A note on a family of non-gravitational central force potentials in dimension one
In this work, we study a one-parameter family of differential equations and the different scenarios that arise with the change of parameter. We remark that these are not bifurcations in the usual sense but a wider phenomenon related with changes of continuity or differentiability. We offer an altern...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics letters Jg. 74; S. 74 - 78 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article Verlag |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.12.2017
Elsevier |
| Schlagworte: | |
| ISSN: | 0893-9659, 1873-5452 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this work, we study a one-parameter family of differential equations and the different scenarios that arise with the change of parameter. We remark that these are not bifurcations in the usual sense but a wider phenomenon related with changes of continuity or differentiability. We offer an alternative point of view for the study for the motion of a system of two particles which will always move in some fixed line, we take R for the position space. If we fix the center of mass at the origin, the system reduces to that of a single particle of unit mass in a central force field. We take the potential energy function U(x)=|x|β, where x is the position of the single particle and β is some positive real number. |
|---|---|
| ISSN: | 0893-9659 1873-5452 |
| DOI: | 10.1016/j.aml.2017.04.020 |