Orthogonal Nonnegative Matrix Factorization using a novel deep Autoencoder Network

Orthogonal Nonnegative Matrix Factorization (ONMF) offers an important analytical vehicle for addressing many problems. Encouraged by record-breaking successes attained by neural computing models in solving an assortment of data analytics tasks, a rich collection of neural computing models has been...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge-based systems Ročník 227; s. 107236
Hlavní autori: Yang, Mingming, Xu, Songhua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 05.09.2021
Elsevier Science Ltd
Predmet:
ISSN:0950-7051, 1872-7409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Orthogonal Nonnegative Matrix Factorization (ONMF) offers an important analytical vehicle for addressing many problems. Encouraged by record-breaking successes attained by neural computing models in solving an assortment of data analytics tasks, a rich collection of neural computing models has been proposed to perform ONMF with compelling performance. Such existing models can be broadly classified into the shallow-layered structure (SLS) based and deep-layered structure (DLS) based models. However, SLS models cannot capture complex relationships and hierarchical information latent in a matrix due to their simple network structures and DLS models rely on an iterative procedure to derive weights, leading to a less efficient solution process and cannot be reused to factorize new matrices. To overcome these shortcomings, this paper proposes a novel deep autoencoder network for ONMF, which is abbreviated as DAutoED-ONMF. Compared with SLS models, the newly proposed model is capable of generating solutions with good interpretability and solution uniqueness like original SLS models, yet the new model attains a superior learning capability thanks to its deep structure employed. In comparison with DLS models, the new model trains a reusable encoder network to directly factorize any given matrix with no need to repeatedly retrain the model for factorizing multiple matrices using a tailor-designed network training procedure. Proof of the procedure’s convergence is presented with an analysis of its computational complexity. The numerical experiments conducted on several publicly data sets convincingly demonstrate that the proposed DAutoED-ONMF model gains promising performance in terms of multiple metrics.
AbstractList Orthogonal Nonnegative Matrix Factorization (ONMF) offers an important analytical vehicle for addressing many problems. Encouraged by record-breaking successes attained by neural computing models in solving an assortment of data analytics tasks, a rich collection of neural computing models has been proposed to perform ONMF with compelling performance. Such existing models can be broadly classified into the shallow-layered structure (SLS) based and deep-layered structure (DLS) based models. However, SLS models cannot capture complex relationships and hierarchical information latent in a matrix due to their simple network structures and DLS models rely on an iterative procedure to derive weights, leading to a less efficient solution process and cannot be reused to factorize new matrices. To overcome these shortcomings, this paper proposes a novel deep autoencoder network for ONMF, which is abbreviated as DAutoED-ONMF. Compared with SLS models, the newly proposed model is capable of generating solutions with good interpretability and solution uniqueness like original SLS models, yet the new model attains a superior learning capability thanks to its deep structure employed. In comparison with DLS models, the new model trains a reusable encoder network to directly factorize any given matrix with no need to repeatedly retrain the model for factorizing multiple matrices using a tailor-designed network training procedure. Proof of the procedure's convergence is presented with an analysis of its computational complexity. The numerical experiments conducted on several publicly data sets convincingly demonstrate that the proposed DAutoED-ONMF model gains promising performance in terms of multiple metrics.
ArticleNumber 107236
Author Yang, Mingming
Xu, Songhua
Author_xml – sequence: 1
  givenname: Mingming
  orcidid: 0000-0002-1842-8668
  surname: Yang
  fullname: Yang, Mingming
  email: yangmingming629@stu.xjtu.edu.cn
– sequence: 2
  givenname: Songhua
  surname: Xu
  fullname: Xu, Songhua
  email: songhuaxu@mail.xjtu.edu.cn
BookMark eNqFkEtLAzEUhYNUsK3-AxcB11PzmGQ6LoRSrAo-QHQdMpnbmlqTmmSq9dc7dVy5ULhw4XDOgfMNUM95BwgdUzKihMrT5ejF-biNI0YYbaWCcbmH-nRcsKzISdlDfVIKkhVE0AM0iHFJCGGMjvvo4T6kZ7_wTq_wnXcOFjrZDeBbnYL9wDNtkg_2sxW9w020boE1dn4DK1wDrPGkSR6c8TUEfAfp3YeXQ7Q_16sIRz9_iJ5mF4_Tq-zm_vJ6OrnJDOd5yjSvKK8IF7WY15UuBcy1lHIMuiK50SWHqtYly6ksCuCm1PkYatpeUWgmKsaH6KTrXQf_1kBMaumb0A6JigkpBZOC71x55zLBxxhgrtbBvuqwVZSoHT21VB09taOnOnpt7OxXzNj0TSEFbVf_hc-7MLTzNxaCisa2lKC2AUxStbd_F3wB_PWRYQ
CitedBy_id crossref_primary_10_1016_j_knosys_2021_107302
crossref_primary_10_1016_j_eswa_2022_119051
crossref_primary_10_1109_TSC_2023_3319713
crossref_primary_10_1109_TCE_2025_3525523
crossref_primary_10_1080_0954898X_2023_2257773
crossref_primary_10_1109_TCYB_2022_3173336
crossref_primary_10_1016_j_is_2024_102379
crossref_primary_10_1007_s11518_024_5639_3
crossref_primary_10_1016_j_knosys_2023_111192
crossref_primary_10_1007_s10044_024_01335_3
crossref_primary_10_1016_j_neunet_2025_107504
crossref_primary_10_1016_j_inffus_2022_12_011
crossref_primary_10_1016_j_ins_2024_120585
crossref_primary_10_1109_TPAMI_2025_3535743
crossref_primary_10_3390_app14177466
crossref_primary_10_1016_j_media_2022_102623
crossref_primary_10_3390_math13091422
crossref_primary_10_1016_j_knosys_2021_108040
crossref_primary_10_1016_j_knosys_2022_109210
crossref_primary_10_1371_journal_pone_0325304
crossref_primary_10_1109_TNNLS_2023_3304626
crossref_primary_10_1109_TCYB_2022_3196444
crossref_primary_10_1007_s10489_025_06367_8
crossref_primary_10_1007_s11042_023_15295_z
crossref_primary_10_1145_3584862
crossref_primary_10_1016_j_dsp_2023_104060
crossref_primary_10_1016_j_eswa_2025_127560
crossref_primary_10_1016_j_knosys_2024_112597
crossref_primary_10_1016_j_eswa_2023_121780
Cites_doi 10.1109/ACV.1994.341300
10.1109/CVPR.2019.00419
10.1023/A:1008293323270
10.1109/IJCNN.2008.4634046
10.1109/MMSP.2015.7340796
10.1145/3269206.3271697
10.1609/aaai.v31i1.10867
10.1145/3097983.3098164
10.1016/j.neucom.2020.01.037
10.1016/j.neunet.2017.10.007
10.1049/el:20060983
10.1109/TKDE.2012.51
10.1145/1150402.1150420
10.1007/978-3-030-00931-1_26
10.1109/TPAMI.2016.2554555
10.24963/ijcai.2017/447
10.1109/TII.2019.2893714
10.1016/j.cam.2013.09.022
10.1038/44565
10.1016/j.eswa.2013.08.026
10.1016/j.knosys.2018.07.027
10.1016/j.neucom.2014.02.018
10.1109/TPAMI.2003.1251154
10.1007/s10994-016-5553-0
10.1016/j.knosys.2020.105582
10.1137/1.9781611972757.70
10.1109/SPAWC.2011.5990455
10.1109/34.598228
10.1007/978-3-319-70136-3_47
10.1007/s10115-004-0194-1
10.1111/j.2517-6161.1977.tb01600.x
10.24963/ijcai.2017/243
10.1016/0169-7439(87)80084-9
10.1109/TIP.2016.2624140
10.1002/nav.3800020109
10.1126/science.1127647
10.1109/TPAMI.2019.2962679
10.1145/3152463
10.1016/j.neucom.2017.01.045
10.1016/j.knosys.2018.12.022
10.1016/j.knosys.2017.08.010
10.1109/TNN.2010.2041361
10.1002/env.3170050203
10.1145/1008992.1009029
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Sep 5, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Sep 5, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.107236
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_107236
S0950705121004986
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-a3b13b035d5fdba95efa6668eab04ca93ebda9241677e3c9a48ed1ed177a25b23
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000677995700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:55:11 EST 2025
Sat Nov 29 07:11:31 EST 2025
Tue Nov 18 21:22:41 EST 2025
Fri Feb 23 02:47:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep autoencoder network
Multiplication update rule
Orthogonal Nonnegative Matrix Factorization
Auxiliary function
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-a3b13b035d5fdba95efa6668eab04ca93ebda9241677e3c9a48ed1ed177a25b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1842-8668
PQID 2566526532
PQPubID 2035257
ParticipantIDs proquest_journals_2566526532
crossref_primary_10_1016_j_knosys_2021_107236
crossref_citationtrail_10_1016_j_knosys_2021_107236
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107236
PublicationCentury 2000
PublicationDate 2021-09-05
PublicationDateYYYYMMDD 2021-09-05
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Lee, Ho, Kriegman (b46) 2005
Peng, Ser, Chen, Lin (b21) 2020; 201–202
Wang, Zhang (b10) 2012; 25
F. Ye, C. Chen, Z. Zheng, Deep autoencoder-like nonnegative matrix factorization for community detection, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2018, pp. 1393–1402.
Paatero, Tapper (b8) 1994; 5
Yan, Zhang, Ma, Yang (b7) 2017; 135
B. Lyu, K. Xie, W. Sun, A deep orthogonal non-negative matrix factorization method for learning attribute representations, in: International Conference on Neural Information Processing, 2017, pp. 443–452.
H. Li, X. Zhu, Y. Fan, Identification of multi-scale hierarchical brain functional networks using deep matrix factorization, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018, pp. 223–231.
Liang, Yang, Li, Sun, Xie (b19) 2020; 194
Mirzal (b18) 2014; 260
S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in: Proceedings of the International Joint Conference on Neural Networks, 2008, pp. 1828–1832.
Burkard, Karisch, Rendl (b42) 1997; 10
Zhao, Wang, Pei (b55) 2021; 43
De Handschutter, Gillis, Siebert (b36) 2020
Yang, Oja (b54) 2010; 21
Lee, Seung (b9) 1999; 401
U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, Y. Kluger, Spectralnet: Spectral clustering using deep neural networks, in: Proceedings of the International Conference on Learning Representations, 2018.
Golub, Reinsch (b1) 1971
H. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, Deep matrix factorization models for recommender systems, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2017, pp. 3203–3209.
Wen, She, Li, Mao (b34) 2018; 14
C. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, in: Proceedings of the SIAM International Conference on Data Mining, 2005, pp. 606–610.
Pompili, Gillis, Absil, Glineur (b17) 2014; 141
Q. Wang, M. Sun, L. Zhan, P. Thompson, S. Ji, J. Zhou, Multi-modality disease modeling via collective deep matrix factorization, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Dining, 2017, pp. 1155–1164.
Li, Ding (b22) 2013
He, Yan, Hu, Niyogi, Zhang (b47) 2005
Basilevsky (b2) 2009
Z. Li, J. Tang, Deep matrix factorization for social image tag refinement and assignment, in: Proceedings of the International Workshop on Multimedia Signal Processing, 2015, pp. 1–6.
H. Zhao, Z. Ding, Y. Fu, Multi-view clustering via deep matrix factorization, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 2921–2927.
Zhao, Geng, Zhou, Sun, Xiao, Zhang, Fu (b41) 2019; 166
Zhong, Ghosh (b52) 2005; 8
D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Proceedings of the Advances in Neural Information Processing Systems, 2001, pp. 556–562.
Yang, Xu (b5) 2020; 389
F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142.
Li, Tang (b27) 2016; 26
Y. Liu, Y. Dai, Z. Luo, On the complexity of leakage interference minimization for interference alignment, in: Proceedings of the International Workshop on Signal Processing Advances in Wireless Communications, 2011, pp. 471–475.
Yi, Shen, Liu, Zhang, Zhang, Liu, Xiong (b35) 2019; 15
S. Arora, N. Cohen, W. Hu, Y. Luo, Implicit regularization in deep matrix factorization, in: Proceedings of the Advances in Neural Information Processing Systems, 2019, pp. 7413–7424.
Qiu, Zhou, Xie (b13) 2017
Cichocki, Zdunek (b23) 2006; 42
Maaten, Hinton (b60) 2008; 9
Li, Zhou, Cichocki (b38) 2014; 22
Sim, Baker, Bsat (b48) 2003; 25
Nene, Nayar, Murase (b49) 1996
Kimura, Kudo, Tanaka (b20) 2016; 103
J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in: Proceedings of the International Conference on Machine Learning, 2016, pp. 478–487.
Li, Bu, Yang, Ji, Chen, Cai (b16) 2014; 41
Belhumeur, Hespanha, Kriegman (b50) 1997
Trigeorgis, Bousmalis, Zafeiriou, Schuller (b29) 2016; 39
Dempster, Laird, Rubin (b44) 1977; 39
X. Yang, C. Deng, F. Zheng, J. Yan, W. Liu, Deep spectral clustering using dual autoencoder network, in: Proceedings of the Conference on Computer Vision and Pattern Recognition, 2019, pp. 4066–4075.
W. Xu, Y. Gong, Document clustering by concept factorization, in: Proceedings of the ACM SIGIR Annual International Conference on Research and Development in Information Retrieval, 2004, pp. 202–209.
Kuhn (b53) 1955; 2
Schütze, Manning, Raghavan (b61) 2008
C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix t-factorizations for clustering, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, pp. 126–135.
Li, Shen, Shu, Ye, Zhao (b24) 2017; 238
G. Trigeorgis, K. Bousmalis, S. Zafeiriou, B. Schuller, A deep semi-nmf model for learning hidden representations, in: Proceedings of the International Conference on Machine Learning, 2014, pp. 1692–1700.
Fan, Cheng (b32) 2018; 98
X. Guo, L. Gao, X. Liu, J. Yin, Improved deep embedded clustering with local structure preservation, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2017, pp. 1753–1759.
Hinton, Salakhutdinov (b37) 2006; 313
Wold, Esbensen, Geladi (b4) 1987; 2
Spurek, Tabor, Śmieja (b3) 2018; 161
Hartigan, Wong (b14) 1979; 28
10.1016/j.knosys.2021.107236_b6
Lee (10.1016/j.knosys.2021.107236_b46) 2005
Spurek (10.1016/j.knosys.2021.107236_b3) 2018; 161
10.1016/j.knosys.2021.107236_b51
10.1016/j.knosys.2021.107236_b58
10.1016/j.knosys.2021.107236_b57
Schütze (10.1016/j.knosys.2021.107236_b61) 2008
10.1016/j.knosys.2021.107236_b12
10.1016/j.knosys.2021.107236_b56
10.1016/j.knosys.2021.107236_b11
Trigeorgis (10.1016/j.knosys.2021.107236_b29) 2016; 39
10.1016/j.knosys.2021.107236_b15
De Handschutter (10.1016/j.knosys.2021.107236_b36) 2020
10.1016/j.knosys.2021.107236_b59
Zhong (10.1016/j.knosys.2021.107236_b52) 2005; 8
He (10.1016/j.knosys.2021.107236_b47) 2005
Yan (10.1016/j.knosys.2021.107236_b7) 2017; 135
Golub (10.1016/j.knosys.2021.107236_b1) 1971
Li (10.1016/j.knosys.2021.107236_b27) 2016; 26
Kuhn (10.1016/j.knosys.2021.107236_b53) 1955; 2
Li (10.1016/j.knosys.2021.107236_b24) 2017; 238
Liang (10.1016/j.knosys.2021.107236_b19) 2020; 194
Kimura (10.1016/j.knosys.2021.107236_b20) 2016; 103
Sim (10.1016/j.knosys.2021.107236_b48) 2003; 25
Belhumeur (10.1016/j.knosys.2021.107236_b50) 1997
10.1016/j.knosys.2021.107236_b62
10.1016/j.knosys.2021.107236_b25
Pompili (10.1016/j.knosys.2021.107236_b17) 2014; 141
10.1016/j.knosys.2021.107236_b28
Yang (10.1016/j.knosys.2021.107236_b5) 2020; 389
Li (10.1016/j.knosys.2021.107236_b38) 2014; 22
10.1016/j.knosys.2021.107236_b26
Burkard (10.1016/j.knosys.2021.107236_b42) 1997; 10
Nene (10.1016/j.knosys.2021.107236_b49) 1996
Cichocki (10.1016/j.knosys.2021.107236_b23) 2006; 42
Hinton (10.1016/j.knosys.2021.107236_b37) 2006; 313
Mirzal (10.1016/j.knosys.2021.107236_b18) 2014; 260
10.1016/j.knosys.2021.107236_b31
10.1016/j.knosys.2021.107236_b30
Paatero (10.1016/j.knosys.2021.107236_b8) 1994; 5
Dempster (10.1016/j.knosys.2021.107236_b44) 1977; 39
Basilevsky (10.1016/j.knosys.2021.107236_b2) 2009
10.1016/j.knosys.2021.107236_b33
Peng (10.1016/j.knosys.2021.107236_b21) 2020; 201–202
10.1016/j.knosys.2021.107236_b39
Li (10.1016/j.knosys.2021.107236_b22) 2013
Wen (10.1016/j.knosys.2021.107236_b34) 2018; 14
Wang (10.1016/j.knosys.2021.107236_b10) 2012; 25
Yi (10.1016/j.knosys.2021.107236_b35) 2019; 15
Zhao (10.1016/j.knosys.2021.107236_b55) 2021; 43
Yang (10.1016/j.knosys.2021.107236_b54) 2010; 21
Wold (10.1016/j.knosys.2021.107236_b4) 1987; 2
Hartigan (10.1016/j.knosys.2021.107236_b14) 1979; 28
10.1016/j.knosys.2021.107236_b43
10.1016/j.knosys.2021.107236_b40
10.1016/j.knosys.2021.107236_b45
Fan (10.1016/j.knosys.2021.107236_b32) 2018; 98
Maaten (10.1016/j.knosys.2021.107236_b60) 2008; 9
Lee (10.1016/j.knosys.2021.107236_b9) 1999; 401
Qiu (10.1016/j.knosys.2021.107236_b13) 2017
Li (10.1016/j.knosys.2021.107236_b16) 2014; 41
Zhao (10.1016/j.knosys.2021.107236_b41) 2019; 166
References_xml – reference: F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142.
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: b14
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: J. R. Stat. Soc.
– volume: 22
  start-page: 843
  year: 2014
  end-page: 846
  ident: b38
  article-title: Two efficient algorithms for approximately orthogonal nonnegative matrix factorization
  publication-title: IEEE Signal Process. Lett.
– volume: 8
  start-page: 374
  year: 2005
  end-page: 384
  ident: b52
  article-title: Generative model-based document clustering: a comparative study
  publication-title: Knowl. Inf. Syst.
– volume: 43
  start-page: 1897
  year: 2021
  end-page: 1913
  ident: b55
  article-title: Deep non-negative matrix factorization architecture based on underlying basis images learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 135
  start-page: 147
  year: 2017
  end-page: 158
  ident: b7
  article-title: A novel regularized concept factorization for document clustering
  publication-title: Knowl.-Based Syst.
– volume: 5
  start-page: 111
  year: 1994
  end-page: 126
  ident: b8
  article-title: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
– reference: J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in: Proceedings of the International Conference on Machine Learning, 2016, pp. 478–487.
– volume: 389
  start-page: 56
  year: 2020
  end-page: 82
  ident: b5
  article-title: A novel patch-based nonlinear matrix completion algorithm for image analysis through convolutional neural network
  publication-title: Neurocomputing
– start-page: 328
  year: 2005
  end-page: 340
  ident: b47
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 25
  start-page: 1336
  year: 2012
  end-page: 1353
  ident: b10
  article-title: Nonnegative matrix factorization: A comprehensive review
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2020
  ident: b36
  article-title: Deep matrix factorizations
– volume: 25
  start-page: 1615
  year: 2003
  end-page: 1618
  ident: b48
  article-title: The CMU pose, illumination, and expression database
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 42
  start-page: 947
  year: 2006
  end-page: 948
  ident: b23
  article-title: Multilayer nonnegative matrix factorisation
  publication-title: Electron. Lett.
– reference: Z. Li, J. Tang, Deep matrix factorization for social image tag refinement and assignment, in: Proceedings of the International Workshop on Multimedia Signal Processing, 2015, pp. 1–6.
– reference: C. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, in: Proceedings of the SIAM International Conference on Data Mining, 2005, pp. 606–610.
– reference: X. Yang, C. Deng, F. Zheng, J. Yan, W. Liu, Deep spectral clustering using dual autoencoder network, in: Proceedings of the Conference on Computer Vision and Pattern Recognition, 2019, pp. 4066–4075.
– volume: 194
  year: 2020
  ident: b19
  article-title: Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints
  publication-title: Knowl.-Based Syst.
– reference: F. Ye, C. Chen, Z. Zheng, Deep autoencoder-like nonnegative matrix factorization for community detection, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2018, pp. 1393–1402.
– start-page: 684
  year: 2005
  end-page: 698
  ident: b46
  article-title: Acquiring linear subspaces for face recognition under variable lighting
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 14
  start-page: 11
  year: 2018
  ident: b34
  article-title: Visual background recommendation for dance performances using deep matrix factorization
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl.
– volume: 21
  start-page: 734
  year: 2010
  end-page: 749
  ident: b54
  article-title: Linear and nonlinear projective nonnegative matrix factorization
  publication-title: IEEE Trans. Neural Netw.
– volume: 260
  start-page: 149
  year: 2014
  end-page: 166
  ident: b18
  article-title: A convergent algorithm for orthogonal nonnegative matrix factorization
  publication-title: J. Comput. Appl. Math.
– volume: 10
  start-page: 391
  year: 1997
  end-page: 403
  ident: b42
  article-title: QAPLIB–A quadratic assignment problem library
  publication-title: J. Global Optim.
– volume: 103
  start-page: 285
  year: 2016
  end-page: 306
  ident: b20
  article-title: A column-wise update algorithm for nonnegative matrix factorization in bregman divergence with an orthogonal constraint
  publication-title: Mach. Learn.
– reference: H. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, Deep matrix factorization models for recommender systems, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2017, pp. 3203–3209.
– start-page: 711
  year: 1997
  end-page: 720
  ident: b50
  article-title: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 15
  start-page: 4591
  year: 2019
  end-page: 4601
  ident: b35
  article-title: Deep matrix factorization with implicit feedback embedding for recommendation system
  publication-title: IEEE Trans. Ind. Inform.
– reference: C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix t-factorizations for clustering, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, pp. 126–135.
– reference: S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in: Proceedings of the International Joint Conference on Neural Networks, 2008, pp. 1828–1832.
– volume: 201–202
  year: 2020
  ident: b21
  article-title: Robust orthogonal nonnegative matrix tri-factorization for data representation
  publication-title: Knowl.-Based Syst.
– reference: Y. Liu, Y. Dai, Z. Luo, On the complexity of leakage interference minimization for interference alignment, in: Proceedings of the International Workshop on Signal Processing Advances in Wireless Communications, 2011, pp. 471–475.
– volume: 238
  start-page: 139
  year: 2017
  end-page: 151
  ident: b24
  article-title: Graph regularized multilayer concept factorization for data representation
  publication-title: Neurocomputing
– reference: X. Guo, L. Gao, X. Liu, J. Yin, Improved deep embedded clustering with local structure preservation, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2017, pp. 1753–1759.
– volume: 161
  start-page: 26
  year: 2018
  end-page: 34
  ident: b3
  article-title: Fast independent component analysis algorithm with a simple closed-form solution
  publication-title: Knowl.-Based Syst.
– reference: Q. Wang, M. Sun, L. Zhan, P. Thompson, S. Ji, J. Zhou, Multi-modality disease modeling via collective deep matrix factorization, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Dining, 2017, pp. 1155–1164.
– year: 2017
  ident: b13
  article-title: Deep approximately orthogonal nonnegative matrix factorization for clustering
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: b53
  article-title: The hungarian method for the assignment problem
  publication-title: Naval Res. Logist. Q.
– start-page: 149
  year: 2013
  end-page: 176
  ident: b22
  article-title: Nonnegative matrix factorizations for clustering: A survey
  publication-title: Data Clust. Algorithms Appl.
– reference: U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, Y. Kluger, Spectralnet: Spectral clustering using deep neural networks, in: Proceedings of the International Conference on Learning Representations, 2018.
– reference: S. Arora, N. Cohen, W. Hu, Y. Luo, Implicit regularization in deep matrix factorization, in: Proceedings of the Advances in Neural Information Processing Systems, 2019, pp. 7413–7424.
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: b4
  article-title: Principal component analysis
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: b44
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc.
– volume: 141
  start-page: 15
  year: 2014
  end-page: 25
  ident: b17
  article-title: Two algorithms for orthogonal nonnegative matrix factorization with application to clustering
  publication-title: Neurocomputing
– start-page: 134
  year: 1971
  end-page: 151
  ident: b1
  article-title: Singular value decomposition and least squares solutions
  publication-title: Linear Algebra
– volume: 26
  start-page: 276
  year: 2016
  end-page: 288
  ident: b27
  article-title: Weakly supervised deep matrix factorization for social image understanding
  publication-title: IEEE Trans. Image Process.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b37
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– year: 2008
  ident: b61
  article-title: Introduction to Information Retrieval, vol. 39
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: b9
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 166
  start-page: 132
  year: 2019
  end-page: 139
  ident: b41
  article-title: Attribute mapping and autoencoder neural network based matrix factorization initialization for recommendation systems
  publication-title: Knowl.-Based Syst.
– year: 2009
  ident: b2
  article-title: Statistical Factor Analysis and Related Methods: Theory and Applications
– year: 1996
  ident: b49
  article-title: Columbia Object Image Library (coil-20)
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b60
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 417
  year: 2016
  end-page: 429
  ident: b29
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: H. Li, X. Zhu, Y. Fan, Identification of multi-scale hierarchical brain functional networks using deep matrix factorization, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018, pp. 223–231.
– reference: B. Lyu, K. Xie, W. Sun, A deep orthogonal non-negative matrix factorization method for learning attribute representations, in: International Conference on Neural Information Processing, 2017, pp. 443–452.
– volume: 98
  start-page: 34
  year: 2018
  end-page: 41
  ident: b32
  article-title: Matrix completion by deep matrix factorization
  publication-title: Neural Netw.
– reference: D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Proceedings of the Advances in Neural Information Processing Systems, 2001, pp. 556–562.
– reference: G. Trigeorgis, K. Bousmalis, S. Zafeiriou, B. Schuller, A deep semi-nmf model for learning hidden representations, in: Proceedings of the International Conference on Machine Learning, 2014, pp. 1692–1700.
– volume: 41
  start-page: 1283
  year: 2014
  end-page: 1293
  ident: b16
  article-title: Discriminative orthogonal nonnegative matrix factorization with flexibility for data representation
  publication-title: Expert Syst. Appl.
– reference: H. Zhao, Z. Ding, Y. Fu, Multi-view clustering via deep matrix factorization, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 2921–2927.
– reference: W. Xu, Y. Gong, Document clustering by concept factorization, in: Proceedings of the ACM SIGIR Annual International Conference on Research and Development in Information Retrieval, 2004, pp. 202–209.
– ident: 10.1016/j.knosys.2021.107236_b51
  doi: 10.1109/ACV.1994.341300
– ident: 10.1016/j.knosys.2021.107236_b59
  doi: 10.1109/CVPR.2019.00419
– volume: 10
  start-page: 391
  issue: 4
  year: 1997
  ident: 10.1016/j.knosys.2021.107236_b42
  article-title: QAPLIB–A quadratic assignment problem library
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008293323270
– ident: 10.1016/j.knosys.2021.107236_b15
  doi: 10.1109/IJCNN.2008.4634046
– ident: 10.1016/j.knosys.2021.107236_b26
  doi: 10.1109/MMSP.2015.7340796
– year: 2008
  ident: 10.1016/j.knosys.2021.107236_b61
– ident: 10.1016/j.knosys.2021.107236_b39
  doi: 10.1145/3269206.3271697
– year: 2017
  ident: 10.1016/j.knosys.2021.107236_b13
– ident: 10.1016/j.knosys.2021.107236_b28
  doi: 10.1609/aaai.v31i1.10867
– ident: 10.1016/j.knosys.2021.107236_b30
  doi: 10.1145/3097983.3098164
– volume: 389
  start-page: 56
  year: 2020
  ident: 10.1016/j.knosys.2021.107236_b5
  article-title: A novel patch-based nonlinear matrix completion algorithm for image analysis through convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.037
– volume: 98
  start-page: 34
  year: 2018
  ident: 10.1016/j.knosys.2021.107236_b32
  article-title: Matrix completion by deep matrix factorization
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.10.007
– volume: 22
  start-page: 843
  issue: 7
  year: 2014
  ident: 10.1016/j.knosys.2021.107236_b38
  article-title: Two efficient algorithms for approximately orthogonal nonnegative matrix factorization
  publication-title: IEEE Signal Process. Lett.
– volume: 42
  start-page: 947
  issue: 16
  year: 2006
  ident: 10.1016/j.knosys.2021.107236_b23
  article-title: Multilayer nonnegative matrix factorisation
  publication-title: Electron. Lett.
  doi: 10.1049/el:20060983
– volume: 25
  start-page: 1336
  issue: 6
  year: 2012
  ident: 10.1016/j.knosys.2021.107236_b10
  article-title: Nonnegative matrix factorization: A comprehensive review
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2012.51
– volume: 201–202
  year: 2020
  ident: 10.1016/j.knosys.2021.107236_b21
  article-title: Robust orthogonal nonnegative matrix tri-factorization for data representation
  publication-title: Knowl.-Based Syst.
– ident: 10.1016/j.knosys.2021.107236_b11
  doi: 10.1145/1150402.1150420
– ident: 10.1016/j.knosys.2021.107236_b31
  doi: 10.1007/978-3-030-00931-1_26
– volume: 39
  start-page: 417
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2021.107236_b29
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2554555
– ident: 10.1016/j.knosys.2021.107236_b58
– ident: 10.1016/j.knosys.2021.107236_b33
  doi: 10.24963/ijcai.2017/447
– volume: 15
  start-page: 4591
  issue: 8
  year: 2019
  ident: 10.1016/j.knosys.2021.107236_b35
  article-title: Deep matrix factorization with implicit feedback embedding for recommendation system
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2893714
– start-page: 149
  year: 2013
  ident: 10.1016/j.knosys.2021.107236_b22
  article-title: Nonnegative matrix factorizations for clustering: A survey
  publication-title: Data Clust. Algorithms Appl.
– start-page: 684
  issue: 5
  year: 2005
  ident: 10.1016/j.knosys.2021.107236_b46
  article-title: Acquiring linear subspaces for face recognition under variable lighting
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 260
  start-page: 149
  year: 2014
  ident: 10.1016/j.knosys.2021.107236_b18
  article-title: A convergent algorithm for orthogonal nonnegative matrix factorization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.09.022
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 10.1016/j.knosys.2021.107236_b14
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: J. R. Stat. Soc.
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.knosys.2021.107236_b9
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 41
  start-page: 1283
  issue: 4
  year: 2014
  ident: 10.1016/j.knosys.2021.107236_b16
  article-title: Discriminative orthogonal nonnegative matrix factorization with flexibility for data representation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.026
– volume: 161
  start-page: 26
  year: 2018
  ident: 10.1016/j.knosys.2021.107236_b3
  article-title: Fast independent component analysis algorithm with a simple closed-form solution
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.07.027
– year: 2009
  ident: 10.1016/j.knosys.2021.107236_b2
– volume: 141
  start-page: 15
  year: 2014
  ident: 10.1016/j.knosys.2021.107236_b17
  article-title: Two algorithms for orthogonal nonnegative matrix factorization with application to clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.018
– volume: 25
  start-page: 1615
  issue: 12
  year: 2003
  ident: 10.1016/j.knosys.2021.107236_b48
  article-title: The CMU pose, illumination, and expression database
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1251154
– volume: 103
  start-page: 285
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2021.107236_b20
  article-title: A column-wise update algorithm for nonnegative matrix factorization in bregman divergence with an orthogonal constraint
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-016-5553-0
– volume: 194
  year: 2020
  ident: 10.1016/j.knosys.2021.107236_b19
  article-title: Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105582
– ident: 10.1016/j.knosys.2021.107236_b40
  doi: 10.1137/1.9781611972757.70
– ident: 10.1016/j.knosys.2021.107236_b43
  doi: 10.1109/SPAWC.2011.5990455
– start-page: 711
  issue: 7
  year: 1997
  ident: 10.1016/j.knosys.2021.107236_b50
  article-title: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
– ident: 10.1016/j.knosys.2021.107236_b12
  doi: 10.1007/978-3-319-70136-3_47
– year: 2020
  ident: 10.1016/j.knosys.2021.107236_b36
– volume: 8
  start-page: 374
  issue: 3
  year: 2005
  ident: 10.1016/j.knosys.2021.107236_b52
  article-title: Generative model-based document clustering: a comparative study
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-004-0194-1
– start-page: 134
  year: 1971
  ident: 10.1016/j.knosys.2021.107236_b1
  article-title: Singular value decomposition and least squares solutions
  publication-title: Linear Algebra
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.knosys.2021.107236_b44
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10.1016/j.knosys.2021.107236_b57
  doi: 10.24963/ijcai.2017/243
– volume: 2
  start-page: 37
  issue: 1–3
  year: 1987
  ident: 10.1016/j.knosys.2021.107236_b4
  article-title: Principal component analysis
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– volume: 26
  start-page: 276
  issue: 1
  year: 2016
  ident: 10.1016/j.knosys.2021.107236_b27
  article-title: Weakly supervised deep matrix factorization for social image understanding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2624140
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  ident: 10.1016/j.knosys.2021.107236_b53
  article-title: The hungarian method for the assignment problem
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800020109
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.knosys.2021.107236_b37
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 10.1016/j.knosys.2021.107236_b56
– year: 1996
  ident: 10.1016/j.knosys.2021.107236_b49
– ident: 10.1016/j.knosys.2021.107236_b25
– volume: 43
  start-page: 1897
  issue: 6
  year: 2021
  ident: 10.1016/j.knosys.2021.107236_b55
  article-title: Deep non-negative matrix factorization architecture based on underlying basis images learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2962679
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 10.1016/j.knosys.2021.107236_b60
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 11
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2021.107236_b34
  article-title: Visual background recommendation for dance performances using deep matrix factorization
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl.
  doi: 10.1145/3152463
– ident: 10.1016/j.knosys.2021.107236_b45
– volume: 238
  start-page: 139
  year: 2017
  ident: 10.1016/j.knosys.2021.107236_b24
  article-title: Graph regularized multilayer concept factorization for data representation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.045
– volume: 166
  start-page: 132
  year: 2019
  ident: 10.1016/j.knosys.2021.107236_b41
  article-title: Attribute mapping and autoencoder neural network based matrix factorization initialization for recommendation systems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.12.022
– volume: 135
  start-page: 147
  year: 2017
  ident: 10.1016/j.knosys.2021.107236_b7
  article-title: A novel regularized concept factorization for document clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.08.010
– start-page: 328
  issue: 3
  year: 2005
  ident: 10.1016/j.knosys.2021.107236_b47
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 21
  start-page: 734
  issue: 5
  year: 2010
  ident: 10.1016/j.knosys.2021.107236_b54
  article-title: Linear and nonlinear projective nonnegative matrix factorization
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2041361
– ident: 10.1016/j.knosys.2021.107236_b62
– volume: 5
  start-page: 111
  issue: 2
  year: 1994
  ident: 10.1016/j.knosys.2021.107236_b8
  article-title: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– ident: 10.1016/j.knosys.2021.107236_b6
  doi: 10.1145/1008992.1009029
SSID ssj0002218
Score 2.4738564
Snippet Orthogonal Nonnegative Matrix Factorization (ONMF) offers an important analytical vehicle for addressing many problems. Encouraged by record-breaking successes...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107236
SubjectTerms Auxiliary function
Coders
Complexity
Computation
Convergence
Deep autoencoder network
Deep structure
Experiments
Factorization
Grammatical aspect
Iterative methods
Matrices
Multiplication update rule
Networks
Novels
Orthogonal Nonnegative Matrix Factorization
Retraining
Uniqueness
Title Orthogonal Nonnegative Matrix Factorization using a novel deep Autoencoder Network
URI https://dx.doi.org/10.1016/j.knosys.2021.107236
https://www.proquest.com/docview/2566526532
Volume 227
WOSCitedRecordID wos000677995700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb5swGLe2dodd9p7arZt82A05AhuwfYyqVu2mZtPUSdkJGTDpuhaiFKr8-f38gCSttq6HSQghAx8WP_t76Xsg9CmVpYLFy4iORUliXSki0kSSKJWmebRM4kLYZhN8MhHTqfzmW9xf2XYCvK7Fcinn_xVqGAOwTersA-AeiMIAXAPocAbY4fxPwH9dtGfNzDr4JiaKZeZKe5-YWvzL4ND21_HJl0FnPQUqqJtrfRGUWs-Dcdc2prhl6bKBTdzWugL7pffBESP_Sl8JelDMf3r38wnQveylIoxPO-tmberZWafWPQ00sqFUyYbLMCQ89AViPfekLrXf8z8wJqkraHKHNTsvwfnod93A1EbmA6PV45uVsG9JqCFusA9JO88clcxQyRyVx2ib8kQCc94eHx9MPw_ymFLr5R1m3ydQ2ii_u7P5k4JyS1Rb_eP0BXrmDQc8doC_RI90_Qo975tyYM-jX6PvK_zxGv7Y4Y838McWf6ywxR8b_PEa_tjj_wb9ODw43T8ivnEGKRiLW6JYHrE8ZEmZVGWuZAJbEMxUoVUexoWSTOelAsM7SjnXrJAqFrqM4OBc0SSn7C3aqpta7yCsRKpoxLTgtIoLYPdVLjUo6ZWKZCXCfBex_m9lha8qb5qbXGR_w2oXkeGtuauqcs_zvAci85qh0_gyWF33vLnX45b5TQr3wYYxbSEYfffAibxHT1c7Yw9ttYtOf0BPiuv219Xio195N7swk0U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonal+Nonnegative+Matrix+Factorization+using+a+novel+deep+Autoencoder+Network&rft.jtitle=Knowledge-based+systems&rft.au=Yang%2C+Mingming&rft.au=Xu%2C+Songhua&rft.date=2021-09-05&rft.issn=0950-7051&rft.volume=227&rft.spage=107236&rft_id=info:doi/10.1016%2Fj.knosys.2021.107236&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2021_107236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon