Combining content-based and collaborative filtering for job recommendation system: A cost-sensitive Statistical Relational Learning approach

Recommendation systems usually involve exploiting the relations among known features and content that describe items (content-based filtering) or the overlap of similar users who interacted with or rated the target item (collaborative filtering). To combine these two filtering approaches, current mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 136; s. 37 - 45
Hlavní autoři: Yang, Shuo, Korayem, Mohammed, AlJadda, Khalifeh, Grainger, Trey, Natarajan, Sriraam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.11.2017
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recommendation systems usually involve exploiting the relations among known features and content that describe items (content-based filtering) or the overlap of similar users who interacted with or rated the target item (collaborative filtering). To combine these two filtering approaches, current model-based hybrid recommendation systems typically require extensive feature engineering to construct a user profile. Statistical Relational Learning (SRL) provides a straightforward way to combine the two approaches through its ability to directly represent the probabilistic dependencies among the attributes of related objects. However, due to the large scale of the data used in real world recommendation systems, little research exists on applying SRL models to hybrid recommendation systems, and essentially none of that research has been applied to real big-data-scale systems. In this paper, we proposed a way to adapt the state-of-the-art in SRL approaches to construct a real hybrid job recommendation system. Furthermore, in order to satisfy a common requirement in recommendation systems (i.e. that false positives are more undesirable and therefore should be penalized more harshly than false negatives), our approach can also allow tuning the trade-off between the precision and recall of the system in a principled way. Our experimental results demonstrate the efficiency of our proposed approach as well as its improved performance on recommendation precision.
AbstractList Recommendation systems usually involve exploiting the relations among known features and content that describe items (content-based filtering) or the overlap of similar users who interacted with or rated the target item (collaborative filtering). To combine these two filtering approaches, current model-based hybrid recommendation systems typically require extensive feature engineering to construct a user profile. Statistical Relational Learning (SRL) provides a straightforward way to combine the two approaches through its ability to directly represent the probabilistic dependencies among the attributes of related objects. However, due to the large scale of the data used in real world recommendation systems, little research exists on applying SRL models to hybrid recommendation systems, and essentially none of that research has been applied to real big-data-scale systems. In this paper, we proposed a way to adapt the state-of-the-art in SRL approaches to construct a real hybrid job recommendation system. Furthermore, in order to satisfy a common requirement in recommendation systems (i.e. that false positives are more undesirable and therefore should be penalized more harshly than false negatives), our approach can also allow tuning the trade-off between the precision and recall of the system in a principled way. Our experimental results demonstrate the efficiency of our proposed approach as well as its improved performance on recommendation precision.
Author AlJadda, Khalifeh
Grainger, Trey
Natarajan, Sriraam
Yang, Shuo
Korayem, Mohammed
Author_xml – sequence: 1
  givenname: Shuo
  surname: Yang
  fullname: Yang, Shuo
  email: shuoyang@indiana.edu
  organization: Indiana University, Bloomington, IN, USA
– sequence: 2
  givenname: Mohammed
  surname: Korayem
  fullname: Korayem, Mohammed
  organization: CareerBuilder, Norcross, GA, USA
– sequence: 3
  givenname: Khalifeh
  surname: AlJadda
  fullname: AlJadda, Khalifeh
  organization: CareerBuilder, Norcross, GA, USA
– sequence: 4
  givenname: Trey
  surname: Grainger
  fullname: Grainger, Trey
  organization: CareerBuilder, Norcross, GA, USA
– sequence: 5
  givenname: Sriraam
  surname: Natarajan
  fullname: Natarajan, Sriraam
  organization: Indiana University, Bloomington, IN, USA
BookMark eNqFkE1rFTEUhoO04G31H7gYcD3jSea7C6FcrAoXBFvX4SQ5oxlnkmuSFvof-qPNvddVF3Z1Qnie8_FesDPnHTH2jkPFgXcf5uq38_ExVgJ4X8FQ5fKKbfjQi7JvYDxjGxhbKHto-Wt2EeMMAELwYcOetn5V1ln3s9DeJXKpVBjJFOhM_lkWVD5gsg9UTHZJFA7k5EMxe1UE0n5dyZkMeFfkDRKtV8V1FmMqI7loj-ZtykBMVuNSfKflSOfnjjAcJ-N-HzzqX2_Y-YRLpLf_6iX7cfPpbvul3H37_HV7vSt1XTepRGN403VDZ0wtRq4Er2tAbKdBYDepAaivB6OVGgW0qoGGcw4jtljrrhEK60v2_tQ3j_1zTzHJ2d-HvFKUfOx5X4uuE5lqTpQOPsZAk9wHu2J4lBzkIXc5y1Pu8pC7hEHmkrWrZ5q26XhyCmiXl-SPJ5ny-Q-WgozaktNkbA47SePt_xv8BQ5tpto
CitedBy_id crossref_primary_10_1016_j_knosys_2021_106770
crossref_primary_10_1016_j_knosys_2022_108239
crossref_primary_10_1016_j_susoc_2021_11_001
crossref_primary_10_1109_TPAMI_2023_3331846
crossref_primary_10_1016_j_eswa_2021_115849
crossref_primary_10_1155_2021_5856140
crossref_primary_10_1016_j_patcog_2025_111345
crossref_primary_10_1080_08838151_2023_2218955
crossref_primary_10_1155_2020_8896694
crossref_primary_10_1145_3659942
crossref_primary_10_1109_TCSS_2021_3134458
crossref_primary_10_1186_s40537_022_00649_5
crossref_primary_10_3390_electronics13030485
crossref_primary_10_1109_JSYST_2020_3030035
crossref_primary_10_3390_s20123597
crossref_primary_10_1007_s42524_023_0280_2
crossref_primary_10_1007_s11042_023_17864_8
crossref_primary_10_1016_j_knosys_2023_111135
crossref_primary_10_1186_s40537_025_01173_y
crossref_primary_10_1016_j_jksuci_2024_102116
crossref_primary_10_1016_j_knosys_2018_10_019
crossref_primary_10_3233_JIFS_221236
crossref_primary_10_1016_j_knosys_2022_110246
crossref_primary_10_1111_exsy_12416
crossref_primary_10_1186_s40537_022_00592_5
crossref_primary_10_1016_j_knosys_2018_07_038
crossref_primary_10_1016_j_eswa_2021_114764
crossref_primary_10_1002_pits_23255
crossref_primary_10_1108_LM_03_2024_0030
crossref_primary_10_3390_info13020070
crossref_primary_10_1016_j_jocs_2018_03_010
crossref_primary_10_1109_ACCESS_2018_2883953
crossref_primary_10_3390_foods10081801
crossref_primary_10_1007_s10618_021_00770_8
crossref_primary_10_1016_j_eswa_2025_127043
crossref_primary_10_3390_computers11110158
crossref_primary_10_1007_s10115_020_01522_8
crossref_primary_10_1007_s13278_021_00729_z
crossref_primary_10_1016_j_jretconser_2019_101940
crossref_primary_10_1016_j_elerap_2020_100938
Cites_doi 10.1007/978-3-319-19033-4_34
10.2307/41703509
10.1155/2009/421425
10.1145/2987538.2987544
10.2139/ssrn.906513
10.1016/j.dss.2015.03.008
10.1109/TKDE.2005.99
10.1002/int.20495
10.1016/S0004-3702(98)00034-4
10.1145/245108.245124
10.1214/aos/1013203451
10.7551/mitpress/7432.001.0001
10.1016/j.dss.2016.05.002
10.1023/A:1007369909943
10.1007/s10994-011-5244-9
10.1016/j.ijar.2010.04.001
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier Science Ltd. Nov 15, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Nov 15, 2017
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2017.08.017
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 45
ExternalDocumentID 10_1016_j_knosys_2017_08_017
S095070511730374X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-add146686dd3291b21330aa5f82a6fb80e738dcbb9205b40411109a5a3c642ba3
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413386100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 22:21:35 EST 2025
Sat Nov 29 06:41:31 EST 2025
Tue Nov 18 20:51:18 EST 2025
Fri Feb 23 02:28:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cost-sensitive learning
Collaborative filtering
Statistical Relational Learning
Content-based filtering
Recommendation system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-add146686dd3291b21330aa5f82a6fb80e738dcbb9205b40411109a5a3c642ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1971732662
PQPubID 2035257
PageCount 9
ParticipantIDs proquest_journals_1971732662
crossref_primary_10_1016_j_knosys_2017_08_017
crossref_citationtrail_10_1016_j_knosys_2017_08_017
elsevier_sciencedirect_doi_10_1016_j_knosys_2017_08_017
PublicationCentury 2000
PublicationDate 2017-11-15
PublicationDateYYYYMMDD 2017-11-15
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Neville, Jensen (bib0037) 2007; 8
Sutton, McAllester, Singh, Mansour (bib0040) 2000
Gao, Qi, Liu, Liu (bib0022) 2007; vol.1
Karwath, Kersting, Landwehr (bib0039) 2008
Getoor, Taskar (bib0006) 2007
Lu, El Helou, Gillet (bib0033) 2013
Malherbe, Diaby, Cataldi, Viennet, Aufaure (bib0030) 2014
Balabanović, Shoham (bib0026) 1997; 40
Yang, Khot, Kersting, Kunapuli, Hauser, Natarajan (bib0009) 2014
Guo, Jerbi, O’Mahony (bib0027) 2014
Si, Jin (bib0018) 2003
AlJadda, Korayem, Grainger, Russell (bib0002) 2014
Natarajan, Joshi, Tadepalli, Kristian, Shavlik (bib0041) 2011
Wang, Zhang, Lu (bib0015) 2016; 87
O.M. Salazar, J.C. Jaramillo, D.A. Ovalle, J.A. Guzmán, A Case-Based Multi-Agent and Recommendation Environment to Improve the E-Recruitment Process, Springer International Publishing, Cham, pp. 389–397.
Javed, Luo, McNair, Jacob, Zhao, Kang (bib0043) 2015
Blockeel, Raedt (bib0042) 1998; 101
Adomavicius, Tuzhilin (bib0010) 2005; 17
De Campos, Fernández-Luna, Huete, Rueda-Morales (bib0025) 2010; 51
Resnick, Iacovou, Suchak, Bergstrom, Riedl (bib0016) 1994
Sahoo, Singh, Mukhopadhyay (bib0019) 2012; 36
Shambour, Lu (bib0024) 2011; 26
Diaby, Viennet, Launay (bib0031) 2013
Friedman (bib0038) 2001; 29
Getoor, Sahami (bib0020) 1999
Salakhutdinov, Mnih, Hinton (bib0017) 2007
Natarajan, Khot, Kersting, Gutmann, Shavlik (bib0008) 2012; 86
Rao, Yu, Ravikumar, Dhillon (bib0014) 2015
Salton (bib0011) 1989
Basilico, Hofmann (bib0005) 2004
Basu, Hirsh, Cohen (bib0003) 1998
Su, Khoshgoftaar (bib0013) 2009; 2009
Hoxha, Rettinger (bib0035) 2013
Z. Huang, D.D. Zeng, H. Chen, A unified recommendation framework based on probabilistic relational models, Available at SSRN 906513 (2005).
Lu, Wu, Mao, Wang, Zhang (bib0001) 2015; 74
Rocchio (bib0012) 1971
Breese, Heckerman, Kadie (bib0004) 1998
Pazzani, Billsus (bib0007) 1997; 27
Kok, Sumner, Richardson, Singla, Poon, Lowd, Wang, Domingos (bib0044) 2009
A. Pacuk, P. Sankowski, K. Wegrzycki, A. Witkowski, P. Wygocki, Recsys challenge 2016: job recommendations based on preselection of offers and gradient boosting, CoRR abs/1612.00959(2016).
Newton, Greiner (bib0021) 2004
Almalis, Tsihrintzis, Karagiannis, Strati (bib0028) 2015
Hong, Zheng, Wang (bib0032) 2013
Perlich, Provost (bib0036) 2003
AlJadda (10.1016/j.knosys.2017.08.017_bib0002) 2014
10.1016/j.knosys.2017.08.017_bib0034
Neville (10.1016/j.knosys.2017.08.017_bib0037) 2007; 8
Blockeel (10.1016/j.knosys.2017.08.017_bib0042) 1998; 101
Rocchio (10.1016/j.knosys.2017.08.017_bib0012) 1971
Breese (10.1016/j.knosys.2017.08.017_bib0004) 1998
Getoor (10.1016/j.knosys.2017.08.017_bib0020) 1999
Lu (10.1016/j.knosys.2017.08.017_bib0001) 2015; 74
Guo (10.1016/j.knosys.2017.08.017_bib0027) 2014
Friedman (10.1016/j.knosys.2017.08.017_bib0038) 2001; 29
Balabanović (10.1016/j.knosys.2017.08.017_bib0026) 1997; 40
Lu (10.1016/j.knosys.2017.08.017_bib0033) 2013
Resnick (10.1016/j.knosys.2017.08.017_bib0016) 1994
Adomavicius (10.1016/j.knosys.2017.08.017_bib0010) 2005; 17
Su (10.1016/j.knosys.2017.08.017_bib0013) 2009; 2009
Almalis (10.1016/j.knosys.2017.08.017_bib0028) 2015
Natarajan (10.1016/j.knosys.2017.08.017_bib0041) 2011
10.1016/j.knosys.2017.08.017_bib0023
Gao (10.1016/j.knosys.2017.08.017_bib0022) 2007; vol.1
Salton (10.1016/j.knosys.2017.08.017_bib0011) 1989
Javed (10.1016/j.knosys.2017.08.017_bib0043) 2015
Getoor (10.1016/j.knosys.2017.08.017_bib0006) 2007
Yang (10.1016/j.knosys.2017.08.017_bib0009) 2014
De Campos (10.1016/j.knosys.2017.08.017_bib0025) 2010; 51
Newton (10.1016/j.knosys.2017.08.017_bib0021) 2004
Basu (10.1016/j.knosys.2017.08.017_bib0003) 1998
Diaby (10.1016/j.knosys.2017.08.017_bib0031) 2013
Hong (10.1016/j.knosys.2017.08.017_bib0032) 2013
Shambour (10.1016/j.knosys.2017.08.017_bib0024) 2011; 26
Kok (10.1016/j.knosys.2017.08.017_bib0044) 2009
Pazzani (10.1016/j.knosys.2017.08.017_bib0007) 1997; 27
Sutton (10.1016/j.knosys.2017.08.017_bib0040) 2000
Karwath (10.1016/j.knosys.2017.08.017_bib0039) 2008
Salakhutdinov (10.1016/j.knosys.2017.08.017_bib0017) 2007
Si (10.1016/j.knosys.2017.08.017_bib0018) 2003
Sahoo (10.1016/j.knosys.2017.08.017_bib0019) 2012; 36
Rao (10.1016/j.knosys.2017.08.017_bib0014) 2015
Wang (10.1016/j.knosys.2017.08.017_bib0015) 2016; 87
10.1016/j.knosys.2017.08.017_bib0029
Perlich (10.1016/j.knosys.2017.08.017_bib0036) 2003
Basilico (10.1016/j.knosys.2017.08.017_bib0005) 2004
Natarajan (10.1016/j.knosys.2017.08.017_bib0008) 2012; 86
Hoxha (10.1016/j.knosys.2017.08.017_bib0035) 2013
Malherbe (10.1016/j.knosys.2017.08.017_bib0030) 2014
References_xml – volume: 27
  start-page: 313
  year: 1997
  end-page: 331
  ident: bib0007
  article-title: Learning and revising user profiles: the identification ofinteresting web sites
  publication-title: Mach. Learn.
– start-page: 313
  year: 1971
  end-page: 323
  ident: bib0012
  article-title: Relevance Feedback in Information Retrieval
  publication-title: The SMART Retrieval System: Experiments in Automatic Document Processing
– year: 2008
  ident: bib0039
  article-title: Boosting relational sequence alignments
  publication-title: ICDM
– year: 2000
  ident: bib0040
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: NIPS
– year: 1999
  ident: bib0020
  article-title: Using probabilistic relational models for collaborative filtering
  publication-title: Workshop on Web Usage Analysis and User Profiling (WEBKDD’99)
– start-page: 588
  year: 2014
  end-page: 595
  ident: bib0030
  article-title: Field selection for job categorization and recommendation to social network users
  publication-title: Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on
– year: 2004
  ident: bib0021
  article-title: Hierarchical probabilistic relational models for collaborative filtering
  publication-title: Workshop on Statistical Relational Learning, 21st International Conference on Machine Learning
– volume: vol.1
  start-page: 67
  year: 2007
  end-page: 71
  ident: bib0022
  article-title: A recommendation algorithm combining user grade-based collaborative filtering and probabilistic relational models
  publication-title: Fourth International Conference on Fuzzy Systems and Knowledge Discovery
– year: 2014
  ident: bib0027
  article-title: An analysis framework for content-based job recommendation.
  publication-title: 22nd International Conference on Case-Based Reasoning (ICCBR)
– start-page: 1085
  year: 2014
  end-page: 1090
  ident: bib0009
  article-title: Learning from imbalanced data in relational domains: A soft margin approach
  publication-title: 2014 IEEE International Conference on Data Mining, ICDM 2014
– volume: 17
  start-page: 734
  year: 2005
  end-page: 749
  ident: bib0010
  article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 175
  year: 1994
  end-page: 186
  ident: bib0016
  article-title: Grouplens: An Open Architecture for Collaborative Filtering of Netnews
– volume: 51
  start-page: 785
  year: 2010
  end-page: 799
  ident: bib0025
  article-title: Combining content-based and collaborative recommendations: a hybrid approach based on bayesian networks
  publication-title: Int. J. Approximate Reasoning
– start-page: 1499
  year: 2013
  end-page: 1503
  ident: bib0032
  article-title: Dynamic user profile-based job recommender system
  publication-title: Computer Science Education (ICCSE), 2013 8th International Conference on
– year: 2004
  ident: bib0005
  article-title: Unifying collaborative and content-based filtering
  publication-title: Proceedings of the Twenty-first International Conference on Machine Learning
– start-page: 808
  year: 2014
  end-page: 815
  ident: bib0002
  article-title: Crowd sourced query augmentation through semantic discovery of domain-specific jargon
  publication-title: 2014 IEEE International Conference on Big Data
– start-page: 714
  year: 1998
  end-page: 720
  ident: bib0003
  article-title: Recommendation as classification: using social and content-based information in recommendation
  publication-title: Fifteenth National Conference on Artificial Intelligence
– start-page: 963
  year: 2013
  end-page: 966
  ident: bib0033
  article-title: A recommender system for job seeking and recruiting website
  publication-title: Proceedings of the 22Nd International Conference on World Wide Web
– reference: Z. Huang, D.D. Zeng, H. Chen, A unified recommendation framework based on probabilistic relational models, Available at SSRN 906513 (2005).
– start-page: 1
  year: 2015
  end-page: 7
  ident: bib0028
  article-title: Fodra — a new content-based job recommendation algorithm for job seeking and recruiting
  publication-title: Information, Intelligence, Systems and Applications (IISA), 2015 6th International Conference on
– start-page: 704
  year: 2003
  end-page: 711
  ident: bib0018
  article-title: Flexible mixture model for collaborative filtering.
  publication-title: ICML
– volume: 8
  start-page: 653
  year: 2007
  end-page: 692
  ident: bib0037
  article-title: Relational dependency networks
  publication-title: J. Mach. Learn. Res.
– start-page: 43
  year: 1998
  end-page: 52
  ident: bib0004
  article-title: Empirical analysis of predictive algorithms for collaborative filtering
  publication-title: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence
– start-page: 167
  year: 2003
  end-page: 176
  ident: bib0036
  article-title: Aggregation-based feature invention and relational concept classes
  publication-title: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 87
  start-page: 80
  year: 2016
  end-page: 93
  ident: bib0015
  article-title: Member contribution-based group recommender system
  publication-title: Decis. Support. Syst.
– volume: 26
  start-page: 814
  year: 2011
  end-page: 843
  ident: bib0024
  article-title: A hybrid trust-enhanced collaborative filtering recommendation approach for personalized government-to-business e-services
  publication-title: Int. J. Intell. Syst.
– volume: 74
  start-page: 12
  year: 2015
  end-page: 32
  ident: bib0001
  article-title: Recommender system application developments: a survey
  publication-title: Decis. Support Syst.
– start-page: 821
  year: 2013
  end-page: 828
  ident: bib0031
  article-title: Toward the next generation of recruitment tools: an online social network-based job recommender system
  publication-title: Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on
– volume: 101
  start-page: 285
  year: 1998
  end-page: 297
  ident: bib0042
  article-title: Top-down induction of first-order logical decision trees
  publication-title: Artif. Intell.
– year: 2007
  ident: bib0006
  article-title: Introduction to statistical relational learning
  publication-title: Adaptive Computation and Machine Learning
– start-page: 286
  year: 2015
  end-page: 293
  ident: bib0043
  article-title: Carotene: a job title classification system for the online recruitment domain
  publication-title: IEEE First International Conference on Big Data Computing Service and Applications
– volume: 40
  start-page: 66
  year: 1997
  end-page: 72
  ident: bib0026
  article-title: Fab: content-based, collaborative recommendation
  publication-title: Commun. ACM
– year: 2009
  ident: bib0044
  article-title: The Alchemy System for Statistical Relational AI
  publication-title: Technical Report
– reference: A. Pacuk, P. Sankowski, K. Wegrzycki, A. Witkowski, P. Wygocki, Recsys challenge 2016: job recommendations based on preselection of offers and gradient boosting, CoRR abs/1612.00959(2016).
– start-page: 791
  year: 2007
  end-page: 798
  ident: bib0017
  article-title: Restricted boltzmann machines for collaborative filtering
  publication-title: Proceedings of the 24th International Conference on Machine Learning
– year: 1989
  ident: bib0011
  article-title: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer
– start-page: 133
  year: 2013
  end-page: 139
  ident: bib0035
  article-title: First-order probabilistic model for hybrid recommendations
  publication-title: 12th International Conference on Machine Learning and Applications, ICMLA 2013
– year: 2011
  ident: bib0041
  article-title: Imitation learning in relational domains: a functional-gradient boosting approach
  publication-title: IJCAI
– volume: 2009
  start-page: 4:2
  year: 2009
  ident: bib0013
  article-title: A survey of collaborative filtering techniques
  publication-title: Adv. in Artif. Intell.
– volume: 86
  start-page: 25
  year: 2012
  end-page: 56
  ident: bib0008
  article-title: Gradient-based boosting for statistical relational learning: the relational dependency network case
  publication-title: Mach. Learn.
– reference: O.M. Salazar, J.C. Jaramillo, D.A. Ovalle, J.A. Guzmán, A Case-Based Multi-Agent and Recommendation Environment to Improve the E-Recruitment Process, Springer International Publishing, Cham, pp. 389–397.
– start-page: 2107
  year: 2015
  end-page: 2115
  ident: bib0014
  article-title: Collaborative Filtering with Graph Information: Consistency and Scalable Methods
  publication-title: Advances in Neural Information Processing Systems 28
– volume: 36
  start-page: 1329
  year: 2012
  end-page: 1356
  ident: bib0019
  article-title: A hidden Markov model for collaborative filtering
  publication-title: Manag. Inf. Syst. Q.
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib0038
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– year: 1999
  ident: 10.1016/j.knosys.2017.08.017_bib0020
  article-title: Using probabilistic relational models for collaborative filtering
– ident: 10.1016/j.knosys.2017.08.017_bib0029
  doi: 10.1007/978-3-319-19033-4_34
– volume: 8
  start-page: 653
  year: 2007
  ident: 10.1016/j.knosys.2017.08.017_bib0037
  article-title: Relational dependency networks
  publication-title: J. Mach. Learn. Res.
– year: 2004
  ident: 10.1016/j.knosys.2017.08.017_bib0005
  article-title: Unifying collaborative and content-based filtering
– year: 2014
  ident: 10.1016/j.knosys.2017.08.017_bib0027
  article-title: An analysis framework for content-based job recommendation.
– volume: 36
  start-page: 1329
  issue: 4
  year: 2012
  ident: 10.1016/j.knosys.2017.08.017_bib0019
  article-title: A hidden Markov model for collaborative filtering
  publication-title: Manag. Inf. Syst. Q.
  doi: 10.2307/41703509
– start-page: 133
  year: 2013
  ident: 10.1016/j.knosys.2017.08.017_bib0035
  article-title: First-order probabilistic model for hybrid recommendations
– volume: 2009
  start-page: 4:2
  year: 2009
  ident: 10.1016/j.knosys.2017.08.017_bib0013
  article-title: A survey of collaborative filtering techniques
  publication-title: Adv. in Artif. Intell.
  doi: 10.1155/2009/421425
– year: 2004
  ident: 10.1016/j.knosys.2017.08.017_bib0021
  article-title: Hierarchical probabilistic relational models for collaborative filtering
– year: 2011
  ident: 10.1016/j.knosys.2017.08.017_bib0041
  article-title: Imitation learning in relational domains: a functional-gradient boosting approach
– ident: 10.1016/j.knosys.2017.08.017_bib0034
  doi: 10.1145/2987538.2987544
– ident: 10.1016/j.knosys.2017.08.017_bib0023
  doi: 10.2139/ssrn.906513
– volume: 74
  start-page: 12
  year: 2015
  ident: 10.1016/j.knosys.2017.08.017_bib0001
  article-title: Recommender system application developments: a survey
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2015.03.008
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  ident: 10.1016/j.knosys.2017.08.017_bib0010
  article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.99
– volume: 26
  start-page: 814
  issue: 9
  year: 2011
  ident: 10.1016/j.knosys.2017.08.017_bib0024
  article-title: A hybrid trust-enhanced collaborative filtering recommendation approach for personalized government-to-business e-services
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.20495
– year: 2008
  ident: 10.1016/j.knosys.2017.08.017_bib0039
  article-title: Boosting relational sequence alignments
– volume: 101
  start-page: 285
  year: 1998
  ident: 10.1016/j.knosys.2017.08.017_bib0042
  article-title: Top-down induction of first-order logical decision trees
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(98)00034-4
– start-page: 791
  year: 2007
  ident: 10.1016/j.knosys.2017.08.017_bib0017
  article-title: Restricted boltzmann machines for collaborative filtering
– year: 2009
  ident: 10.1016/j.knosys.2017.08.017_bib0044
  article-title: The Alchemy System for Statistical Relational AI
– start-page: 704
  year: 2003
  ident: 10.1016/j.knosys.2017.08.017_bib0018
  article-title: Flexible mixture model for collaborative filtering.
– year: 2000
  ident: 10.1016/j.knosys.2017.08.017_bib0040
  article-title: Policy gradient methods for reinforcement learning with function approximation
– start-page: 1085
  year: 2014
  ident: 10.1016/j.knosys.2017.08.017_bib0009
  article-title: Learning from imbalanced data in relational domains: A soft margin approach
– year: 1989
  ident: 10.1016/j.knosys.2017.08.017_bib0011
– volume: 40
  start-page: 66
  issue: 3
  year: 1997
  ident: 10.1016/j.knosys.2017.08.017_bib0026
  article-title: Fab: content-based, collaborative recommendation
  publication-title: Commun. ACM
  doi: 10.1145/245108.245124
– start-page: 821
  year: 2013
  ident: 10.1016/j.knosys.2017.08.017_bib0031
  article-title: Toward the next generation of recruitment tools: an online social network-based job recommender system
– volume: 29
  start-page: 1189
  year: 2001
  ident: 10.1016/j.knosys.2017.08.017_bib0038
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– start-page: 175
  year: 1994
  ident: 10.1016/j.knosys.2017.08.017_bib0016
– year: 2007
  ident: 10.1016/j.knosys.2017.08.017_bib0006
  article-title: Introduction to statistical relational learning
  doi: 10.7551/mitpress/7432.001.0001
– start-page: 2107
  year: 2015
  ident: 10.1016/j.knosys.2017.08.017_bib0014
  article-title: Collaborative Filtering with Graph Information: Consistency and Scalable Methods
– start-page: 588
  year: 2014
  ident: 10.1016/j.knosys.2017.08.017_bib0030
  article-title: Field selection for job categorization and recommendation to social network users
– volume: 87
  start-page: 80
  year: 2016
  ident: 10.1016/j.knosys.2017.08.017_bib0015
  article-title: Member contribution-based group recommender system
  publication-title: Decis. Support. Syst.
  doi: 10.1016/j.dss.2016.05.002
– start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2017.08.017_bib0028
  article-title: Fodra — a new content-based job recommendation algorithm for job seeking and recruiting
– start-page: 313
  year: 1971
  ident: 10.1016/j.knosys.2017.08.017_bib0012
  article-title: Relevance Feedback in Information Retrieval
– start-page: 286
  year: 2015
  ident: 10.1016/j.knosys.2017.08.017_bib0043
  article-title: Carotene: a job title classification system for the online recruitment domain
– volume: 27
  start-page: 313
  issue: 3
  year: 1997
  ident: 10.1016/j.knosys.2017.08.017_bib0007
  article-title: Learning and revising user profiles: the identification ofinteresting web sites
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007369909943
– volume: 86
  start-page: 25
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2017.08.017_bib0008
  article-title: Gradient-based boosting for statistical relational learning: the relational dependency network case
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-011-5244-9
– start-page: 808
  year: 2014
  ident: 10.1016/j.knosys.2017.08.017_bib0002
  article-title: Crowd sourced query augmentation through semantic discovery of domain-specific jargon
– volume: 51
  start-page: 785
  issue: 7
  year: 2010
  ident: 10.1016/j.knosys.2017.08.017_bib0025
  article-title: Combining content-based and collaborative recommendations: a hybrid approach based on bayesian networks
  publication-title: Int. J. Approximate Reasoning
  doi: 10.1016/j.ijar.2010.04.001
– start-page: 714
  year: 1998
  ident: 10.1016/j.knosys.2017.08.017_bib0003
  article-title: Recommendation as classification: using social and content-based information in recommendation
– start-page: 167
  year: 2003
  ident: 10.1016/j.knosys.2017.08.017_bib0036
  article-title: Aggregation-based feature invention and relational concept classes
– start-page: 43
  year: 1998
  ident: 10.1016/j.knosys.2017.08.017_bib0004
  article-title: Empirical analysis of predictive algorithms for collaborative filtering
– volume: vol.1
  start-page: 67
  year: 2007
  ident: 10.1016/j.knosys.2017.08.017_bib0022
  article-title: A recommendation algorithm combining user grade-based collaborative filtering and probabilistic relational models
– start-page: 1499
  year: 2013
  ident: 10.1016/j.knosys.2017.08.017_bib0032
  article-title: Dynamic user profile-based job recommender system
– start-page: 963
  year: 2013
  ident: 10.1016/j.knosys.2017.08.017_bib0033
  article-title: A recommender system for job seeking and recruiting website
SSID ssj0002218
Score 2.4502754
Snippet Recommendation systems usually involve exploiting the relations among known features and content that describe items (content-based filtering) or the overlap...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms Artificial intelligence
Collaboration
Collaborative filtering
Content-based filtering
Cost-sensitive learning
Data management
Filtration
Human-computer interaction
Hybrid systems
Job hunting
Learning
Measures
Recommendation system
Recommender systems
Relational learning
Software engineering
Statistical analysis
Statistical Relational Learning
Title Combining content-based and collaborative filtering for job recommendation system: A cost-sensitive Statistical Relational Learning approach
URI https://dx.doi.org/10.1016/j.knosys.2017.08.017
https://www.proquest.com/docview/1971732662
Volume 136
WOSCitedRecordID wos000413386100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ohCQXvghox2vXbW7i1C5VGqComCcrO89po0pHaVpFX7H_hX_DFm9pWYCBWQuFiR5XVWns_z8sw3hLzgdax1mSZRriE2SRSDV4qpMlJgHlitUyXMSJYvh_LoKBuP84-DwQ_fC3Mxk22bXV7mZ_9V1HAOhI2ts38h7nBTOAG_QehwBLHD8Y8ED2-4MlMfTBk62JQILVXtGtiC1JHt-wQ_lftSymmnXmJ4fHqq3aAlR_Nsm9erbrGMFljubtaik2o4ng05_8ynFA99psVzla87vx98_s7taLHGlo6Kx6euJ-ddsAOw1ytt07bdBLPsdYDo7AC0pu1om2CHmQ6Z7bc49-KrA-Pcfbl2qQ0wl1hel67ybRs9Ny5xySLJHE2ttmo7kxAnJCzv6XWxrpkttYyz8ZbBcsN62ETG9NW3toMngHV_0vC7crmylqGG8RNuBPfBQUkKmYxvkO1Ypjmo1u3R-_3xQXAI4tikmcPGfQenKTPc_K_feUi_-ArGATq-S267yIWOLOLukYFu75M7fioIdUbiAfkeAEh7AKQAQNoDIA0ApABACgCkfQBSi5A9OqJ9-NE1-NEV_KiHH_Xwe0g-v9k_fv0ucjM_okqIZBkBcMB2D7NhXYs45yrmQrCyTJssLoeNypiWIqsrpfKYpSphCUfK3DItRQWRtCrFI7LVdq1-TChE_mlcwmVVrcEyadVwLmotdJZnCWuaHSL8cy4qR4iPc1lmha98nBZWOgVKp8BxrVzukCisOrOEMNdcL70IC-fUWme1ANRds3LXS7xw-mVR8BzLZsCrjp_8842fklurt22XbC3n5_oZuVldgODmzx16fwItStse
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+content-based+and+collaborative+filtering+for+job+recommendation+system%3A+A+cost-sensitive+Statistical+Relational+Learning+approach&rft.jtitle=Knowledge-based+systems&rft.au=Yang%2C+Shuo&rft.au=Korayem%2C+Mohammed&rft.au=AlJadda%2C+Khalifeh&rft.au=Grainger%2C+Trey&rft.date=2017-11-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=136&rft.spage=37&rft.epage=45&rft_id=info:doi/10.1016%2Fj.knosys.2017.08.017&rft.externalDocID=S095070511730374X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon