Text feature extraction based on stacked variational autoencoder

This paper presents a text feature extraction model based on stacked variational autoencoder (SVAE). A noise reduction mechanism is designed for variational autoencoder in input layer of text feature extraction to reduce noise interference and improve robustness and feature discrimination of the mod...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Microprocessors and microsystems Ročník 76; s. 103063
Hlavní autoři: Che, Lei, Yang, Xiaoping, Wang, Liang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier B.V 01.07.2020
Elsevier BV
Témata:
ISSN:0141-9331, 1872-9436
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a text feature extraction model based on stacked variational autoencoder (SVAE). A noise reduction mechanism is designed for variational autoencoder in input layer of text feature extraction to reduce noise interference and improve robustness and feature discrimination of the model. Three kinds of deep SVAE network architectures are constructed to improve ability of representing learning to mine feature intension in depth. Experiments are carried out in several aspects, including comparative analysis of text feature extraction model, sparse performance, parameter selection and stacking. Results show that text feature extraction model of SVAE has good performance and effect. The highest accuracy of SVAE models of Fudan and Reuters datasets is 13.50% and 8.96% higher than that of PCA, respectively.
AbstractList This paper presents a text feature extraction model based on stacked variational autoencoder (SVAE). A noise reduction mechanism is designed for variational autoencoder in input layer of text feature extraction to reduce noise interference and improve robustness and feature discrimination of the model. Three kinds of deep SVAE network architectures are constructed to improve ability of representing learning to mine feature intension in depth. Experiments are carried out in several aspects, including comparative analysis of text feature extraction model, sparse performance, parameter selection and stacking. Results show that text feature extraction model of SVAE has good performance and effect. The highest accuracy of SVAE models of Fudan and Reuters datasets is 13.50% and 8.96% higher than that of PCA, respectively.
ArticleNumber 103063
Author Che, Lei
Wang, Liang
Yang, Xiaoping
Author_xml – sequence: 1
  givenname: Lei
  surname: Che
  fullname: Che, Lei
  organization: School of Information Renmin University of China, Beijing 100872, China
– sequence: 2
  givenname: Xiaoping
  surname: Yang
  fullname: Yang, Xiaoping
  organization: School of Information Renmin University of China, Beijing 100872, China
– sequence: 3
  givenname: Liang
  surname: Wang
  fullname: Wang, Liang
  email: wangliang@ruc.edu.cn
  organization: School of Information Renmin University of China, Beijing 100872, China
BookMark eNqFkE1LAzEQhoNUsFb_gYcFz1snH022HkQpfkHBSz2HbJKFrO2mJtmi_96s68mDnuZlZt5h3ucUTTrfWYQuMMwxYH7VzndO74OfEyBDiwKnR2iKK0HKJaN8gqaAGS6XlOITdBpjCwAL4GSKbjf2IxWNVakPtsg6KJ2c74paRWuKLGJS-i3LgwpODSO1LVSfvO20NzacoeNGbaM9_6kz9Ppwv1k9leuXx-fV3brUlLJUqgo3otGGAhNGN2qhsDCgNbOCE1HTStRKLRXhNVsC1zUzBghmQgOphTANnaHL8W7O-d7bmGTr-5CfiZIwhqtKcBB563rc0sHHGGwjtUvfX-dgbisxyIGYbOVITA7E5Egsm9kv8z64nQqf_9luRpvN8Q_OBhm1y3SsccHqJI13fx_4AgW6ifM
CitedBy_id crossref_primary_10_1016_j_micpro_2020_103421
crossref_primary_10_1016_j_micpro_2020_103542
crossref_primary_10_4018_JGIM_344835
crossref_primary_10_1016_j_micpro_2020_103574
crossref_primary_10_32604_cmc_2024_051598
crossref_primary_10_3390_rs16162990
crossref_primary_10_1007_s11042_024_19983_2
crossref_primary_10_3390_e24010036
crossref_primary_10_1016_j_eswa_2022_118006
crossref_primary_10_1186_s13040_024_00379_9
crossref_primary_10_1007_s10462_022_10272_8
crossref_primary_10_1007_s10462_023_10662_6
crossref_primary_10_1109_JSEN_2021_3128562
crossref_primary_10_1016_j_conengprac_2024_106181
Cites_doi 10.1016/j.ipm.2013.08.006
10.1016/j.patrec.2016.12.009
10.1016/j.patcog.2016.05.018
10.1016/S1005-8885(10)60196-3
10.1016/j.csl.2006.09.003
10.18653/v1/K16-1002
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jul 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 2020
DBID AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.micpro.2020.103063
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9436
ExternalDocumentID 10_1016_j_micpro_2020_103063
S0141933120300879
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
T9H
TN5
UHS
WUQ
XOL
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
F28
FR3
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c334t-a81f7fcd3047dcfa5a17d0cc4e7627b387baa9a26b4906cb4dd02147c02b77df3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538093000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-9331
IngestDate Fri Jul 25 03:11:53 EDT 2025
Sat Nov 29 07:24:21 EST 2025
Tue Nov 18 22:37:15 EST 2025
Fri Feb 23 02:46:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational autoencoder
Deep stack
Text feature extraction
Noise reduction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-a81f7fcd3047dcfa5a17d0cc4e7627b387baa9a26b4906cb4dd02147c02b77df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2441887607
PQPubID 2045426
ParticipantIDs proquest_journals_2441887607
crossref_citationtrail_10_1016_j_micpro_2020_103063
crossref_primary_10_1016_j_micpro_2020_103063
elsevier_sciencedirect_doi_10_1016_j_micpro_2020_103063
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Microprocessors and microsystems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Deng, Zhong (bib0006) 2013; 5
Javed, Maruf, Babri (bib0007) 2015; 157
Srivastava A., Sutton C.Autoencoding variational inference for topic models [J]. arXiv
Bhattacharya, Ghosh, Chowdhury (bib0008) 2018
Bachman (bib0009) 2016
Li, Wang, Lam (bib0021) 2017
Bowman S.R., Vilnis L., Vinyals O., et al. Generating sentences from a continuous space[c]Proceedings of the SIGNLL Conference on Computational Natural Language Learning, 2016:10–21.
2013.
Yang Z.C., Hu Z.T., Salakhutdinov R., Berg-Kirkpatrick T. Improved variational autoencoders for text modeling using dilated convolutions[c]Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia, 2017:3881–3890.
Shi, He, Liu (bib0005) 2011; 18
Fraccaro, Sønderby, Paquet (bib0011) 2016
Zhou (bib0003) 2019
Takahashi, Iwata, Yamanaka (bib0019) 2019
Schwenk (bib0022) 2007; 21
2017.
Semeniuta, Severyn, Barth (bib0018) 2017
Wolf-Sonkin, Naradowsky, Mielke (bib0017) 2018
Gulrajani I., Kumar K., Ahmed F., et al. PixelVAE: a latent variable model for natural images[j]. arXiv
Paul, Magdon-Ismail, Drineas (bib0023) 2016
Li (bib0016) 2018
Xu, Sun, Deng (bib0015) 2017
Kingma D.P., Welling M. Auto-Encoding variational bayes[j]. arXiv
Uysal, Gunal (bib0004) 2014; 50
He, Gong, Marino (bib0020) 2019
2016.
Bandhakavi, Wiratunga (bib0001) 2017; 93
10.1016/j.micpro.2020.103063_bib0002
10.1016/j.micpro.2020.103063_bib0013
10.1016/j.micpro.2020.103063_bib0012
Semeniuta (10.1016/j.micpro.2020.103063_bib0018) 2017
10.1016/j.micpro.2020.103063_bib0014
Li (10.1016/j.micpro.2020.103063_bib0021) 2017
Paul (10.1016/j.micpro.2020.103063_bib0023) 2016
He (10.1016/j.micpro.2020.103063_bib0020) 2019
Uysal (10.1016/j.micpro.2020.103063_bib0004) 2014; 50
Javed (10.1016/j.micpro.2020.103063_bib0007) 2015; 157
Bachman (10.1016/j.micpro.2020.103063_bib0009) 2016
Shi (10.1016/j.micpro.2020.103063_bib0005) 2011; 18
Takahashi (10.1016/j.micpro.2020.103063_bib0019) 2019
Wolf-Sonkin (10.1016/j.micpro.2020.103063_bib0017) 2018
Schwenk (10.1016/j.micpro.2020.103063_bib0022) 2007; 21
Bhattacharya (10.1016/j.micpro.2020.103063_bib0008) 2018
Xu (10.1016/j.micpro.2020.103063_bib0015) 2017
Fraccaro (10.1016/j.micpro.2020.103063_bib0011) 2016
Zhou (10.1016/j.micpro.2020.103063_bib0003) 2019
Li (10.1016/j.micpro.2020.103063_bib0016) 2018
Bandhakavi (10.1016/j.micpro.2020.103063_bib0001) 2017; 93
Deng (10.1016/j.micpro.2020.103063_bib0006) 2013; 5
10.1016/j.micpro.2020.103063_bib0010
References_xml – start-page: 205
  year: 2016
  end-page: 214
  ident: bib0023
  article-title: Feature selection for linear SVM with provable guarantees[j]
  publication-title: Pattern Recognit.
– start-page: 2199
  year: 2016
  end-page: 2207
  ident: bib0011
  article-title: Sequential neural models with stochastic layers[c]
  publication-title: Proceedings of Thirtieth Conference on Neural Information Processing Systems
– volume: 93
  start-page: 133
  year: 2017
  end-page: 142
  ident: bib0001
  article-title: al. lexicon based feature extraction for emotion text classification[j]
  publication-title: Pattern Recognit. Lett.
– reference: Bowman S.R., Vilnis L., Vinyals O., et al. Generating sentences from a continuous space[c]Proceedings of the SIGNLL Conference on Computational Natural Language Learning, 2016:10–21.
– volume: 21
  start-page: 492
  year: 2007
  end-page: 518
  ident: bib0022
  article-title: Continuous space language models[J]
  publication-title: Comput. Speech Lang.
– volume: 157
  start-page: 91
  year: 2015
  end-page: 104
  ident: bib0007
  article-title: A two-stage markov blanket based feature selection algorithm for text classification[j]
  publication-title: Neuro Comput.
– start-page: 3497
  year: 2017
  end-page: 3503
  ident: bib0021
  article-title: Salience estimation via variational auto-encoders for multi-document summarization[c]
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
– start-page: 8
  year: 2019
  ident: bib0003
  article-title: "deep" why is it important, and what deep network [C].
  publication-title: Proceedings of IJCAI 2019
– start-page: 1
  year: 2019
  end-page: 16
  ident: bib0020
  article-title: Variational autoencoders with jointly optimized latent dependency structure[c]
  publication-title: Proceedings of Nineth International Conference on Learning Representations
– reference: , 2017.
– reference: Yang Z.C., Hu Z.T., Salakhutdinov R., Berg-Kirkpatrick T. Improved variational autoencoders for text modeling using dilated convolutions[c]Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia, 2017:3881–3890.
– reference: Kingma D.P., Welling M. Auto-Encoding variational bayes[j]. arXiv:
– volume: 50
  start-page: 104
  year: 2014
  end-page: 112
  ident: bib0004
  article-title: The impact of preprocessing on text classification[j]
  publication-title: Inf. Process. Manag.
– reference: 2013.
– start-page: 4826
  year: 2016
  end-page: 4834
  ident: bib0009
  article-title: An architecture for deep, hierarchical generative models [C]
  publication-title: Proceedings of Thirtieth Conference on Neural Information Processing Systems
– volume: 18
  start-page: 131
  year: 2011
  end-page: 135
  ident: bib0005
  article-title: Efficient text classification method based on improved term reduction and term weighting[j]
  publication-title: J. China Univ. Posts Telecommun.
– year: 2018
  ident: bib0016
  article-title: Research And Application Of RL Based On Variational Auto-Encoder [D]
– start-page: 8049
  year: 2018
  end-page: 8050
  ident: bib0008
  article-title: Training autoencoders in sparse domain[c]
  publication-title: The Thirty-Second AAAI Conference on Artificial Intelligence
– volume: 5
  start-page: 668
  year: 2013
  end-page: 677
  ident: bib0006
  article-title: A kind of text classification design on the basis of natural language processing[j]
  publication-title: Int. J. Adv. Comput. Technol. (IJACT)
– reference: Srivastava A., Sutton C.Autoencoding variational inference for topic models [J]. arXiv:
– reference: , 2016.
– start-page: 3358
  year: 2017
  end-page: 3364
  ident: bib0015
  article-title: Variational autoencoder for semi-supervised text classification[c]
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
– year: 2019
  ident: bib0019
  article-title: Variational autoencoder with implicit optimal priors[c]
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– reference: Gulrajani I., Kumar K., Ahmed F., et al. PixelVAE: a latent variable model for natural images[j]. arXiv:
– start-page: 627
  year: 2017
  end-page: 637
  ident: bib0018
  article-title: A hybrid convolutional variational autoencoder for text generation[c]
  publication-title: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
– start-page: 2631
  year: 2018
  end-page: 2641
  ident: bib0017
  article-title: A structured variational autoencoder for contextual morphological inflection[c]
  publication-title: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
– volume: 50
  start-page: 104
  issue: 1
  year: 2014
  ident: 10.1016/j.micpro.2020.103063_bib0004
  article-title: The impact of preprocessing on text classification[j]
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2013.08.006
– volume: 93
  start-page: 133
  issue: 1
  year: 2017
  ident: 10.1016/j.micpro.2020.103063_bib0001
  article-title: al. lexicon based feature extraction for emotion text classification[j]
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.12.009
– ident: 10.1016/j.micpro.2020.103063_bib0002
– start-page: 205
  year: 2016
  ident: 10.1016/j.micpro.2020.103063_bib0023
  article-title: Feature selection for linear SVM with provable guarantees[j]
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.05.018
– volume: 5
  start-page: 668
  issue: 1
  year: 2013
  ident: 10.1016/j.micpro.2020.103063_bib0006
  article-title: A kind of text classification design on the basis of natural language processing[j]
  publication-title: Int. J. Adv. Comput. Technol. (IJACT)
– volume: 18
  start-page: 131
  issue: 18
  year: 2011
  ident: 10.1016/j.micpro.2020.103063_bib0005
  article-title: Efficient text classification method based on improved term reduction and term weighting[j]
  publication-title: J. China Univ. Posts Telecommun.
  doi: 10.1016/S1005-8885(10)60196-3
– start-page: 3497
  year: 2017
  ident: 10.1016/j.micpro.2020.103063_bib0021
  article-title: Salience estimation via variational auto-encoders for multi-document summarization[c]
– volume: 21
  start-page: 492
  issue: 3
  year: 2007
  ident: 10.1016/j.micpro.2020.103063_bib0022
  article-title: Continuous space language models[J]
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2006.09.003
– start-page: 3358
  year: 2017
  ident: 10.1016/j.micpro.2020.103063_bib0015
  article-title: Variational autoencoder for semi-supervised text classification[c]
– volume: 157
  start-page: 91
  issue: 1
  year: 2015
  ident: 10.1016/j.micpro.2020.103063_bib0007
  article-title: A two-stage markov blanket based feature selection algorithm for text classification[j]
  publication-title: Neuro Comput.
– start-page: 4826
  year: 2016
  ident: 10.1016/j.micpro.2020.103063_bib0009
  article-title: An architecture for deep, hierarchical generative models [C]
– ident: 10.1016/j.micpro.2020.103063_bib0013
– start-page: 2631
  year: 2018
  ident: 10.1016/j.micpro.2020.103063_bib0017
  article-title: A structured variational autoencoder for contextual morphological inflection[c]
– ident: 10.1016/j.micpro.2020.103063_bib0010
– start-page: 8
  year: 2019
  ident: 10.1016/j.micpro.2020.103063_bib0003
  article-title: "deep" why is it important, and what deep network [C].
– start-page: 627
  year: 2017
  ident: 10.1016/j.micpro.2020.103063_bib0018
  article-title: A hybrid convolutional variational autoencoder for text generation[c]
– ident: 10.1016/j.micpro.2020.103063_bib0014
– ident: 10.1016/j.micpro.2020.103063_bib0012
  doi: 10.18653/v1/K16-1002
– start-page: 1
  year: 2019
  ident: 10.1016/j.micpro.2020.103063_bib0020
  article-title: Variational autoencoders with jointly optimized latent dependency structure[c]
– year: 2019
  ident: 10.1016/j.micpro.2020.103063_bib0019
  article-title: Variational autoencoder with implicit optimal priors[c]
– start-page: 8049
  year: 2018
  ident: 10.1016/j.micpro.2020.103063_bib0008
  article-title: Training autoencoders in sparse domain[c]
– start-page: 2199
  year: 2016
  ident: 10.1016/j.micpro.2020.103063_bib0011
  article-title: Sequential neural models with stochastic layers[c]
– year: 2018
  ident: 10.1016/j.micpro.2020.103063_bib0016
SSID ssj0005062
Score 2.2760046
Snippet This paper presents a text feature extraction model based on stacked variational autoencoder (SVAE). A noise reduction mechanism is designed for variational...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103063
SubjectTerms Computer architecture
Deep stack
Feature extraction
Model accuracy
Noise reduction
Text feature extraction
Variational autoencoder
Title Text feature extraction based on stacked variational autoencoder
URI https://dx.doi.org/10.1016/j.micpro.2020.103063
https://www.proquest.com/docview/2441887607
Volume 76
WOSCitedRecordID wos000538093000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9436
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005062
  issn: 0141-9331
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EMvLX0JKKAceltllYc3E99AFVWLEOqBSnuz_KwW0bDaXVb8_I5jO0lBLeXQS2RZycjKjGfG45n5CPlobVVqJiGl1MqU5pCntcxsWhfSskqAsZltwSbg4qKezdi30egs1sJsrqFp6rs7tvivrMY5ZLYrnX0CuzuiOIFjZDo-ke34_DfGo7odW9M27BzjeBnQwJ290u5uAP1B3Lp6vMFjcgwFitv1jWtpqUOybsR4cul6C19L4FB5XJT9p5tbDRqdt8kBHq_ZzDstEuLQs7loS7L6wL2fP0ex_DEMOeD5Mqan9lHIPGWx1CqoURjqQQde5hXXAxXtowVXE1wtrn_i6E_613_viH3PUnX5gzE17Yp7KtxR4Z7KM7JdwJShhts--Xo6O-sTfrIWXrZbfCykbLP9Hq7mT47KPZPd-iGXO-RlOEAkJ57xr8nING_IqwjOkQRd_ZYcOzlIghwkvRwkrRwkOAhykAzkIBnIwTvy_fPp5acvaYDLSFVZ0nUq6tyCVdpdpGplxVTkoDOlqEGDB7KsQQrBRFFJyrJKSaq1a5gHKiskgLble7LV3DRmlyQVWDNFTxkYSFqVpq4M1Lak1LBCMpntkTL-G65CL3kHaXLN_8aZPZJ2Xy18L5VH3of423nwB72fx1GWHvnyIHKJh6254ujI5mhSqwz2n7iQD-RFvw0OyNZ6eWsOyXO1Wc9Xy6MgZ78AsmuOmw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+feature+extraction+based+on+stacked+variational+autoencoder&rft.jtitle=Microprocessors+and+microsystems&rft.au=Che%2C+Lei&rft.au=Yang%2C+Xiaoping&rft.au=Wang%2C+Liang&rft.date=2020-07-01&rft.issn=0141-9331&rft.volume=76&rft.spage=103063&rft_id=info:doi/10.1016%2Fj.micpro.2020.103063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_micpro_2020_103063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-9331&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-9331&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-9331&client=summon