCDFAaltonenTObservation of single top quark production and measurement of |Vtb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{tb}$$\end{document}| with CDFPhys. Rev. D2010822010PhRvD..82k2005A10.1103/PhysRevD.82.112005arXiv:1004.1181
– reference: KomiskePTMetodievEMSchwartzMDDeep learning in color: towards automated quark/gluon jet discriminationJHEP2017011102017JHEP...01..110K10.1007/JHEP01(2017)110arXiv:1612.01551
– reference: AllanachBCKomCHLepton number violating mSUGRA and neutrino massesJHEP2008040812008JHEP...04..081A10.1088/1126-6708/2008/04/081arXiv:0712.0852
– reference: Cms phase 1 heavy flavour identification performance and developments, cms detector performance note, cms-dp-2017-013 (2017)
– reference: J. Shlomi, P. Battaglia, J.-R. Vlimant, Graph neural networks in particle physics. arXiv:2007.13681
– reference: BarmanRKBhattacherjeeBChoudhuryAChowdhuryDLahiriJRaySCurrent status of MSSM Higgs sector with LHC 13 TeV dataEur. Phys. J. Plus201913415010.1140/epjp/i2019-12566-5arXiv:1608.02573
– reference: R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat, S. Palazzo, DijetGAN: a generative-adversarial network approach for the simulation of QCD Dijet events at the LHC. JHEP 08, 110 (2019). https://doi.org/10.1007/JHEP08(2019)110. arXiv:1903.02433
– reference: H.K. Dreiner, Y.S. Koay, D. Köhler, V.M. Lozano, J. Montejo Berlingen, S. Nangia et al., The ABC of RPV: classification of R-parity violating signatures at the LHC for small couplings. JHEP 07, 215 (2023). https://doi.org/10.1007/JHEP07(2023)215. arXiv:2306.07317
– reference: DattaAGangulyNThe past, present and future of the heavier electroweakinos in the light of LHC and other dataJHEP2019011032019JHEP...01..103D10.1007/JHEP01(2019)103arXiv:1809.05129
– reference: A. Choudhury, A. Mondal, S. Mondal, S. Sarkar, Slepton searches in the trilinear RPV SUSY scenarios at the HL-LHC and HE-LHC. arXiv:2310.07532
– reference: CerianiLVermePThe origins of the gini index: extracts from variabilit e mutabilit, by corrado giniJ. Econ. Inequal.1912102012421443
– reference: BagnaschiELikelihood analysis of the pMSSM11 in light of LHC 13-TeV dataEur. Phys. J. C2018782562018EPJC...78..256B10.1140/epjc/s10052-018-5697-0arXiv:1710.11091
– reference: C. Bishop, Pattern recognition and machine learning 16, 140–155. 01 (2006). https://doi.org/10.1117/1.2819119
– reference: BaldiPBauerKEngCSadowskiPWhitesonDJet substructure classification in high-energy physics with deep neural networksPhys. Rev. D2016932016PhRvD..93i4034B10.1103/PhysRevD.93.094034arXiv:1603.09349
– reference: ATLAS Collaboration, G. Aad et al., Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ fb}^{-1}$$\end{document} of s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} =13 TeV pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collision data with the ATLAS detector. JHEP 02, 143 (2021). https://doi.org/10.1007/JHEP02(2021)143. arXiv:2010.14293
– reference: J. Cao, L. Meng, Y. Yue, Electron and muon anomalous magnetic moments in the Z3-NMSSM. Phys. Rev. D 108, 035043 (2023). https://doi.org/10.1103/PhysRevD.108.035043. arXiv:2306.06854
– reference: K. Kowalska, L. Roszkowski, E.M. Sessolo, A.J. Williams, GUT-inspired SUSY and the muon g -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document} 2 anomaly: prospects for LHC 14 TeV. JHEP 06, 020 (2015). https://doi.org/10.1007/JHEP06(2015)020. arXiv:1503.08219
– reference: R.K. Barman, G. Bélanger, B. Bhattacherjee, R. Godbole, R. Sengupta, Current status of the light neutralino thermal dark matter in the phenomenological MSSM. arXiv:2402.07991
– reference: RenJWuLYangJMZhaoJExploring supersymmetry with machine learningNucl. Phys. B201994310.1016/j.nuclphysb.2019.114613arXiv:1708.06615
– reference: KeGMengQFinleyTWangTChenWMaWLightgbm: a highly efficient gradient boosting decision treeAdv. Neural Inf. Process. Syst.20173031463154
– reference: ChakrabortyAChakrabortySProbing (g-2)μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)_{\mu }$$\end{document} at the LHC in the paradigm of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-parity violating MSSMPhys. Rev. D2016932016PhRvD..93g5035C10.1103/PhysRevD.93.075035arXiv:1511.08874
– reference: T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175
– reference: B.P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, G. McGregor, Boosted decision trees as an alternative to artificial neural networks for particle identification. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 543, 577–584 (2005). https://doi.org/10.1016/j.nima.2004.12.018
– reference: MusellaPPandolfiFFast and accurate simulation of particle detectors using generative adversarial networksComput. Softw. Big Sci.20182810.1007/s41781-018-0015-yarXiv:1805.00850
– reference: A.L. Samuel, Some studies in machine learning using the game of checkers. I (Springer, New York, 1988), pp.335–365. https://doi.org/10.1007/978-1-4613-8716-9_14
– reference: GrossmanYRakshitSNeutrino masses in R-parity violating supersymmetric modelsPhys. Rev. D2004692004PhRvD..69i3002G10.1103/PhysRevD.69.093002arXiv:hep-ph/0311310
– reference: AlwallJFrederixRFrixioneSHirschiVMaltoniFMattelaerOThe automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulationsJHEP2014070792014JHEP...07..079A10.1007/JHEP07(2014)079arXiv:1405.0301
– reference: CollaborationCMSAcostaDBoosted decision trees in the level-1 Muon endcap trigger at CMSJ. Phys. Conf. Ser.2018108510.1088/1742-6596/1085/4/042042
– reference: ATLAS Collaboration, G. Aad et al., Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13$$\end{document} TeV pp collisions with the ATLAS detector. Eur. Phys. J. C 81, 1118 (2021). https://doi.org/10.1140/epjc/s10052-021-09749-7. arXiv:2106.01676
– reference: M. Chakraborti, L. Roszkowski, S. Trojanowski, GUT-constrained supersymmetry and dark matter in light of the new (g-2)μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)_\mu$$\end{document} determination. JHEP 05, 252 (2021). https://doi.org/10.1007/JHEP05(2021)252. arXiv:2104.04458
– reference: AbdughaniMRenJWuLYangJMZhaoJSupervised deep learning in high energy phenomenology: a mini reviewCommun. Theor. Phys.2019719552019CoTPh..71..955A401261810.1088/0253-6102/71/8/955arXiv:1905.06047
– reference: KronheimBSKucheraMPProsperHBKarboABayesian neural networks for fast SUSY predictionsPhys. Lett. B202181310.1016/j.physletb.2020.136041arXiv:2007.04506
– reference: M.I. Ali, M. Chakraborti, U. Chattopadhyay, S. Mukherjee, Muon and electron (g-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)$$\end{document} anomalies with non-holomorphic interactions in MSSM. Eur. Phys. J. C 83, 60 (2023). https://doi.org/10.1140/epjc/s10052-023-11216-4. arXiv:2112.09867
– reference: BhatPCMultivariate analysis methods in particle physicsAnn. Rev. Nucl. Part. Sci.2011612813092011ARNPS..61..281B10.1146/annurev.nucl.012809.104427
– reference: M. Chakraborti, S. Heinemeyer, I. Saha, The new ‘MUON G-2’ result and supersymmetry. Eur. Phys. J. C 81, 1114 (2021). https://doi.org/10.1140/epjc/s10052-021-09900-4. arXiv:2104.03287
– reference: B. Bhattacherjee, A. Choudhury, K. Ghosh, S. Poddar, Compressed supersymmetry at 14 TeV LHC. Phys. Rev. D 89, 037702 (2014). https://doi.org/10.1103/PhysRevD.89.037702. arXiv:1308.1526
– reference: A. Choudhury, A. Datta, Many faces of low mass neutralino dark matter in the unconstrained MSSM. LHC data and new signals. JHEP 06, 006 (2012). https://doi.org/10.1007/JHEP06(2012)006. arXiv:1203.4106
– reference: A. Choudhury, S. Mondal, Revisiting the exclusion limits from direct Chargino-Neutralino production at the LHC. Phys. Rev. D 94, 055024 (2016). https://doi.org/10.1103/PhysRevD.94.055024. arXiv:1603.05502
– reference: ATLAS Collaboration, G. Aad et al., Search for supersymmetry in events with four or more charged leptons in 139 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ fb}^{-1}$$\end{document} of s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV pp collisions with the ATLAS detector, JHEP 07, 167 (2021). https://doi.org/10.1007/JHEP07(2021)167. arXiv:2103.11684
– reference: ATLAS Collaboration, G. Aad et al., ATLAS b-jet identification performance and efficiency measurement with tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t{\bar{t}}$$\end{document} events in pp collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV. Eur. Phys. J. C 79, 970 (2019). https://doi.org/10.1140/epjc/s10052-019-7450-8. arXiv:1907.05120
– reference: A. Choudhury, S. Rao, L. Roszkowski, Impact of LHC data on muon g-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g-2$$\end{document} solutions in a vectorlike extension of the constrained MSSM. Phys. Rev. D 96, 075046 (2017). https://doi.org/10.1103/PhysRevD.96.075046. arXiv:1708.05675
– reference: SaitoTRehmsmeierMThe precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasetsPLoS One201510.1371/journal.pone.0118432
– reference: BridgesMCranmerKFerozFHobsonMRuiz de AustriRTrottaRA coverage study of the CMSSM based on ATLAS sensitivity using fast neural networks techniquesJHEP2011030122011JHEP...03..012B10.1007/JHEP03(2011)012arXiv:1011.4306
– reference: H. Banerjee, P. Byakti, S. Roy, Supersymmetric gauged U(1)Lμ-Lτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ U }(1)_{L_{\mu }-L_{\tau }}$$\end{document} model for neutrinos and the muon (g-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)$$\end{document} anomaly. Phys. Rev. D 98, 075022 (2018). https://doi.org/10.1103/PhysRevD.98.075022. arXiv:1805.04415
– reference: CollaborationCMSChatrchyanSObservation of a new boson at a mass of 125 GeV with the CMS experiment at the LHCPhys. Lett. B201271630612012PhLB..716...30C10.1016/j.physletb.2012.08.021arXiv:1207.7235
– reference: FerozFHobsonMPMultimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysisMon. Not. R. Astron. Soc.20083844492008MNRAS.384..449F10.1111/j.1365-2966.2007.12353.xarXiv:0704.3704
– reference: J. Chakrabortty, A. Choudhury, S. Mondal, Non-universal Gaugino mass models under the lamppost of muon (g-2). JHEP 07, 038 (2015). https://doi.org/10.1007/JHEP07(2015)038. arXiv:1503.08703
– reference: A. Luque, A. Carrasco, A. Martín, A. de las Heras, The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 91, 216–231 (2019). https://doi.org/10.1016/j.patcog.2019.02.023
– reference: BarbierRR-parity violating supersymmetryPhys. Rep.200542012022005PhR...420....1B10.1016/j.physrep.2005.08.006arXiv:hep-ph/0406039
– reference: CoganJKaganMStraussESchwarztmanAJet-images: computer vision inspired techniques for jet taggingJHEP2015021182015JHEP...02..118C10.1007/JHEP02(2015)118arXiv:1407.5675
– reference: A. Butter, T. Plehn, R. Winterhalder, How to GAN LHC events. SciPost Phys. 7, 075 (2019). https://doi.org/10.21468/SciPostPhys.7.6.075. arXiv:1907.03764
– reference: T. Bylander, L. Tate, Using validation sets to avoid overfitting in adaboost. In FLAIRS, pp. 544–549 (2006)
– reference: WeissGMProvostFLearning when training data are costly: the effect of class distribution on tree inductionJ. Artif. Intell. Res.20031931535410.1613/jair.1199
– reference: TMVA Collaboration, A. Hocker et al., TMVA—toolkit for multivariate data analysis. arXiv:physics/0703039
– reference: HastieTTibshiraniRFriedmanJHFriedmanJHThe Elements of Statistical Learning: Data Mining, Inference, and Prediction2009BerlinSpringer10.1007/978-0-387-84858-7
– reference: LinJBhimjiWNachmanBMachine learning templates for QCD factorization in the search for physics beyond the standard modelJHEP2019051812019JHEP...05..181L397340610.1007/JHEP05(2019)181arXiv:1903.02556
– reference: J. Dutta, P. Konar, S. Mondal, B. Mukhopadhyaya, S.K. Rai, A revisit to a compressed supersymmetric spectrum with 125 GeV Higgs. JHEP 01, 051 (2016). https://doi.org/10.1007/JHEP01(2016)051. arXiv:1511.09284
– reference: RoySMukhopadhyayaBSome implications of a supersymmetric model with R-parity breaking bilinear interactionsPhys. Rev. D199755702070291997PhRvD..55.7020R10.1103/PhysRevD.55.7020arXiv:hep-ph/9612447
– reference: YangH-JRoeBPZhuJStudies of boosted decision trees for MiniBooNE particle identificationNucl. Instrum. Methods A20055553703852005NIMPA.555..370Y10.1016/j.nima.2005.09.022arXiv:physics/0508045
– reference: GAMBIT Collaboration, P. Athron et al., A global fit of the MSSM with GAMBIT. Eur. Phys. J. C 77, 879 (2017). https://doi.org/10.1140/epjc/s10052-017-5196-8. arXiv:1705.07917
– reference: CMS Collaboration, A.M. Sirunyan et al., Search for resonant production of second-generation sleptons with same-sign dimuon events in proton-proton collisions at s=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} =$$\end{document} 13 TeV. Eur. Phys. J. C 79, 305 (2019). https://doi.org/10.1140/epjc/s10052-019-6800-x. arXiv:1811.09760
– reference: ChakrabortyALimSHNojiriMMInterpretable deep learning for two-prong jet classification with jet spectraJHEP2019071352019JHEP...07..135C10.1007/JHEP07(2019)135arXiv:1904.02092
– reference: FriedmanJHastieTTibshiraniRAdditive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)Ann. Stat.20002833740710.1214/aos/1016218223
– reference: M. Endo, K. Hamaguchi, S. Iwamoto, T. Kitahara, Supersymmetric interpretation of the muon g - 2 anomaly. JHEP 07, 075 (2021). https://doi.org/10.1007/JHEP07(2021)075. arXiv:2104.03217
– reference: M.D. Schwartz, Modern machine learning and particle physics. arXiv:2103.12226
– reference: DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment. JHEP 02, 057 (2014). https://doi.org/10.1007/JHEP02(2014)057. arXiv:1307.6346
– reference: A. Choudhury, A. Mondal, S. Mondal, Status of R-parity violating SUSY. arXiv:2402.04040
– reference: BhattacherjeeBChakrabortyAChoudhuryAStatus of the MSSM Higgs sector using global analysis and direct search bounds, and future prospects at the high luminosity LHCPhys. Rev. D2015922015PhRvD..92i3007B10.1103/PhysRevD.92.093007arXiv:1504.04308
– reference: H.-J. Yang, B.P. Roe, J. Zhu, Studies of boosted decision trees for miniboone particle identification. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 555, 370–385 (2005). https://doi.org/10.1016/j.nima.2005.09.022
– reference: R.K. Barman, G. Bélanger, B. Bhattacherjee, R.M. Godbole, R. Sengupta, Is light neutralino thermal dark matter in the phenomenological minimal supersymmetric standard model ruled out? Phys. Rev. Lett. 131, 011802 (2023). https://doi.org/10.1103/PhysRevLett.131.011802. arXiv:2207.06238
– reference: Preface to special issue on “learning to discover”. Int. J. Mod. Phys. A 35, 2002003 (2020). https://doi.org/10.1142/S0217751X20020030
– reference: BuckleyAShiltonAWhiteMJFast supersymmetry phenomenology at the Large Hadron Collider using machine learning techniquesComput. Phys. Commun.20121839609702012CoPhC.183..960B10.1016/j.cpc.2011.12.026arXiv:1106.4613
– reference: M. Hossin, S.M.N, A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5, 01–11 (2015). https://doi.org/10.5121/ijdkp.2015.5201
– reference: DasDHatiCKumarGMahajanNScrutinizing R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-parity violating interactions in light of RK(*)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{K^{(\ast )}}$$\end{document} dataPhys. Rev. D2017962017PhRvD..96i5033D10.1103/PhysRevD.96.095033arXiv:1705.09188
– reference: BaerHTataXWeak Scale Supersymmetry: From Superfields to Scattering Events2006CambridgeCambridge University Press10.1017/CBO9780511617270
– reference: BolsEKieselerJVerzettiMStoyeMStakiaAJet flavour classification using DeepJetJINST202015P120122020JInst..1512012B10.1088/1748-0221/15/12/P12012arXiv:2008.10519
– reference: WangRAdaboost for feature selection, classification and its relation with svm, a reviewPhys. Procedia2012258008072012PhPro..25..800W10.1016/j.phpro.2012.03.160
– reference: D0 collaboration, V.M. Abazov et al., Evidence for production of single top quarks and first direct measurement of |Vtb|. Phys. Rev. Lett. 98, 181802 (2007). https://doi.org/10.1103/PhysRevLett.98.181802. arXiv:hep-ex/0612052
– reference: A.V. Dorogush, V. Ershov, A. Gulin, Catboost: gradient boosting with categorical features support. arXiv:1810.11363 (2018)
– reference: ATLAS Collaboration, G. Aad et al., A search for R-parity-violating supersymmetry in final states containing many jets in pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collisions at s=13TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 13\,\text{ TeV }$$\end{document} with the ATLAS detector. arXiv:2401.16333
– reference: HammadAMorettiSNojiriMMulti-scale cross-attention transformer encoder for event classificationJHEP2024031442024JHEP...03..144H10.1007/JHEP03(2024)144arXiv:2401.00452
– reference: BreimanLFriedmanJOlshenRAStoneCJClassification and Regression Trees1984Boca RatonChapman and Hall
– reference: AltmannshoferWDevPSBSoniASuiYAddressing RD(∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ R}_{D^{(*)}}$$\end{document}, RK(∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ R}_{K^{(*)}}$$\end{document}, muon g-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g-2$$\end{document} and ANITA anomalies in a minimal R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-parity violating supersymmetric frameworkPhys. Rev. D20201022020PhRvD.102a5031A10.1103/PhysRevD.102.015031arXiv:2002.12910
– reference: GAMBIT Collaboration, P. Athron et al., Global fits of GUT-scale SUSY models with GAMBIT. Eur. Phys. J. C 77, 824 (2017). https://doi.org/10.1140/epjc/s10052-017-5167-0. arXiv:1705.07935
– reference: ATLAS Collaboration, Quark versus gluon jet tagging using jet images with the ATLAS detector
– reference: DíazMARiveraMRojasNOn neutrino masses in the MSSM with BRpVNucl. Phys. B20148873383572014NuPhB.887..338D10.1016/j.nuclphysb.2014.08.012arXiv:1401.7357
– reference: D0 Collaboration, V.M. Abazov et al., Evidence for production of single top quarks. Phys. Rev. D 78, 012005 (2008). https://doi.org/10.1103/PhysRevD.78.012005. arXiv:0803.0739
– reference: J.G. Carbonell, R.S. Michalski, T.M. Mitchell, An overview of machine learning. Mach. Learn. 3–23 (1983)
– reference: ChoudhuryAMitraSMondalAMondalSBilinear R-parity violating supersymmetry under the light of neutrino oscillation. Higgs and flavor dataJHEP2024020042024JHEP...02..004C10.1007/JHEP02(2024)004arXiv:2305.15211
– reference: Search for supersymmetry at the high luminosity LHC with the ATLAS experiment, ATL-PHYS-PUB-2014-010 (2014)
– reference: QuinlanJSimplifying decision treesInt. J. Man Mach. Stud.19872722123410.1016/S0020-7373(87)80053-6
– reference: ATLAS Collaboration, G. Aad et al., Search for electroweak production of supersymmetric particles in final states with two τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}-leptons in s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collisions with the ATLAS detector. arXiv:2402.00603
– reference: L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and regression trees. 10, 2017, https://doi.org/10.1201/9781315139470
– reference: D. Chowdhury, K.M. Patel, X. Tata, S.K. Vempati, Indirect searches of the degenerate MSSM. Phys. Rev. D 95, 075025 (2017). https://doi.org/10.1103/PhysRevD.95.075025. arXiv:1612.06471
– reference: Y. He, L. Meng, Y. Yue, D. Zhang, Impact of the recent measurement of (g-2)μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }$$\end{document}, the LHC search for supersymmetry, and the LZ experiment on the minimal supersymmetric standard model. Phys. Rev. D 108, 115010 (2023). https://doi.org/10.1103/PhysRevD.108.115010. arXiv:2303.02360
– reference: ChoudhuryADattaANeutralino dark matter confronted by the LHC constraints on Electroweak SUSY signalsJHEP2013091192013JHEP...09..119C10.1007/JHEP09(2013)119arXiv:1305.0928
– ident: 1308_CR14
  doi: 10.1007/JHEP11(2015)050
– volume: 06
  start-page: 176
  year: 2024
  ident: 1308_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP06(2024)176
– ident: 1308_CR19
  doi: 10.1007/JHEP08(2022)124
– volume: 30
  start-page: 3146
  year: 2017
  ident: 1308_CR177
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 1308_CR187
– volume: 28
  start-page: 337
  year: 2000
  ident: 1308_CR168
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– ident: 1308_CR110
  doi: 10.1140/epjc/s10052-019-7450-8
– volume: 83
  start-page: 379
  year: 2023
  ident: 1308_CR129
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-11532-9
– ident: 1308_CR164
– ident: 1308_CR10
  doi: 10.1007/JHEP09(2017)026
– volume: 02
  start-page: 160
  year: 2021
  ident: 1308_CR91
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)160
– volume: 12
  start-page: 148
  year: 2023
  ident: 1308_CR161
  publication-title: JHEP
  doi: 10.1007/JHEP12(2023)148
– volume: 134
  start-page: 150
  year: 2019
  ident: 1308_CR136
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12566-5
– volume: 61
  start-page: 281
  year: 2011
  ident: 1308_CR44
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev.nucl.012809.104427
– ident: 1308_CR137
  doi: 10.1007/JHEP07(2020)126
– ident: 1308_CR118
  doi: 10.1007/JHEP02(2021)143
– ident: 1308_CR170
– volume: 887
  start-page: 338
  year: 2014
  ident: 1308_CR145
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2014.08.012
– volume: 12
  start-page: 024
  year: 2008
  ident: 1308_CR82
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/12/024
– ident: 1308_CR115
  doi: 10.1103/PhysRevD.97.072016
– ident: 1308_CR1
  doi: 10.1142/9789812839657_0001
– volume: 19
  start-page: 315
  year: 2003
  ident: 1308_CR62
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1199
– ident: 1308_CR8
  doi: 10.1007/JHEP09(2017)064
– ident: 1308_CR58
  doi: 10.1016/B978-0-08-051054-5.50005-4
– ident: 1308_CR18
  doi: 10.1016/j.physletb.2021.136480
– volume: 384
  start-page: 449
  year: 2008
  ident: 1308_CR80
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2007.12353.x
– ident: 1308_CR79
– volume: 174
  issue: 02
  year: 2024
  ident: 1308_CR60
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2024.105971
– volume: 71
  start-page: 955
  year: 2019
  ident: 1308_CR50
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/71/8/955
– ident: 1308_CR33
  doi: 10.1007/s11433-022-1927-9
– ident: 1308_CR84
  doi: 10.1140/epjc/s10052-017-5167-0
– volume: 27
  start-page: 221
  year: 1987
  ident: 1308_CR166
  publication-title: Int. J. Man Mach. Stud.
  doi: 10.1016/S0020-7373(87)80053-6
– volume: 70
  year: 2004
  ident: 1308_CR121
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.70.015007
– volume: 78
  start-page: 256
  year: 2018
  ident: 1308_CR134
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-5697-0
– volume: 398
  start-page: 1601
  year: 2009
  ident: 1308_CR81
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2009.14548.x
– ident: 1308_CR152
  doi: 10.1007/JHEP07(2021)167
– ident: 1308_CR4
– volume: 04
  start-page: 081
  year: 2008
  ident: 1308_CR144
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/04/081
– ident: 1308_CR59
– volume: 55
  start-page: 119
  year: 1997
  ident: 1308_CR174
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 79
  start-page: 944
  year: 2019
  ident: 1308_CR97
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7437-5
– volume: 93
  year: 2016
  ident: 1308_CR102
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.094034
– volume: 555
  start-page: 370
  year: 2005
  ident: 1308_CR169
  publication-title: Nucl. Instrum. Methods A
  doi: 10.1016/j.nima.2005.09.022
– volume-title: Weak Scale Supersymmetry: From Superfields to Scattering Events
  year: 2006
  ident: 1308_CR3
  doi: 10.1017/CBO9780511617270
– ident: 1308_CR32
  doi: 10.1103/PhysRevD.94.055024
– volume: 07
  start-page: 069
  year: 2016
  ident: 1308_CR101
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)069
– ident: 1308_CR183
  doi: 10.1088/1126-6708/2006/05/026
– ident: 1308_CR66
  doi: 10.1016/j.patcog.2019.02.023
– volume: 92
  year: 2015
  ident: 1308_CR135
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.093007
– volume: 34
  start-page: 1930019
  year: 2020
  ident: 1308_CR46
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X19300199
– ident: 1308_CR153
  doi: 10.1140/epjc/s10052-021-09761-x
– ident: 1308_CR35
  doi: 10.1007/978-1-4613-8716-9_14
– volume: 45
  start-page: 5
  year: 2001
  ident: 1308_CR171
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: 1308_CR108
– ident: 1308_CR38
  doi: 10.1103/PhysRevLett.98.181802
– ident: 1308_CR40
– ident: 1308_CR56
  doi: 10.1117/1.2819119
– ident: 1308_CR132
  doi: 10.1007/JHEP09(2018)139
– volume: 8
  start-page: P02013
  year: 2013
  ident: 1308_CR76
  publication-title: JINST
  doi: 10.1088/1748-0221/8/02/P02013
– volume: 07
  start-page: 135
  year: 2019
  ident: 1308_CR104
  publication-title: JHEP
  doi: 10.1007/JHEP07(2019)135
– volume: 716
  start-page: 30
  year: 2012
  ident: 1308_CR114
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.08.021
– ident: 1308_CR5
– ident: 1308_CR6
  doi: 10.1103/PhysRevD.89.037702
– volume: 14
  start-page: 1612
  year: 1999
  ident: 1308_CR172
  publication-title: J. Jpn. Soc. Artif. Intell.
– ident: 1308_CR99
  doi: 10.1140/epjc/s10052-019-6847-8
– ident: 1308_CR130
– volume: 03
  start-page: 144
  year: 2024
  ident: 1308_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP03(2024)144
– start-page: 461
  volume-title: Computational Intelligence and Intelligent Systems
  year: 2009
  ident: 1308_CR67
  doi: 10.1007/978-3-642-04962-0_53
– volume: 01
  start-page: 103
  year: 2019
  ident: 1308_CR180
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)103
– volume: 77
  start-page: 257
  year: 2017
  ident: 1308_CR87
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-4814-9
– volume: 943
  year: 2019
  ident: 1308_CR96
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2019.114613
– volume: 71
  start-page: 1554
  year: 2011
  ident: 1308_CR69
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-011-1554-0
– ident: 1308_CR106
  doi: 10.1088/1748-0221/13/05/P05011
– ident: 1308_CR68
– ident: 1308_CR27
  doi: 10.1140/epjc/s10052-021-09900-4
– ident: 1308_CR105
– volume: 37
  start-page: 2250197
  year: 2022
  ident: 1308_CR123
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X22501974
– ident: 1308_CR42
  doi: 10.1142/S0217751X20020030
– volume: 1
  start-page: 2
  year: 2017
  ident: 1308_CR139
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-017-0002-8
– ident: 1308_CR31
  doi: 10.1007/JHEP07(2015)038
– volume: 10
  start-page: 421
  issue: 2012
  year: 1912
  ident: 1308_CR165
  publication-title: J. Econ. Inequal.
– volume: 1085
  year: 2018
  ident: 1308_CR74
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1085/4/042042
– ident: 1308_CR43
– ident: 1308_CR186
  doi: 10.1007/JHEP02(2014)057
– ident: 1308_CR156
  doi: 10.1103/PhysRevD.104.032006
– volume: 01
  start-page: 110
  year: 2017
  ident: 1308_CR103
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)110
– ident: 1308_CR167
  doi: 10.1145/307400.307419
– volume: 2
  start-page: 8
  year: 2018
  ident: 1308_CR95
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-018-0015-y
– volume-title: Classification and Regression Trees
  year: 1984
  ident: 1308_CR162
– ident: 1308_CR158
  doi: 10.1007/JHEP07(2023)215
– volume: 05
  start-page: 021
  year: 2000
  ident: 1308_CR142
  publication-title: JHEP
  doi: 10.1088/1126-6708/2000/05/021
– volume: 04
  start-page: 015
  year: 2022
  ident: 1308_CR54
  publication-title: JHEP
  doi: 10.1007/JHEP04(2022)015
– ident: 1308_CR160
– ident: 1308_CR75
– volume: 60
  start-page: 84
  year: 2012
  ident: 1308_CR111
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: 1308_CR131
  doi: 10.1007/JHEP11(2018)085
– ident: 1308_CR37
  doi: 10.1103/PhysRevD.78.012005
– ident: 1308_CR29
  doi: 10.1140/epjc/s10052-023-11216-4
– volume: 07
  start-page: 079
  year: 2014
  ident: 1308_CR184
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)079
– ident: 1308_CR22
  doi: 10.1007/JHEP05(2021)252
– volume: 55
  start-page: 7020
  year: 1997
  ident: 1308_CR143
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.55.7020
– volume: 420
  start-page: 1
  year: 2005
  ident: 1308_CR116
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.08.006
– volume: 105
  year: 2022
  ident: 1308_CR140
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.095039
– ident: 1308_CR163
  doi: 10.1201/9781315139470
– volume: 82
  year: 2010
  ident: 1308_CR36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.112005
– volume: 664
  year: 2015
  ident: 1308_CR77
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/664/8/082025
– volume: 05
  start-page: 181
  year: 2019
  ident: 1308_CR94
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)181
– volume: 813
  year: 2021
  ident: 1308_CR90
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.136041
– volume: 100
  year: 2019
  ident: 1308_CR149
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.115022
– volume: 103
  year: 2021
  ident: 1308_CR179
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.015003
– ident: 1308_CR113
  doi: 10.1016/j.physletb.2012.08.020
– volume: 02
  start-page: 066
  year: 2019
  ident: 1308_CR150
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)066
– ident: 1308_CR92
  doi: 10.1007/JHEP08(2019)110
– ident: 1308_CR98
– volume: 55
  start-page: 119
  year: 1997
  ident: 1308_CR73
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– ident: 1308_CR83
  doi: 10.1111/j.1365-2966.2009.14548.x
– ident: 1308_CR119
– ident: 1308_CR21
  doi: 10.1007/JHEP07(2021)075
– ident: 1308_CR112
  doi: 10.1140/epjc/s10052-020-08509-3
– volume: 96
  year: 2017
  ident: 1308_CR151
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.095033
– volume: 93
  year: 2016
  ident: 1308_CR146
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.075035
– ident: 1308_CR49
– volume: 02
  start-page: 004
  year: 2024
  ident: 1308_CR86
  publication-title: JHEP
  doi: 10.1007/JHEP02(2024)004
– ident: 1308_CR23
  doi: 10.1103/PhysRevD.96.075046
– ident: 1308_CR55
– ident: 1308_CR13
  doi: 10.1103/PhysRevD.108.115010
– ident: 1308_CR188
– volume: 183
  start-page: 960
  year: 2012
  ident: 1308_CR89
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.12.026
– ident: 1308_CR128
– ident: 1308_CR11
  doi: 10.1140/epjst/e2020-000198-1
– ident: 1308_CR155
  doi: 10.1016/j.physletb.2018.06.028
– ident: 1308_CR64
  doi: 10.5121/ijdkp.2015.5201
– ident: 1308_CR30
  doi: 10.1007/JHEP06(2015)020
– ident: 1308_CR41
– volume-title: Theory and Phenomenology of Sparticles: An Account of Four-Dimensional N
  year: 2004
  ident: 1308_CR2
– ident: 1308_CR25
  doi: 10.1103/PhysRevD.98.075022
– ident: 1308_CR181
  doi: 10.1140/epjc/s10052-021-09749-7
– ident: 1308_CR71
  doi: 10.1016/j.nima.2004.12.018
– ident: 1308_CR16
  doi: 10.1103/PhysRevD.84.095006
– ident: 1308_CR26
  doi: 10.1007/JHEP03(2021)211
– ident: 1308_CR157
  doi: 10.1140/epjc/s10052-019-6800-x
– year: 2015
  ident: 1308_CR65
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118432
– volume: 09
  start-page: 119
  year: 2013
  ident: 1308_CR178
  publication-title: JHEP
  doi: 10.1007/JHEP09(2013)119
– ident: 1308_CR138
  doi: 10.1007/JHEP07(2019)142
– volume: 83
  year: 2011
  ident: 1308_CR148
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.115019
– ident: 1308_CR9
  doi: 10.1103/PhysRevD.95.075025
– volume: 02
  start-page: 118
  year: 2015
  ident: 1308_CR100
  publication-title: JHEP
  doi: 10.1007/JHEP02(2015)118
– volume: 68
  start-page: 161
  year: 2018
  ident: 1308_CR45
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev-nucl-101917-021019
– volume: 03
  start-page: 012
  year: 2011
  ident: 1308_CR88
  publication-title: JHEP
  doi: 10.1007/JHEP03(2011)012
– ident: 1308_CR28
  doi: 10.1007/JHEP10(2021)063
– ident: 1308_CR20
  doi: 10.1007/JHEP09(2021)080
– ident: 1308_CR72
  doi: 10.1016/j.nima.2005.09.022
– volume: 102
  year: 2020
  ident: 1308_CR147
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.015031
– volume: 15
  start-page: P12012
  year: 2020
  ident: 1308_CR107
  publication-title: JINST
  doi: 10.1088/1748-0221/15/12/P12012
– ident: 1308_CR127
  doi: 10.1515/9781400881970-018
– volume: 109
  year: 2024
  ident: 1308_CR159
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.035001
– ident: 1308_CR12
  doi: 10.1103/PhysRevLett.131.011802
– ident: 1308_CR15
  doi: 10.1007/JHEP07(2014)019
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2009
  ident: 1308_CR57
  doi: 10.1007/978-0-387-84858-7
– volume: 54
  start-page: 1937
  year: 2021
  ident: 1308_CR61
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09896-5
– volume: 25
  start-page: 800
  year: 2012
  ident: 1308_CR173
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2012.03.160
– ident: 1308_CR63
  doi: 10.1007/0-387-25465-X_40
– ident: 1308_CR124
  doi: 10.1007/JHEP04(2021)174
– ident: 1308_CR17
  doi: 10.1007/JHEP06(2012)006
– ident: 1308_CR125
  doi: 10.1007/JHEP06(2023)031
– ident: 1308_CR176
– ident: 1308_CR34
  doi: 10.1103/PhysRevD.108.035043
– ident: 1308_CR24
  doi: 10.1007/JHEP05(2017)072
– ident: 1308_CR117
– ident: 1308_CR53
– ident: 1308_CR109
– ident: 1308_CR78
– ident: 1308_CR182
– ident: 1308_CR47
– volume: 73
  start-page: 2677
  year: 2013
  ident: 1308_CR122
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2677-2
– ident: 1308_CR7
  doi: 10.1007/JHEP01(2016)051
– ident: 1308_CR126
– volume: 74
  start-page: 3076
  year: 2014
  ident: 1308_CR39
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-014-3076-z
– ident: 1308_CR93
  doi: 10.21468/SciPostPhys.7.6.075
– volume: 69
  year: 2004
  ident: 1308_CR141
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.69.093002
– ident: 1308_CR85
  doi: 10.1140/epjc/s10052-017-5196-8
– volume: 73
  start-page: 2650
  year: 2013
  ident: 1308_CR133
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2650-0
– ident: 1308_CR70
– volume: 20
  start-page: 1093
  year: 2006
  ident: 1308_CR175
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001406005137
– ident: 1308_CR154
– ident: 1308_CR120
  doi: 10.1007/JHEP06(2023)060
– volume: 91
  year: 2019
  ident: 1308_CR48
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045002
– volume: 73
  start-page: 2480
  year: 2013
  ident: 1308_CR185
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2480-0
SSID ssj0056293
Score 2.5021446
Snippet Machine learning algorithms are now being extensively used in our daily lives, spanning across diverse industries as well as academia. In the field of high...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2425
SubjectTerms Algorithms
Artificial intelligence
Atomic
Classical and Continuum Physics
Classification
Comparative studies
Condensed Matter Physics
Data analysis
Datasets
Decision trees
Deep learning
High energy physics
Large Hadron Collider
Luminosity
Machine learning
Materials Science
Measurement Science and Instrumentation
Modern Machine Learning and Particle Physics: An In-Depth Review
Molecular
Neural networks
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
Supersymmetry
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqaKVe6FsshWoOPdZinThxwo1FPA4Lqkpb7c0yjr2A2A1aB8R_65_rjJOwbQ9FgkvkPGxZmZnMTGbmG8Y-21Iqr1zF06QquTQU3z0TCTcofl5aUfgWJGmsTk6KyaT8-merL8p270OS8Uvd4tkOt931ZdgOQqhUclQsnEJuBUfzcRV1XkEy-e30Z_8RRq0e8XYFdZEnndqldv1nob8V09La_CdAGvXOwasn7Pg1W-uMTdhtueMNe-bmb9mLmPRpwzv2q801dgHQcgW0BGF0egwE74QOdB3ANPHi-GgPKD1-ClXXkAcolM1JAVYwi9mYDrr2E1MwV9N6cdGcz8IOGLBLdHGIULZg5hW0BTNQe0BVWdUz2gC-hi-wW5lRXdNochgH8fEx_UE4HB2D71PJwnv242D_-94R75o5cJumssFjZqRy-VnuUeylSUvpE4P0MdaJ3KnKKpFYQ_6OSPE0k-gseZuVuRLOC5N-YCvzeu7WGYjcK5ynCkd4h5ktnMgsVeiWiS18XgxY3lNS2w7pnBpuXOm2CnuoiTK6pYzGNXSkjL4bsOH9xOsW7OPhKZs9q-hO-oNO0Y4ssxJd4wETPWssbz-w5MYj5nxkLxNisVgkuclWmsWN22LP7W1zERafomj8BmG9DYg
  priority: 102
  providerName: Springer Nature
Title Searches for the BSM scenarios at the LHC using decision tree-based machine learning algorithms: a comparative study and review of random forest, AdaBoost, XGBoost and LightGBM frameworks
URI https://link.springer.com/article/10.1140/epjs/s11734-024-01308-x
https://www.proquest.com/docview/3256959156
Volume 233
WOSCitedRecordID wos001321703200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: KB.
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxIX3hULZTUHjpit83LCBTVVHxLb1aoLaMUlch17AXU3Sx1Q_xt_jhnHYQUHeuBiOQ9bjjyZh2fmG8Ze6iKRVpqax1Fd8ESRf_dCRFzh72cTLXLbgSSN5WSSz-fFNBy4uRBW2fNEz6jrRtMZ-ShG2VykBZobb9ffOFWNIu9qKKGxxXYIJSHyoXuznhOjaPegu4JKyZNgDfFdaFOMzPqrGzkhZJxwFFOcHHg5v_5TOm1Uzr-8pF74HN__32U_YPeC2gkHHZ08ZLfM6hG748M_tXvMfnZRx8YB6rCAOiGUszMgoCc0pRsHqvU3x6eHQIHyC6hDaR4gpzYnUVjD0sdlGgiFKBagLhe4lPbz0r0BBXqDMw4e1BbUqoYudQYaCyg062ZJC8CvewUHtSqbhnrzE9_xr4_pLOGkPAPbB5W5J-zD8dH7w1MeyjpwHcdJi22qEmmyi8wiA0hUXCQ2UrhJShuRGVlrKSKtyPIRMV6mCZpNVqdFJoWxQsW7bHvVrMxTBiKzEsfJ3BDyYapzI1JNubpFpHOb5QOW9dtZ6YB5TqU3LqsuH3u_IjqoOjqocI7K00F1PWD7vweuO9iPm4fs9RRQBT7gqs32D5joaWjz-IYpn_17yufsbkS06zMj99h2e_XdvGC39Y_2i7sasp3yaDI9H7Ktd-Xrof8xsJ2mn7A9n338BY6XFak
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGFN2KhwBzghrV14sQJEkLdQrtVsyukFmlvxnXsbavuZlkHKH-KP8Cfw-MkrOBATz1wiZyHR4nzeWbseRHyQudcWGFKGkdlTrlC--4Ri6jy089yzTLbJEkqxHicTSb5hzXyo4uFQbfKjicGRl1WGvfI-7GXzXmS--XG28VnilWj0LraldBoYLFvvn_zSzb3Zu-d_78vo2jn_eH2kLZVBaiOY177Y6K4MOlRaj3-uIpzbiPF8kRpw1IjSi1YpBUq3iz2pwn3WrvVSZ4KZixTsad7hVzlyP2Dq-BBx_m9KhGS_DIsXY-CvPUn82uYvlmcur5jTMScerFI0WCY0fM_peFKxf3LKhuE3c7t_22Y7pBbrVoNW808uEvWzPweuR7cW7W7T342XtXGgdfRweu8MDgYASayUsuTyoGqw8ViuA0YCDCFsi09BGi0pyjqS5gFv1MDbaGNKaizqf_0-njmXoMCvcqjDiFpL6h5CU1oEFQWvFJQVjN8AT-ar2CrVIOqwtZkNzTC4wXulewORmA7pzn3gHy8lJF7SNbn1dw8IsBSK3w_kRnM7JjozLBEYyxyHunMplmPpB18pG5zumNpkTPZxJtvSsSdbHAnPQ0ZcCfPe2Tzd8dFk9bk4i4bHeJky-ecXMGtR1iH2dXtC0g-_jfJ5-TG8HBUyGJvvP-E3Ixw3oQo0A2yXi-_mKfkmv5an7jlszANgXy6bED_AgNFbQA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaq8hAXyqtiaYE5cMTadeLECbdu220R21WlAtqb5fqxFHWT1Tog_ht_rh4nYQUHKiEukfMYy8pMPDOZmW8IeaNLLpywhqaJKSlXGN-9ZAlV4fNzXLPCtSBJUzGbFfN5eb5FjvtamJjt3ock25oGRGmqmuHKuA7bdjS0q69-6BkTKadByVAMvxU0mJJ3OHYOQqf94nO_IQcNH7F3GXaUR_3apXn9ZaLfldTG8vwjWBp10GTnP63-EXnYGaFw0ErNY7JlqyfkXkwG1f4p-dnmIFsPwaKFYCHC-OIMEPYpONa1B9XEi9PTQ8C0-QWYrlEPYIibomI0sIxZmha6thQLUNeLen3VfFn6d6BAb1DHIULcgqoMtIU0UDsIKtTUS1xAeCVv4cCocV3jaH4SB_HxKf5ZOBmfgetTzPwz8mly_PHwlHZNHqhOU96EY6a4sPll7sJ2wFVacpeowCulLcutMFqwRCv0g1gaTjMenCinszIXzDqm0l2yXdWVfU6A5U4EOlFYxEHMdGFZprFyt0x04fJiQPKeq1J3COjYiONattXZI4mckS1nZJhDRs7IHwMy-kW4akFAbifZ78VGdruCl2mwL8usDC7zgLBeTDa3b5nyxT_QvCb3z48mcvp-9mGPPEhQ2mId5T7Zbtbf7EtyV39vrvz6VfxibgATexlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Searches+for+the+BSM+scenarios+at+the+LHC+using+decision+tree-based+machine+learning+algorithms%3A+a+comparative+study+and+review+of+random+forest%2C+AdaBoost%2C+XGBoost+and+LightGBM+frameworks&rft.jtitle=The+European+physical+journal.+ST%2C+Special+topics&rft.au=Choudhury%2C+Arghya&rft.au=Mondal%2C+Arpita&rft.au=Sarkar%2C+Subhadeep&rft.date=2024-11-01&rft.issn=1951-6355&rft.eissn=1951-6401&rft.volume=233&rft.issue=15-16&rft.spage=2425&rft.epage=2463&rft_id=info:doi/10.1140%2Fepjs%2Fs11734-024-01308-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjs_s11734_024_01308_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1951-6355&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1951-6355&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1951-6355&client=summon