Orthogonal Nonnegative Matrix Factorization using a novel deep Autoencoder Network
Orthogonal Nonnegative Matrix Factorization (ONMF) offers an important analytical vehicle for addressing many problems. Encouraged by record-breaking successes attained by neural computing models in solving an assortment of data analytics tasks, a rich collection of neural computing models has been...
Uložené v:
| Vydané v: | Knowledge-based systems Ročník 227; s. 107236 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
05.09.2021
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!