Unsupervised and lightly supervised learning in particle physics
We review the main applications of machine learning models that are not fully supervised in particle physics, i.e., clustering, anomaly detection, detector simulation, and unfolding. Unsupervised methods are ideal for anomaly detection tasks—machine learning models can be trained on background data...
Uloženo v:
| Vydáno v: | The European physical journal. ST, Special topics Ročník 233; číslo 15-16; s. 2559 - 2596 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1951-6355, 1951-6401 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We review the main applications of machine learning models that are not fully supervised in particle physics, i.e., clustering, anomaly detection, detector simulation, and unfolding. Unsupervised methods are ideal for anomaly detection tasks—machine learning models can be trained on background data to identify deviations if we model the background data precisely. The learning can also be partially unsupervised when we can provide some information about the anomalies at the data level. Generative models are useful in speeding up detector simulations—they can mimic the computationally intensive task without large resources. They can also efficiently map detector-level data to parton-level data (i.e., data unfolding). In this review, we focus on interesting ideas and connections and briefly overview the underlying techniques wherever necessary. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1951-6355 1951-6401 |
| DOI: | 10.1140/epjs/s11734-024-01235-x |