Orthogonal Nonnegative Matrix Factorization using a novel deep Autoencoder Network
Orthogonal Nonnegative Matrix Factorization (ONMF) offers an important analytical vehicle for addressing many problems. Encouraged by record-breaking successes attained by neural computing models in solving an assortment of data analytics tasks, a rich collection of neural computing models has been...
Uložené v:
| Vydané v: | Knowledge-based systems Ročník 227; s. 107236 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
05.09.2021
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Orthogonal Nonnegative Matrix Factorization (ONMF) offers an important analytical vehicle for addressing many problems. Encouraged by record-breaking successes attained by neural computing models in solving an assortment of data analytics tasks, a rich collection of neural computing models has been proposed to perform ONMF with compelling performance. Such existing models can be broadly classified into the shallow-layered structure (SLS) based and deep-layered structure (DLS) based models. However, SLS models cannot capture complex relationships and hierarchical information latent in a matrix due to their simple network structures and DLS models rely on an iterative procedure to derive weights, leading to a less efficient solution process and cannot be reused to factorize new matrices. To overcome these shortcomings, this paper proposes a novel deep autoencoder network for ONMF, which is abbreviated as DAutoED-ONMF. Compared with SLS models, the newly proposed model is capable of generating solutions with good interpretability and solution uniqueness like original SLS models, yet the new model attains a superior learning capability thanks to its deep structure employed. In comparison with DLS models, the new model trains a reusable encoder network to directly factorize any given matrix with no need to repeatedly retrain the model for factorizing multiple matrices using a tailor-designed network training procedure. Proof of the procedure’s convergence is presented with an analysis of its computational complexity. The numerical experiments conducted on several publicly data sets convincingly demonstrate that the proposed DAutoED-ONMF model gains promising performance in terms of multiple metrics. |
|---|---|
| AbstractList | Orthogonal Nonnegative Matrix Factorization (ONMF) offers an important analytical vehicle for addressing many problems. Encouraged by record-breaking successes attained by neural computing models in solving an assortment of data analytics tasks, a rich collection of neural computing models has been proposed to perform ONMF with compelling performance. Such existing models can be broadly classified into the shallow-layered structure (SLS) based and deep-layered structure (DLS) based models. However, SLS models cannot capture complex relationships and hierarchical information latent in a matrix due to their simple network structures and DLS models rely on an iterative procedure to derive weights, leading to a less efficient solution process and cannot be reused to factorize new matrices. To overcome these shortcomings, this paper proposes a novel deep autoencoder network for ONMF, which is abbreviated as DAutoED-ONMF. Compared with SLS models, the newly proposed model is capable of generating solutions with good interpretability and solution uniqueness like original SLS models, yet the new model attains a superior learning capability thanks to its deep structure employed. In comparison with DLS models, the new model trains a reusable encoder network to directly factorize any given matrix with no need to repeatedly retrain the model for factorizing multiple matrices using a tailor-designed network training procedure. Proof of the procedure's convergence is presented with an analysis of its computational complexity. The numerical experiments conducted on several publicly data sets convincingly demonstrate that the proposed DAutoED-ONMF model gains promising performance in terms of multiple metrics. |
| ArticleNumber | 107236 |
| Author | Yang, Mingming Xu, Songhua |
| Author_xml | – sequence: 1 givenname: Mingming orcidid: 0000-0002-1842-8668 surname: Yang fullname: Yang, Mingming email: yangmingming629@stu.xjtu.edu.cn – sequence: 2 givenname: Songhua surname: Xu fullname: Xu, Songhua email: songhuaxu@mail.xjtu.edu.cn |
| BookMark | eNqFkEtLAzEUhYNUsK3-AxcB11PzmGQ6LoRSrAo-QHQdMpnbmlqTmmSq9dc7dVy5ULhw4XDOgfMNUM95BwgdUzKihMrT5ejF-biNI0YYbaWCcbmH-nRcsKzISdlDfVIKkhVE0AM0iHFJCGGMjvvo4T6kZ7_wTq_wnXcOFjrZDeBbnYL9wDNtkg_2sxW9w020boE1dn4DK1wDrPGkSR6c8TUEfAfp3YeXQ7Q_16sIRz9_iJ5mF4_Tq-zm_vJ6OrnJDOd5yjSvKK8IF7WY15UuBcy1lHIMuiK50SWHqtYly6ksCuCm1PkYatpeUWgmKsaH6KTrXQf_1kBMaumb0A6JigkpBZOC71x55zLBxxhgrtbBvuqwVZSoHT21VB09taOnOnpt7OxXzNj0TSEFbVf_hc-7MLTzNxaCisa2lKC2AUxStbd_F3wB_PWRYQ |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2021_107302 crossref_primary_10_1016_j_eswa_2022_119051 crossref_primary_10_1109_TSC_2023_3319713 crossref_primary_10_1109_TCE_2025_3525523 crossref_primary_10_1080_0954898X_2023_2257773 crossref_primary_10_1109_TCYB_2022_3173336 crossref_primary_10_1016_j_is_2024_102379 crossref_primary_10_1007_s11518_024_5639_3 crossref_primary_10_1016_j_knosys_2023_111192 crossref_primary_10_1007_s10044_024_01335_3 crossref_primary_10_1016_j_neunet_2025_107504 crossref_primary_10_1016_j_inffus_2022_12_011 crossref_primary_10_1016_j_ins_2024_120585 crossref_primary_10_1109_TPAMI_2025_3535743 crossref_primary_10_3390_app14177466 crossref_primary_10_1016_j_media_2022_102623 crossref_primary_10_3390_math13091422 crossref_primary_10_1016_j_knosys_2021_108040 crossref_primary_10_1016_j_knosys_2022_109210 crossref_primary_10_1371_journal_pone_0325304 crossref_primary_10_1109_TNNLS_2023_3304626 crossref_primary_10_1109_TCYB_2022_3196444 crossref_primary_10_1007_s10489_025_06367_8 crossref_primary_10_1007_s11042_023_15295_z crossref_primary_10_1145_3584862 crossref_primary_10_1016_j_dsp_2023_104060 crossref_primary_10_1016_j_eswa_2025_127560 crossref_primary_10_1016_j_knosys_2024_112597 crossref_primary_10_1016_j_eswa_2023_121780 |
| Cites_doi | 10.1109/ACV.1994.341300 10.1109/CVPR.2019.00419 10.1023/A:1008293323270 10.1109/IJCNN.2008.4634046 10.1109/MMSP.2015.7340796 10.1145/3269206.3271697 10.1609/aaai.v31i1.10867 10.1145/3097983.3098164 10.1016/j.neucom.2020.01.037 10.1016/j.neunet.2017.10.007 10.1049/el:20060983 10.1109/TKDE.2012.51 10.1145/1150402.1150420 10.1007/978-3-030-00931-1_26 10.1109/TPAMI.2016.2554555 10.24963/ijcai.2017/447 10.1109/TII.2019.2893714 10.1016/j.cam.2013.09.022 10.1038/44565 10.1016/j.eswa.2013.08.026 10.1016/j.knosys.2018.07.027 10.1016/j.neucom.2014.02.018 10.1109/TPAMI.2003.1251154 10.1007/s10994-016-5553-0 10.1016/j.knosys.2020.105582 10.1137/1.9781611972757.70 10.1109/SPAWC.2011.5990455 10.1109/34.598228 10.1007/978-3-319-70136-3_47 10.1007/s10115-004-0194-1 10.1111/j.2517-6161.1977.tb01600.x 10.24963/ijcai.2017/243 10.1016/0169-7439(87)80084-9 10.1109/TIP.2016.2624140 10.1002/nav.3800020109 10.1126/science.1127647 10.1109/TPAMI.2019.2962679 10.1145/3152463 10.1016/j.neucom.2017.01.045 10.1016/j.knosys.2018.12.022 10.1016/j.knosys.2017.08.010 10.1109/TNN.2010.2041361 10.1002/env.3170050203 10.1145/1008992.1009029 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Sep 5, 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Sep 5, 2021 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2021.107236 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2021_107236 S0950705121004986 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-a3b13b035d5fdba95efa6668eab04ca93ebda9241677e3c9a48ed1ed177a25b23 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000677995700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 18:55:11 EST 2025 Sat Nov 29 07:11:31 EST 2025 Tue Nov 18 21:22:41 EST 2025 Fri Feb 23 02:47:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep autoencoder network Multiplication update rule Orthogonal Nonnegative Matrix Factorization Auxiliary function |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-a3b13b035d5fdba95efa6668eab04ca93ebda9241677e3c9a48ed1ed177a25b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1842-8668 |
| PQID | 2566526532 |
| PQPubID | 2035257 |
| ParticipantIDs | proquest_journals_2566526532 crossref_primary_10_1016_j_knosys_2021_107236 crossref_citationtrail_10_1016_j_knosys_2021_107236 elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107236 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-05 |
| PublicationDateYYYYMMDD | 2021-09-05 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Lee, Ho, Kriegman (b46) 2005 Peng, Ser, Chen, Lin (b21) 2020; 201–202 Wang, Zhang (b10) 2012; 25 F. Ye, C. Chen, Z. Zheng, Deep autoencoder-like nonnegative matrix factorization for community detection, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2018, pp. 1393–1402. Paatero, Tapper (b8) 1994; 5 Yan, Zhang, Ma, Yang (b7) 2017; 135 B. Lyu, K. Xie, W. Sun, A deep orthogonal non-negative matrix factorization method for learning attribute representations, in: International Conference on Neural Information Processing, 2017, pp. 443–452. H. Li, X. Zhu, Y. Fan, Identification of multi-scale hierarchical brain functional networks using deep matrix factorization, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018, pp. 223–231. Liang, Yang, Li, Sun, Xie (b19) 2020; 194 Mirzal (b18) 2014; 260 S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in: Proceedings of the International Joint Conference on Neural Networks, 2008, pp. 1828–1832. Burkard, Karisch, Rendl (b42) 1997; 10 Zhao, Wang, Pei (b55) 2021; 43 De Handschutter, Gillis, Siebert (b36) 2020 Yang, Oja (b54) 2010; 21 Lee, Seung (b9) 1999; 401 U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, Y. Kluger, Spectralnet: Spectral clustering using deep neural networks, in: Proceedings of the International Conference on Learning Representations, 2018. Golub, Reinsch (b1) 1971 H. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, Deep matrix factorization models for recommender systems, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2017, pp. 3203–3209. Wen, She, Li, Mao (b34) 2018; 14 C. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, in: Proceedings of the SIAM International Conference on Data Mining, 2005, pp. 606–610. Pompili, Gillis, Absil, Glineur (b17) 2014; 141 Q. Wang, M. Sun, L. Zhan, P. Thompson, S. Ji, J. Zhou, Multi-modality disease modeling via collective deep matrix factorization, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Dining, 2017, pp. 1155–1164. Li, Ding (b22) 2013 He, Yan, Hu, Niyogi, Zhang (b47) 2005 Basilevsky (b2) 2009 Z. Li, J. Tang, Deep matrix factorization for social image tag refinement and assignment, in: Proceedings of the International Workshop on Multimedia Signal Processing, 2015, pp. 1–6. H. Zhao, Z. Ding, Y. Fu, Multi-view clustering via deep matrix factorization, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 2921–2927. Zhao, Geng, Zhou, Sun, Xiao, Zhang, Fu (b41) 2019; 166 Zhong, Ghosh (b52) 2005; 8 D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Proceedings of the Advances in Neural Information Processing Systems, 2001, pp. 556–562. Yang, Xu (b5) 2020; 389 F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142. Li, Tang (b27) 2016; 26 Y. Liu, Y. Dai, Z. Luo, On the complexity of leakage interference minimization for interference alignment, in: Proceedings of the International Workshop on Signal Processing Advances in Wireless Communications, 2011, pp. 471–475. Yi, Shen, Liu, Zhang, Zhang, Liu, Xiong (b35) 2019; 15 S. Arora, N. Cohen, W. Hu, Y. Luo, Implicit regularization in deep matrix factorization, in: Proceedings of the Advances in Neural Information Processing Systems, 2019, pp. 7413–7424. Qiu, Zhou, Xie (b13) 2017 Cichocki, Zdunek (b23) 2006; 42 Maaten, Hinton (b60) 2008; 9 Li, Zhou, Cichocki (b38) 2014; 22 Sim, Baker, Bsat (b48) 2003; 25 Nene, Nayar, Murase (b49) 1996 Kimura, Kudo, Tanaka (b20) 2016; 103 J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in: Proceedings of the International Conference on Machine Learning, 2016, pp. 478–487. Li, Bu, Yang, Ji, Chen, Cai (b16) 2014; 41 Belhumeur, Hespanha, Kriegman (b50) 1997 Trigeorgis, Bousmalis, Zafeiriou, Schuller (b29) 2016; 39 Dempster, Laird, Rubin (b44) 1977; 39 X. Yang, C. Deng, F. Zheng, J. Yan, W. Liu, Deep spectral clustering using dual autoencoder network, in: Proceedings of the Conference on Computer Vision and Pattern Recognition, 2019, pp. 4066–4075. W. Xu, Y. Gong, Document clustering by concept factorization, in: Proceedings of the ACM SIGIR Annual International Conference on Research and Development in Information Retrieval, 2004, pp. 202–209. Kuhn (b53) 1955; 2 Schütze, Manning, Raghavan (b61) 2008 C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix t-factorizations for clustering, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, pp. 126–135. Li, Shen, Shu, Ye, Zhao (b24) 2017; 238 G. Trigeorgis, K. Bousmalis, S. Zafeiriou, B. Schuller, A deep semi-nmf model for learning hidden representations, in: Proceedings of the International Conference on Machine Learning, 2014, pp. 1692–1700. Fan, Cheng (b32) 2018; 98 X. Guo, L. Gao, X. Liu, J. Yin, Improved deep embedded clustering with local structure preservation, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2017, pp. 1753–1759. Hinton, Salakhutdinov (b37) 2006; 313 Wold, Esbensen, Geladi (b4) 1987; 2 Spurek, Tabor, Śmieja (b3) 2018; 161 Hartigan, Wong (b14) 1979; 28 10.1016/j.knosys.2021.107236_b6 Lee (10.1016/j.knosys.2021.107236_b46) 2005 Spurek (10.1016/j.knosys.2021.107236_b3) 2018; 161 10.1016/j.knosys.2021.107236_b51 10.1016/j.knosys.2021.107236_b58 10.1016/j.knosys.2021.107236_b57 Schütze (10.1016/j.knosys.2021.107236_b61) 2008 10.1016/j.knosys.2021.107236_b12 10.1016/j.knosys.2021.107236_b56 10.1016/j.knosys.2021.107236_b11 Trigeorgis (10.1016/j.knosys.2021.107236_b29) 2016; 39 10.1016/j.knosys.2021.107236_b15 De Handschutter (10.1016/j.knosys.2021.107236_b36) 2020 10.1016/j.knosys.2021.107236_b59 Zhong (10.1016/j.knosys.2021.107236_b52) 2005; 8 He (10.1016/j.knosys.2021.107236_b47) 2005 Yan (10.1016/j.knosys.2021.107236_b7) 2017; 135 Golub (10.1016/j.knosys.2021.107236_b1) 1971 Li (10.1016/j.knosys.2021.107236_b27) 2016; 26 Kuhn (10.1016/j.knosys.2021.107236_b53) 1955; 2 Li (10.1016/j.knosys.2021.107236_b24) 2017; 238 Liang (10.1016/j.knosys.2021.107236_b19) 2020; 194 Kimura (10.1016/j.knosys.2021.107236_b20) 2016; 103 Sim (10.1016/j.knosys.2021.107236_b48) 2003; 25 Belhumeur (10.1016/j.knosys.2021.107236_b50) 1997 10.1016/j.knosys.2021.107236_b62 10.1016/j.knosys.2021.107236_b25 Pompili (10.1016/j.knosys.2021.107236_b17) 2014; 141 10.1016/j.knosys.2021.107236_b28 Yang (10.1016/j.knosys.2021.107236_b5) 2020; 389 Li (10.1016/j.knosys.2021.107236_b38) 2014; 22 10.1016/j.knosys.2021.107236_b26 Burkard (10.1016/j.knosys.2021.107236_b42) 1997; 10 Nene (10.1016/j.knosys.2021.107236_b49) 1996 Cichocki (10.1016/j.knosys.2021.107236_b23) 2006; 42 Hinton (10.1016/j.knosys.2021.107236_b37) 2006; 313 Mirzal (10.1016/j.knosys.2021.107236_b18) 2014; 260 10.1016/j.knosys.2021.107236_b31 10.1016/j.knosys.2021.107236_b30 Paatero (10.1016/j.knosys.2021.107236_b8) 1994; 5 Dempster (10.1016/j.knosys.2021.107236_b44) 1977; 39 Basilevsky (10.1016/j.knosys.2021.107236_b2) 2009 10.1016/j.knosys.2021.107236_b33 Peng (10.1016/j.knosys.2021.107236_b21) 2020; 201–202 10.1016/j.knosys.2021.107236_b39 Li (10.1016/j.knosys.2021.107236_b22) 2013 Wen (10.1016/j.knosys.2021.107236_b34) 2018; 14 Wang (10.1016/j.knosys.2021.107236_b10) 2012; 25 Yi (10.1016/j.knosys.2021.107236_b35) 2019; 15 Zhao (10.1016/j.knosys.2021.107236_b55) 2021; 43 Yang (10.1016/j.knosys.2021.107236_b54) 2010; 21 Wold (10.1016/j.knosys.2021.107236_b4) 1987; 2 Hartigan (10.1016/j.knosys.2021.107236_b14) 1979; 28 10.1016/j.knosys.2021.107236_b43 10.1016/j.knosys.2021.107236_b40 10.1016/j.knosys.2021.107236_b45 Fan (10.1016/j.knosys.2021.107236_b32) 2018; 98 Maaten (10.1016/j.knosys.2021.107236_b60) 2008; 9 Lee (10.1016/j.knosys.2021.107236_b9) 1999; 401 Qiu (10.1016/j.knosys.2021.107236_b13) 2017 Li (10.1016/j.knosys.2021.107236_b16) 2014; 41 Zhao (10.1016/j.knosys.2021.107236_b41) 2019; 166 |
| References_xml | – reference: F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142. – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: b14 article-title: Algorithm AS 136: A k-means clustering algorithm publication-title: J. R. Stat. Soc. – volume: 22 start-page: 843 year: 2014 end-page: 846 ident: b38 article-title: Two efficient algorithms for approximately orthogonal nonnegative matrix factorization publication-title: IEEE Signal Process. Lett. – volume: 8 start-page: 374 year: 2005 end-page: 384 ident: b52 article-title: Generative model-based document clustering: a comparative study publication-title: Knowl. Inf. Syst. – volume: 43 start-page: 1897 year: 2021 end-page: 1913 ident: b55 article-title: Deep non-negative matrix factorization architecture based on underlying basis images learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 135 start-page: 147 year: 2017 end-page: 158 ident: b7 article-title: A novel regularized concept factorization for document clustering publication-title: Knowl.-Based Syst. – volume: 5 start-page: 111 year: 1994 end-page: 126 ident: b8 article-title: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values publication-title: Environmetrics – reference: J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in: Proceedings of the International Conference on Machine Learning, 2016, pp. 478–487. – volume: 389 start-page: 56 year: 2020 end-page: 82 ident: b5 article-title: A novel patch-based nonlinear matrix completion algorithm for image analysis through convolutional neural network publication-title: Neurocomputing – start-page: 328 year: 2005 end-page: 340 ident: b47 article-title: Face recognition using laplacianfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 25 start-page: 1336 year: 2012 end-page: 1353 ident: b10 article-title: Nonnegative matrix factorization: A comprehensive review publication-title: IEEE Trans. Knowl. Data Eng. – year: 2020 ident: b36 article-title: Deep matrix factorizations – volume: 25 start-page: 1615 year: 2003 end-page: 1618 ident: b48 article-title: The CMU pose, illumination, and expression database publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 42 start-page: 947 year: 2006 end-page: 948 ident: b23 article-title: Multilayer nonnegative matrix factorisation publication-title: Electron. Lett. – reference: Z. Li, J. Tang, Deep matrix factorization for social image tag refinement and assignment, in: Proceedings of the International Workshop on Multimedia Signal Processing, 2015, pp. 1–6. – reference: C. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, in: Proceedings of the SIAM International Conference on Data Mining, 2005, pp. 606–610. – reference: X. Yang, C. Deng, F. Zheng, J. Yan, W. Liu, Deep spectral clustering using dual autoencoder network, in: Proceedings of the Conference on Computer Vision and Pattern Recognition, 2019, pp. 4066–4075. – volume: 194 year: 2020 ident: b19 article-title: Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints publication-title: Knowl.-Based Syst. – reference: F. Ye, C. Chen, Z. Zheng, Deep autoencoder-like nonnegative matrix factorization for community detection, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2018, pp. 1393–1402. – start-page: 684 year: 2005 end-page: 698 ident: b46 article-title: Acquiring linear subspaces for face recognition under variable lighting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 14 start-page: 11 year: 2018 ident: b34 article-title: Visual background recommendation for dance performances using deep matrix factorization publication-title: ACM Trans. Multimed. Comput. Commun. Appl. – volume: 21 start-page: 734 year: 2010 end-page: 749 ident: b54 article-title: Linear and nonlinear projective nonnegative matrix factorization publication-title: IEEE Trans. Neural Netw. – volume: 260 start-page: 149 year: 2014 end-page: 166 ident: b18 article-title: A convergent algorithm for orthogonal nonnegative matrix factorization publication-title: J. Comput. Appl. Math. – volume: 10 start-page: 391 year: 1997 end-page: 403 ident: b42 article-title: QAPLIB–A quadratic assignment problem library publication-title: J. Global Optim. – volume: 103 start-page: 285 year: 2016 end-page: 306 ident: b20 article-title: A column-wise update algorithm for nonnegative matrix factorization in bregman divergence with an orthogonal constraint publication-title: Mach. Learn. – reference: H. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, Deep matrix factorization models for recommender systems, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2017, pp. 3203–3209. – start-page: 711 year: 1997 end-page: 720 ident: b50 article-title: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 15 start-page: 4591 year: 2019 end-page: 4601 ident: b35 article-title: Deep matrix factorization with implicit feedback embedding for recommendation system publication-title: IEEE Trans. Ind. Inform. – reference: C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix t-factorizations for clustering, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, pp. 126–135. – reference: S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in: Proceedings of the International Joint Conference on Neural Networks, 2008, pp. 1828–1832. – volume: 201–202 year: 2020 ident: b21 article-title: Robust orthogonal nonnegative matrix tri-factorization for data representation publication-title: Knowl.-Based Syst. – reference: Y. Liu, Y. Dai, Z. Luo, On the complexity of leakage interference minimization for interference alignment, in: Proceedings of the International Workshop on Signal Processing Advances in Wireless Communications, 2011, pp. 471–475. – volume: 238 start-page: 139 year: 2017 end-page: 151 ident: b24 article-title: Graph regularized multilayer concept factorization for data representation publication-title: Neurocomputing – reference: X. Guo, L. Gao, X. Liu, J. Yin, Improved deep embedded clustering with local structure preservation, in: Proceedings of the International Joint Conference on Artificial Intelligence, 2017, pp. 1753–1759. – volume: 161 start-page: 26 year: 2018 end-page: 34 ident: b3 article-title: Fast independent component analysis algorithm with a simple closed-form solution publication-title: Knowl.-Based Syst. – reference: Q. Wang, M. Sun, L. Zhan, P. Thompson, S. Ji, J. Zhou, Multi-modality disease modeling via collective deep matrix factorization, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Dining, 2017, pp. 1155–1164. – year: 2017 ident: b13 article-title: Deep approximately orthogonal nonnegative matrix factorization for clustering – volume: 2 start-page: 83 year: 1955 end-page: 97 ident: b53 article-title: The hungarian method for the assignment problem publication-title: Naval Res. Logist. Q. – start-page: 149 year: 2013 end-page: 176 ident: b22 article-title: Nonnegative matrix factorizations for clustering: A survey publication-title: Data Clust. Algorithms Appl. – reference: U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, Y. Kluger, Spectralnet: Spectral clustering using deep neural networks, in: Proceedings of the International Conference on Learning Representations, 2018. – reference: S. Arora, N. Cohen, W. Hu, Y. Luo, Implicit regularization in deep matrix factorization, in: Proceedings of the Advances in Neural Information Processing Systems, 2019, pp. 7413–7424. – volume: 2 start-page: 37 year: 1987 end-page: 52 ident: b4 article-title: Principal component analysis publication-title: Chemometr. Intell. Lab. Syst. – volume: 39 start-page: 1 year: 1977 end-page: 22 ident: b44 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. – volume: 141 start-page: 15 year: 2014 end-page: 25 ident: b17 article-title: Two algorithms for orthogonal nonnegative matrix factorization with application to clustering publication-title: Neurocomputing – start-page: 134 year: 1971 end-page: 151 ident: b1 article-title: Singular value decomposition and least squares solutions publication-title: Linear Algebra – volume: 26 start-page: 276 year: 2016 end-page: 288 ident: b27 article-title: Weakly supervised deep matrix factorization for social image understanding publication-title: IEEE Trans. Image Process. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b37 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – year: 2008 ident: b61 article-title: Introduction to Information Retrieval, vol. 39 – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: b9 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 166 start-page: 132 year: 2019 end-page: 139 ident: b41 article-title: Attribute mapping and autoencoder neural network based matrix factorization initialization for recommendation systems publication-title: Knowl.-Based Syst. – year: 2009 ident: b2 article-title: Statistical Factor Analysis and Related Methods: Theory and Applications – year: 1996 ident: b49 article-title: Columbia Object Image Library (coil-20) – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b60 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 39 start-page: 417 year: 2016 end-page: 429 ident: b29 article-title: A deep matrix factorization method for learning attribute representations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: H. Li, X. Zhu, Y. Fan, Identification of multi-scale hierarchical brain functional networks using deep matrix factorization, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018, pp. 223–231. – reference: B. Lyu, K. Xie, W. Sun, A deep orthogonal non-negative matrix factorization method for learning attribute representations, in: International Conference on Neural Information Processing, 2017, pp. 443–452. – volume: 98 start-page: 34 year: 2018 end-page: 41 ident: b32 article-title: Matrix completion by deep matrix factorization publication-title: Neural Netw. – reference: D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Proceedings of the Advances in Neural Information Processing Systems, 2001, pp. 556–562. – reference: G. Trigeorgis, K. Bousmalis, S. Zafeiriou, B. Schuller, A deep semi-nmf model for learning hidden representations, in: Proceedings of the International Conference on Machine Learning, 2014, pp. 1692–1700. – volume: 41 start-page: 1283 year: 2014 end-page: 1293 ident: b16 article-title: Discriminative orthogonal nonnegative matrix factorization with flexibility for data representation publication-title: Expert Syst. Appl. – reference: H. Zhao, Z. Ding, Y. Fu, Multi-view clustering via deep matrix factorization, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 2921–2927. – reference: W. Xu, Y. Gong, Document clustering by concept factorization, in: Proceedings of the ACM SIGIR Annual International Conference on Research and Development in Information Retrieval, 2004, pp. 202–209. – ident: 10.1016/j.knosys.2021.107236_b51 doi: 10.1109/ACV.1994.341300 – ident: 10.1016/j.knosys.2021.107236_b59 doi: 10.1109/CVPR.2019.00419 – volume: 10 start-page: 391 issue: 4 year: 1997 ident: 10.1016/j.knosys.2021.107236_b42 article-title: QAPLIB–A quadratic assignment problem library publication-title: J. Global Optim. doi: 10.1023/A:1008293323270 – ident: 10.1016/j.knosys.2021.107236_b15 doi: 10.1109/IJCNN.2008.4634046 – ident: 10.1016/j.knosys.2021.107236_b26 doi: 10.1109/MMSP.2015.7340796 – year: 2008 ident: 10.1016/j.knosys.2021.107236_b61 – ident: 10.1016/j.knosys.2021.107236_b39 doi: 10.1145/3269206.3271697 – year: 2017 ident: 10.1016/j.knosys.2021.107236_b13 – ident: 10.1016/j.knosys.2021.107236_b28 doi: 10.1609/aaai.v31i1.10867 – ident: 10.1016/j.knosys.2021.107236_b30 doi: 10.1145/3097983.3098164 – volume: 389 start-page: 56 year: 2020 ident: 10.1016/j.knosys.2021.107236_b5 article-title: A novel patch-based nonlinear matrix completion algorithm for image analysis through convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.037 – volume: 98 start-page: 34 year: 2018 ident: 10.1016/j.knosys.2021.107236_b32 article-title: Matrix completion by deep matrix factorization publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.10.007 – volume: 22 start-page: 843 issue: 7 year: 2014 ident: 10.1016/j.knosys.2021.107236_b38 article-title: Two efficient algorithms for approximately orthogonal nonnegative matrix factorization publication-title: IEEE Signal Process. Lett. – volume: 42 start-page: 947 issue: 16 year: 2006 ident: 10.1016/j.knosys.2021.107236_b23 article-title: Multilayer nonnegative matrix factorisation publication-title: Electron. Lett. doi: 10.1049/el:20060983 – volume: 25 start-page: 1336 issue: 6 year: 2012 ident: 10.1016/j.knosys.2021.107236_b10 article-title: Nonnegative matrix factorization: A comprehensive review publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2012.51 – volume: 201–202 year: 2020 ident: 10.1016/j.knosys.2021.107236_b21 article-title: Robust orthogonal nonnegative matrix tri-factorization for data representation publication-title: Knowl.-Based Syst. – ident: 10.1016/j.knosys.2021.107236_b11 doi: 10.1145/1150402.1150420 – ident: 10.1016/j.knosys.2021.107236_b31 doi: 10.1007/978-3-030-00931-1_26 – volume: 39 start-page: 417 issue: 3 year: 2016 ident: 10.1016/j.knosys.2021.107236_b29 article-title: A deep matrix factorization method for learning attribute representations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2554555 – ident: 10.1016/j.knosys.2021.107236_b58 – ident: 10.1016/j.knosys.2021.107236_b33 doi: 10.24963/ijcai.2017/447 – volume: 15 start-page: 4591 issue: 8 year: 2019 ident: 10.1016/j.knosys.2021.107236_b35 article-title: Deep matrix factorization with implicit feedback embedding for recommendation system publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2893714 – start-page: 149 year: 2013 ident: 10.1016/j.knosys.2021.107236_b22 article-title: Nonnegative matrix factorizations for clustering: A survey publication-title: Data Clust. Algorithms Appl. – start-page: 684 issue: 5 year: 2005 ident: 10.1016/j.knosys.2021.107236_b46 article-title: Acquiring linear subspaces for face recognition under variable lighting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 260 start-page: 149 year: 2014 ident: 10.1016/j.knosys.2021.107236_b18 article-title: A convergent algorithm for orthogonal nonnegative matrix factorization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.09.022 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 10.1016/j.knosys.2021.107236_b14 article-title: Algorithm AS 136: A k-means clustering algorithm publication-title: J. R. Stat. Soc. – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.knosys.2021.107236_b9 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 41 start-page: 1283 issue: 4 year: 2014 ident: 10.1016/j.knosys.2021.107236_b16 article-title: Discriminative orthogonal nonnegative matrix factorization with flexibility for data representation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.026 – volume: 161 start-page: 26 year: 2018 ident: 10.1016/j.knosys.2021.107236_b3 article-title: Fast independent component analysis algorithm with a simple closed-form solution publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.07.027 – year: 2009 ident: 10.1016/j.knosys.2021.107236_b2 – volume: 141 start-page: 15 year: 2014 ident: 10.1016/j.knosys.2021.107236_b17 article-title: Two algorithms for orthogonal nonnegative matrix factorization with application to clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.018 – volume: 25 start-page: 1615 issue: 12 year: 2003 ident: 10.1016/j.knosys.2021.107236_b48 article-title: The CMU pose, illumination, and expression database publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1251154 – volume: 103 start-page: 285 issue: 2 year: 2016 ident: 10.1016/j.knosys.2021.107236_b20 article-title: A column-wise update algorithm for nonnegative matrix factorization in bregman divergence with an orthogonal constraint publication-title: Mach. Learn. doi: 10.1007/s10994-016-5553-0 – volume: 194 year: 2020 ident: 10.1016/j.knosys.2021.107236_b19 article-title: Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105582 – ident: 10.1016/j.knosys.2021.107236_b40 doi: 10.1137/1.9781611972757.70 – ident: 10.1016/j.knosys.2021.107236_b43 doi: 10.1109/SPAWC.2011.5990455 – start-page: 711 issue: 7 year: 1997 ident: 10.1016/j.knosys.2021.107236_b50 article-title: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598228 – ident: 10.1016/j.knosys.2021.107236_b12 doi: 10.1007/978-3-319-70136-3_47 – year: 2020 ident: 10.1016/j.knosys.2021.107236_b36 – volume: 8 start-page: 374 issue: 3 year: 2005 ident: 10.1016/j.knosys.2021.107236_b52 article-title: Generative model-based document clustering: a comparative study publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-004-0194-1 – start-page: 134 year: 1971 ident: 10.1016/j.knosys.2021.107236_b1 article-title: Singular value decomposition and least squares solutions publication-title: Linear Algebra – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.knosys.2021.107236_b44 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 10.1016/j.knosys.2021.107236_b57 doi: 10.24963/ijcai.2017/243 – volume: 2 start-page: 37 issue: 1–3 year: 1987 ident: 10.1016/j.knosys.2021.107236_b4 article-title: Principal component analysis publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 – volume: 26 start-page: 276 issue: 1 year: 2016 ident: 10.1016/j.knosys.2021.107236_b27 article-title: Weakly supervised deep matrix factorization for social image understanding publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2624140 – volume: 2 start-page: 83 issue: 1–2 year: 1955 ident: 10.1016/j.knosys.2021.107236_b53 article-title: The hungarian method for the assignment problem publication-title: Naval Res. Logist. Q. doi: 10.1002/nav.3800020109 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.knosys.2021.107236_b37 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: 10.1016/j.knosys.2021.107236_b56 – year: 1996 ident: 10.1016/j.knosys.2021.107236_b49 – ident: 10.1016/j.knosys.2021.107236_b25 – volume: 43 start-page: 1897 issue: 6 year: 2021 ident: 10.1016/j.knosys.2021.107236_b55 article-title: Deep non-negative matrix factorization architecture based on underlying basis images learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2962679 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 10.1016/j.knosys.2021.107236_b60 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 14 start-page: 11 issue: 1 year: 2018 ident: 10.1016/j.knosys.2021.107236_b34 article-title: Visual background recommendation for dance performances using deep matrix factorization publication-title: ACM Trans. Multimed. Comput. Commun. Appl. doi: 10.1145/3152463 – ident: 10.1016/j.knosys.2021.107236_b45 – volume: 238 start-page: 139 year: 2017 ident: 10.1016/j.knosys.2021.107236_b24 article-title: Graph regularized multilayer concept factorization for data representation publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.045 – volume: 166 start-page: 132 year: 2019 ident: 10.1016/j.knosys.2021.107236_b41 article-title: Attribute mapping and autoencoder neural network based matrix factorization initialization for recommendation systems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.12.022 – volume: 135 start-page: 147 year: 2017 ident: 10.1016/j.knosys.2021.107236_b7 article-title: A novel regularized concept factorization for document clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.08.010 – start-page: 328 issue: 3 year: 2005 ident: 10.1016/j.knosys.2021.107236_b47 article-title: Face recognition using laplacianfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 21 start-page: 734 issue: 5 year: 2010 ident: 10.1016/j.knosys.2021.107236_b54 article-title: Linear and nonlinear projective nonnegative matrix factorization publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2041361 – ident: 10.1016/j.knosys.2021.107236_b62 – volume: 5 start-page: 111 issue: 2 year: 1994 ident: 10.1016/j.knosys.2021.107236_b8 article-title: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values publication-title: Environmetrics doi: 10.1002/env.3170050203 – ident: 10.1016/j.knosys.2021.107236_b6 doi: 10.1145/1008992.1009029 |
| SSID | ssj0002218 |
| Score | 2.4738564 |
| Snippet | Orthogonal Nonnegative Matrix Factorization (ONMF) offers an important analytical vehicle for addressing many problems. Encouraged by record-breaking successes... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107236 |
| SubjectTerms | Auxiliary function Coders Complexity Computation Convergence Deep autoencoder network Deep structure Experiments Factorization Grammatical aspect Iterative methods Matrices Multiplication update rule Networks Novels Orthogonal Nonnegative Matrix Factorization Retraining Uniqueness |
| Title | Orthogonal Nonnegative Matrix Factorization using a novel deep Autoencoder Network |
| URI | https://dx.doi.org/10.1016/j.knosys.2021.107236 https://www.proquest.com/docview/2566526532 |
| Volume | 227 |
| WOSCitedRecordID | wos000677995700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb5swGLe2dodd9p7arZt82A05AhuwfYyqVu2mZtPUSdkJGTDpuhaiFKr8-f38gCSttq6HSQghAx8WP_t76Xsg9CmVpYLFy4iORUliXSki0kSSKJWmebRM4kLYZhN8MhHTqfzmW9xf2XYCvK7Fcinn_xVqGAOwTersA-AeiMIAXAPocAbY4fxPwH9dtGfNzDr4JiaKZeZKe5-YWvzL4ND21_HJl0FnPQUqqJtrfRGUWs-Dcdc2prhl6bKBTdzWugL7pffBESP_Sl8JelDMf3r38wnQveylIoxPO-tmberZWafWPQ00sqFUyYbLMCQ89AViPfekLrXf8z8wJqkraHKHNTsvwfnod93A1EbmA6PV45uVsG9JqCFusA9JO88clcxQyRyVx2ib8kQCc94eHx9MPw_ymFLr5R1m3ydQ2ii_u7P5k4JyS1Rb_eP0BXrmDQc8doC_RI90_Qo975tyYM-jX6PvK_zxGv7Y4Y838McWf6ywxR8b_PEa_tjj_wb9ODw43T8ivnEGKRiLW6JYHrE8ZEmZVGWuZAJbEMxUoVUexoWSTOelAsM7SjnXrJAqFrqM4OBc0SSn7C3aqpta7yCsRKpoxLTgtIoLYPdVLjUo6ZWKZCXCfBex_m9lha8qb5qbXGR_w2oXkeGtuauqcs_zvAci85qh0_gyWF33vLnX45b5TQr3wYYxbSEYfffAibxHT1c7Yw9ttYtOf0BPiuv219Xio195N7swk0U |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthogonal+Nonnegative+Matrix+Factorization+using+a+novel+deep+Autoencoder+Network&rft.jtitle=Knowledge-based+systems&rft.au=Yang%2C+Mingming&rft.au=Xu%2C+Songhua&rft.date=2021-09-05&rft.issn=0950-7051&rft.volume=227&rft.spage=107236&rft_id=info:doi/10.1016%2Fj.knosys.2021.107236&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2021_107236 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |