Active Steering Controller for Driven Independently Rotating Wheelset Vehicles Based on Deep Reinforcement Learning

This paper proposes an active steering controller for Driven Independently Rotating Wheelset (DIRW) vehicles based on deep reinforcement learning (DRL). For the two-axle railway vehicles equipped with Independently Rotating Wheelsets (IRWs), each wheel connected to a wheel-side motor, the Ape-X DDPG...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Processes Ročník 11; číslo 9; s. 2677
Hlavní autoři: Lu, Zhenggang, Wei, Juyao, Wang, Zehan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2023
Témata:
ISSN:2227-9717, 2227-9717
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes an active steering controller for Driven Independently Rotating Wheelset (DIRW) vehicles based on deep reinforcement learning (DRL). For the two-axle railway vehicles equipped with Independently Rotating Wheelsets (IRWs), each wheel connected to a wheel-side motor, the Ape-X DDPG controller, an enhanced version of the Deep Deterministic Policy Gradient (DDPG) algorithm, is adopted. Incorporating Distributed Prioritized Experience Replay (DPER), Ape-X DDPG trains neural network function approximators to obtain a data-driven DIRW active steering controller. This controller is utilized to control the input torque of each wheel, aiming to improve the steering capability of IRWs. Simulation results indicate that compared to the existing model-based H∞ control algorithm and data-driven DDPG control algorithm, the Ape-X DDPG active steering controller demonstrates better curving steering performance and centering ability in straight tracks across different running conditions and significantly reduces wheel–rail wear. To validate the proposed algorithm’s efficacy in real vehicles, a 1:5 scale model of the DIRW vehicle and its digital twin dynamic model were designed and manufactured. The proposed control algorithm was deployed on the scale vehicle and subjected to active steering control experiments on a scaled track. The experimental results reveal that under the active steering control of the Ape-X DDPG controller, the steering performance of the DIRW scale model on both straight and curved tracks is significantly enhanced.
AbstractList This paper proposes an active steering controller for Driven Independently Rotating Wheelset (DIRW) vehicles based on deep reinforcement learning (DRL). For the two-axle railway vehicles equipped with Independently Rotating Wheelsets (IRWs), each wheel connected to a wheel-side motor, the Ape-X DDPG controller, an enhanced version of the Deep Deterministic Policy Gradient (DDPG) algorithm, is adopted. Incorporating Distributed Prioritized Experience Replay (DPER), Ape-X DDPG trains neural network function approximators to obtain a data-driven DIRW active steering controller. This controller is utilized to control the input torque of each wheel, aiming to improve the steering capability of IRWs. Simulation results indicate that compared to the existing model-based H∞ control algorithm and data-driven DDPG control algorithm, the Ape-X DDPG active steering controller demonstrates better curving steering performance and centering ability in straight tracks across different running conditions and significantly reduces wheel–rail wear. To validate the proposed algorithm’s efficacy in real vehicles, a 1:5 scale model of the DIRW vehicle and its digital twin dynamic model were designed and manufactured. The proposed control algorithm was deployed on the scale vehicle and subjected to active steering control experiments on a scaled track. The experimental results reveal that under the active steering control of the Ape-X DDPG controller, the steering performance of the DIRW scale model on both straight and curved tracks is significantly enhanced.
Audience Academic
Author Lu, Zhenggang
Wang, Zehan
Wei, Juyao
Author_xml – sequence: 1
  givenname: Zhenggang
  surname: Lu
  fullname: Lu, Zhenggang
– sequence: 2
  givenname: Juyao
  orcidid: 0009-0008-9766-0940
  surname: Wei
  fullname: Wei, Juyao
– sequence: 3
  givenname: Zehan
  surname: Wang
  fullname: Wang, Zehan
BookMark eNptkdtKAzEQhoNU8NQbnyDgnVDNYXeTvayth0JB8Hi5ZLOzbWSbrEkq-PZmqaCIGUiG5P8mwz9HaGSdBYROKbngvCSXvaeUlKwQYg8dMsbEpBRUjH7lB2gcwhtJq6Rc5sUhClMdzQfgxwjgjV3hmbPRu64Dj1vn8dynV4sXtoEe0mZj94kfXFRxEL-uAboAEb_A2ugOAr5SARrsLJ4D9PgBjE1VNGwSiJegvE3YCdpvVcLG3-cxer65fprdTZb3t4vZdDnRnGdxokhby1JnQksyhJY50KZoGk6yBspG5YxrLgnXBZNtRmlb10VGlMqyWsla8WN0tqvbe_e-hRCrN7f1Nn1ZMVmUeV4SypLqYqdaqQ6qod_olU7RwMbo5HBr0v1UCCopI1Ik4HwHaO9C8NBWvTcb5T8rSqphENXPIJKY_BFrM5g3uKxM9x_yBR0sjYQ
CitedBy_id crossref_primary_10_3390_electronics13203983
crossref_primary_10_1080_27525783_2025_2533858
crossref_primary_10_3390_app14041677
crossref_primary_10_1007_s12206_025_0335_x
Cites_doi 10.1007/s40534-020-00207-w
10.1007/978-3-031-07305-2_10
10.3390/en16083490
10.1177/0954409718777374
10.1049/itr2.12176
10.1080/00423114.2020.1780455
10.1007/s12239-021-0129-9
10.1177/0954409716629705
10.5370/JEET.2016.11.4.1042
10.1504/IJMA.2022.120487
10.1109/87.930970
10.1080/15472450.2022.2046472
10.1109/TMECH.2022.3233705
10.1109/TVT.2022.3205452
10.5604/01.3001.0014.4234
10.1177/16878132221130574
10.1080/00423114.2018.1437273
10.1016/j.arcontrol.2004.02.004
10.1002/pamm.201710366
10.1049/iet-pel.2013.0882
10.1038/s41598-023-29526-8
10.3390/pr10122748
10.1109/TPEL.2020.2971637
10.1080/00423114.2014.881514
10.1109/TMAG.2018.2842433
10.1080/00423114.2002.11666243
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/pr11092677
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID A771812087
10_3390_pr11092677
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c334t-a0fb89c47c808080c85e1d6dd304de9da523c3803c628f411fbb640aa44ba8ba3
IEDL.DBID M7P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001074280900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Fri Jul 25 12:02:20 EDT 2025
Tue Nov 04 18:36:25 EST 2025
Tue Nov 18 21:55:01 EST 2025
Sat Nov 29 07:18:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-a0fb89c47c808080c85e1d6dd304de9da523c3803c628f411fbb640aa44ba8ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-9766-0940
OpenAccessLink https://www.proquest.com/docview/2869559012?pq-origsite=%requestingapplication%
PQID 2869559012
PQPubID 2032344
ParticipantIDs proquest_journals_2869559012
gale_infotracacademiconefile_A771812087
crossref_primary_10_3390_pr11092677
crossref_citationtrail_10_3390_pr11092677
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lu (ref_16) 2017; 231
Lu (ref_14) 2019; 233
Deng (ref_21) 2023; 28
ref_36
ref_35
ref_34
ref_33
ref_32
ref_31
Oh (ref_3) 2018; 54
ref_17
ref_39
ref_38
ref_37
Ahn (ref_10) 2016; 11
Liu (ref_11) 2021; 59
Sresakoolchai (ref_27) 2023; 13
Mei (ref_5) 2002; 37
Mei (ref_19) 2001; 9
Fu (ref_1) 2020; 28
Yang (ref_15) 2022; 14
ref_23
Cheng (ref_24) 2023; 27
Busturia (ref_4) 2004; 28
ref_20
Wei (ref_22) 2022; 16
Chudzikiewicz (ref_6) 2020; 55
ref_2
ref_29
Moriya (ref_30) 2022; 9
Wang (ref_25) 2022; 72
Mei (ref_8) 2014; 7
ref_9
Grether (ref_13) 2017; 17
(ref_18) 2021; 22
Farazi (ref_28) 2021; 11
Ji (ref_7) 2018; 56
Kurzeck (ref_12) 2014; 52
Zhu (ref_26) 2020; 35
References_xml – ident: ref_9
– volume: 28
  start-page: 3
  year: 2020
  ident: ref_1
  article-title: Active suspension in railway vehicles: A literature survey
  publication-title: Railw. Eng. Sci.
  doi: 10.1007/s40534-020-00207-w
– ident: ref_32
– ident: ref_17
  doi: 10.1007/978-3-031-07305-2_10
– ident: ref_23
  doi: 10.3390/en16083490
– ident: ref_34
– volume: 233
  start-page: 33
  year: 2019
  ident: ref_14
  article-title: Robust active guidance control using the µ-synthesis method for a tramcar with independently rotating wheelsets
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
  doi: 10.1177/0954409718777374
– volume: 16
  start-page: 813
  year: 2022
  ident: ref_22
  article-title: Deep reinforcement learning based active safety control for distributed drive electric vehicles
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/itr2.12176
– volume: 59
  start-page: 1719
  year: 2021
  ident: ref_11
  article-title: Active control of independently-rotating wheels with gyroscopes and tachometers–simple solutions for perfect curving and high stability performance
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2020.1780455
– volume: 22
  start-page: 1495
  year: 2021
  ident: ref_18
  article-title: Neuro-fuzzy modelling and stable PD controller for angular position in steering systems
  publication-title: Int. J. Automot. Technol.
  doi: 10.1007/s12239-021-0129-9
– volume: 231
  start-page: 295
  year: 2017
  ident: ref_16
  article-title: Integrated active control of independently rotating wheels on rail vehicles via observers
  publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
  doi: 10.1177/0954409716629705
– volume: 11
  start-page: 1042
  year: 2016
  ident: ref_10
  article-title: Control of the lateral displacement restoring force of IRWs for sharp curved driving
  publication-title: J. Electr. Eng. Technol.
  doi: 10.5370/JEET.2016.11.4.1042
– ident: ref_39
– ident: ref_37
– ident: ref_35
– volume: 9
  start-page: 22
  year: 2022
  ident: ref_30
  article-title: A robotic wheel locally transforming its diameters and the reinforcement learning for robust locomotion
  publication-title: Int. J. Mechatron. Autom.
  doi: 10.1504/IJMA.2022.120487
– volume: 9
  start-page: 599
  year: 2001
  ident: ref_19
  article-title: Robust control for independently rotating wheelsets on a railway vehicle using practical sensors
  publication-title: IEEE Trans. Control. Syst. Technol.
  doi: 10.1109/87.930970
– volume: 27
  start-page: 396
  year: 2023
  ident: ref_24
  article-title: Online longitudinal trajectory planning for connected and autonomous vehicles in mixed traffic flow with deep reinforcement learning approach
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/15472450.2022.2046472
– volume: 28
  start-page: 668
  year: 2023
  ident: ref_21
  article-title: Fault-tolerant predictive control with deep-reinforcement-learning-based torque distribution for four in-wheel motor drive electric vehicles
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3233705
– volume: 72
  start-page: 227
  year: 2022
  ident: ref_25
  article-title: Deep reinforcement learning based active pantograph control strategy in high-speed railway
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3205452
– volume: 55
  start-page: 73
  year: 2020
  ident: ref_6
  article-title: Modeling and simulation of a control system of wheels of wheelset
  publication-title: Arch. Transp.
  doi: 10.5604/01.3001.0014.4234
– volume: 14
  start-page: 16878132221130574
  year: 2022
  ident: ref_15
  article-title: Robust LPV-H∞ control for active steering of tram with independently rotating wheels
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/16878132221130574
– volume: 56
  start-page: 1883
  year: 2018
  ident: ref_7
  article-title: Boundary conditions of active steering control of independent rotating wheelset based on hub motor and wheel rotating speed difference feedback
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2018.1437273
– ident: ref_31
– ident: ref_33
– ident: ref_2
– volume: 28
  start-page: 207
  year: 2004
  ident: ref_4
  article-title: Combined active steering and traction for mechatronic bogie vehicles with independently rotating wheels
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2004.02.004
– volume: 17
  start-page: 797
  year: 2017
  ident: ref_13
  article-title: Dynamics of a running gear with IRWs on curved tracks for a robust control development
  publication-title: PAMM
  doi: 10.1002/pamm.201710366
– volume: 7
  start-page: 2279
  year: 2014
  ident: ref_8
  article-title: Control of wheel motors for the provision of traction and steering of railway vehicles
  publication-title: IET Power Electron.
  doi: 10.1049/iet-pel.2013.0882
– volume: 13
  start-page: 2439
  year: 2023
  ident: ref_27
  article-title: Railway infrastructure maintenance efficiency improvement using deep reinforcement learning integrated with digital twin based on track geometry and component defects
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-29526-8
– ident: ref_29
  doi: 10.3390/pr10122748
– volume: 35
  start-page: 9368
  year: 2020
  ident: ref_26
  article-title: Decentralized cooperative control of multiple energy storage systems in urban railway based on multiagent deep reinforcement learning
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2971637
– volume: 52
  start-page: 109
  year: 2014
  ident: ref_12
  article-title: Mechatronic track guidance on disturbed track: The trade-off between actuator performance and wheel wear
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2014.881514
– ident: ref_38
– ident: ref_36
– volume: 11
  start-page: 100425
  year: 2021
  ident: ref_28
  article-title: Deep reinforcement learning in transportation research: A review
  publication-title: Transp. Res. Interdiscip. Perspect.
– volume: 54
  start-page: 8205305
  year: 2018
  ident: ref_3
  article-title: Design, modeling, and analysis of a railway traction motor with independently rotating wheelsets
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2018.2842433
– volume: 37
  start-page: 326
  year: 2002
  ident: ref_5
  article-title: Dynamics and control assessment of rail vehicles using permanent magnet wheel motors
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2002.11666243
– ident: ref_20
SSID ssj0000913856
Score 2.2835171
Snippet This paper proposes an active steering controller for Driven Independently Rotating Wheelset (DIRW) vehicles based on deep reinforcement learning (DRL). For...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2677
SubjectTerms Active control
Algorithms
Control algorithms
Control theory
Controllers
Deep learning
Design
Digital twins
Dynamic models
Efficiency
H-infinity control
Machine learning
Neural networks
Product enhancement
Railway tracks
Reinforcement
Robotics
Robust control
Rotation
Scale models
Steering
Trains
Vehicles
Wheels
Wheelsets
Title Active Steering Controller for Driven Independently Rotating Wheelset Vehicles Based on Deep Reinforcement Learning
URI https://www.proquest.com/docview/2869559012
Volume 11
WOSCitedRecordID wos001074280900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB31gwM9AC1ULW1XlkCCHkKd2Os4J7TbbkWFWEXLh8opcmynRVrtLklA6oXfjsfxbotU9cIlF48iR2O_GY8n7wG8zmjfVrFG1QDKIy5VP3JhqIrcHhepqVhiDPViE-l4LC8vszwU3JrQVrnERA_UZq6xRn6SSIFkaQ5P3y9-RqgahberQUJjHTaRJSHxrXv5qsaCnJeyLzpWUuZO9yeLGhk2E5Gm_8Sh-9HYh5jzp_87uWfwJCSXZNCthm1Ys7Md2LpDObgD22EzN-RtYJw-fg7NwKMe-dx2ZuS0a2Cf2pq4pJac1YiJ5GIlmdtOb8hkjrf4ztjhOQbYlnyz177JjgxdaDRkPiNn1i7IxHp2Vu0LkSQQul69gK_noy-nH6KgxhBpxngbKVqVMtM81UhFKamWfRsbYQyj3NjMKHek1UxSpkUiKx7HVVkKTpXivFSyVGwXNmbzmd0D4rJKYZkqVaxKXgmDnIXS8oxx42K21ftwvPRNoQNVOSpmTAt3ZEE_Frd-3IdXK9tFR9Bxr9UbdHGB3-vepFX4-cDNB_mvikGaYqpDpbM8XLq4CNu5KW79-_Lh4QN4jHr0XRPaIWy09S97BI_07_ZHU_dgczga55MerH8cvuv5tYrPPyM3kl98yr__BcCJ9eU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRLlALRQUShgCRD0ENWJvY5zQGjpUnXVdrUqBZVTcGwHkFa7SxJA_VP8RmbysQWp4tYD54wsx3l-M-OM3wA8S3jf56GlrgFcBlKbfoBuKA9wj6vY5SJyjtfNJuLxWJ-dJZMV-NXdhaGyyo4Ta6J2c0tn5LuRViSWhnz6evEtoK5R9He1a6HRwOLQn__ElK18NRri930eRftvT_cOgrarQGCFkFVgeJ7pxMrYkqSi5lb3feiUc5jYO584g6mZFZoLqyKdyzDMs0xJboyUmdGZETjuNViVBPYerE5Gx5OPy1MdUtnUfdXooAqR8N1FQZqekYrjvzzf5fxfO7X92__bctyBW234zAYN3tdhxc824OYfooobsN7SVcletpraO3ehHNS8zt5VjRnba0r0p75gGLazYUGsz0bLpsDV9JydzKlOAY3RY1EIUbEP_ktdRsjeoPN3bD5jQ-8X7MTX-rO2PmplrWTt53vw_kqWYhN6s_nM3weGcbPywmQmNJnMlSNVRu1lIqTDqMTbLdjpsJDaVoydeoJMU0zKCDfpBW624OnSdtFIkFxq9YIgldL74kjWtNcrcD6k8JUO4piCOa7RcruDVNoSVple4OnBvx8_gRsHp8dH6dFofPgQ1iKM-ZqSu23oVcV3_wiu2x_V17J43O4NBp-uGn-_ASDhT5E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDqHxAGwwMRhgCRDsIWoSu47zgFBZqagGVTV-aDwFx3YAqWpLEkD71_jruEucDqSJtz3wnJPlOJ_vvnPO3wE8SsOBKyJDXQNCEQilBwGGoSLAPS4TW_DY2rBpNpFMp-rkJJ1twK_uLgyVVXY-sXHUdmnojLwfK0liaehP-4Uvi5iNxs9X3wLqIEV_Wrt2Gi1EjtzpT0zfqmeTEX7rx3E8fvnu8FXgOwwEhnNRBzoscpUakRiSV1ShUQMXWWktJvnWpVZjmma4CrmRsSpEFBV5LkWotRC5VrnmOO4l2ERKLuIebM4mb2Yf1yc8pLipBrLVROU8DfurkvQ9Y5kkf0XB82NBE-DG1__npbkB1zytZsN2H2zDhlvswNU_xBZ3YNu7sYo99VrbBzehGjb-nr2tWzN22Jbuz13JkM6zUUnRgE3WzYLr-Sk7XlL9AhpjJCNqUbMP7ktTXsheICmwbLlgI-dW7Ng1urSmOYJlXsr28y14fyFLsQu9xXLhbgNDPi0d17mOdC4KaUmtUTmRcmGRrTizBwcdLjLjRdqpV8g8w2SNMJSdYWgPHq5tV600yblWTwheGb0vjmS0v3aB8yHlr2yYJETyQoWW-x28Mu_IquwMW3f-_fgBXEHQZa8n06O7sBUjFWwr8fahV5ff3T24bH7UX6vyvt8mDD5dNPx-A4_lWFE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Steering+Controller+for+Driven+Independently+Rotating+Wheelset+Vehicles+Based+on+Deep+Reinforcement+Learning&rft.jtitle=Processes&rft.au=Lu%2C+Zhenggang&rft.au=Wei%2C+Juyao&rft.au=Wang%2C+Zehan&rft.date=2023-09-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=11&rft.issue=9&rft.spage=2677&rft_id=info:doi/10.3390%2Fpr11092677&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr11092677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon