Active Steering Controller for Driven Independently Rotating Wheelset Vehicles Based on Deep Reinforcement Learning
This paper proposes an active steering controller for Driven Independently Rotating Wheelset (DIRW) vehicles based on deep reinforcement learning (DRL). For the two-axle railway vehicles equipped with Independently Rotating Wheelsets (IRWs), each wheel connected to a wheel-side motor, the Ape-X DDPG...
Uloženo v:
| Vydáno v: | Processes Ročník 11; číslo 9; s. 2677 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.09.2023
|
| Témata: | |
| ISSN: | 2227-9717, 2227-9717 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes an active steering controller for Driven Independently Rotating Wheelset (DIRW) vehicles based on deep reinforcement learning (DRL). For the two-axle railway vehicles equipped with Independently Rotating Wheelsets (IRWs), each wheel connected to a wheel-side motor, the Ape-X DDPG controller, an enhanced version of the Deep Deterministic Policy Gradient (DDPG) algorithm, is adopted. Incorporating Distributed Prioritized Experience Replay (DPER), Ape-X DDPG trains neural network function approximators to obtain a data-driven DIRW active steering controller. This controller is utilized to control the input torque of each wheel, aiming to improve the steering capability of IRWs. Simulation results indicate that compared to the existing model-based H∞ control algorithm and data-driven DDPG control algorithm, the Ape-X DDPG active steering controller demonstrates better curving steering performance and centering ability in straight tracks across different running conditions and significantly reduces wheel–rail wear. To validate the proposed algorithm’s efficacy in real vehicles, a 1:5 scale model of the DIRW vehicle and its digital twin dynamic model were designed and manufactured. The proposed control algorithm was deployed on the scale vehicle and subjected to active steering control experiments on a scaled track. The experimental results reveal that under the active steering control of the Ape-X DDPG controller, the steering performance of the DIRW scale model on both straight and curved tracks is significantly enhanced. |
|---|---|
| AbstractList | This paper proposes an active steering controller for Driven Independently Rotating Wheelset (DIRW) vehicles based on deep reinforcement learning (DRL). For the two-axle railway vehicles equipped with Independently Rotating Wheelsets (IRWs), each wheel connected to a wheel-side motor, the Ape-X DDPG controller, an enhanced version of the Deep Deterministic Policy Gradient (DDPG) algorithm, is adopted. Incorporating Distributed Prioritized Experience Replay (DPER), Ape-X DDPG trains neural network function approximators to obtain a data-driven DIRW active steering controller. This controller is utilized to control the input torque of each wheel, aiming to improve the steering capability of IRWs. Simulation results indicate that compared to the existing model-based H∞ control algorithm and data-driven DDPG control algorithm, the Ape-X DDPG active steering controller demonstrates better curving steering performance and centering ability in straight tracks across different running conditions and significantly reduces wheel–rail wear. To validate the proposed algorithm’s efficacy in real vehicles, a 1:5 scale model of the DIRW vehicle and its digital twin dynamic model were designed and manufactured. The proposed control algorithm was deployed on the scale vehicle and subjected to active steering control experiments on a scaled track. The experimental results reveal that under the active steering control of the Ape-X DDPG controller, the steering performance of the DIRW scale model on both straight and curved tracks is significantly enhanced. |
| Audience | Academic |
| Author | Lu, Zhenggang Wang, Zehan Wei, Juyao |
| Author_xml | – sequence: 1 givenname: Zhenggang surname: Lu fullname: Lu, Zhenggang – sequence: 2 givenname: Juyao orcidid: 0009-0008-9766-0940 surname: Wei fullname: Wei, Juyao – sequence: 3 givenname: Zehan surname: Wang fullname: Wang, Zehan |
| BookMark | eNptkdtKAzEQhoNU8NQbnyDgnVDNYXeTvayth0JB8Hi5ZLOzbWSbrEkq-PZmqaCIGUiG5P8mwz9HaGSdBYROKbngvCSXvaeUlKwQYg8dMsbEpBRUjH7lB2gcwhtJq6Rc5sUhClMdzQfgxwjgjV3hmbPRu64Dj1vn8dynV4sXtoEe0mZj94kfXFRxEL-uAboAEb_A2ugOAr5SARrsLJ4D9PgBjE1VNGwSiJegvE3YCdpvVcLG3-cxer65fprdTZb3t4vZdDnRnGdxokhby1JnQksyhJY50KZoGk6yBspG5YxrLgnXBZNtRmlb10VGlMqyWsla8WN0tqvbe_e-hRCrN7f1Nn1ZMVmUeV4SypLqYqdaqQ6qod_olU7RwMbo5HBr0v1UCCopI1Ik4HwHaO9C8NBWvTcb5T8rSqphENXPIJKY_BFrM5g3uKxM9x_yBR0sjYQ |
| CitedBy_id | crossref_primary_10_3390_electronics13203983 crossref_primary_10_1080_27525783_2025_2533858 crossref_primary_10_3390_app14041677 crossref_primary_10_1007_s12206_025_0335_x |
| Cites_doi | 10.1007/s40534-020-00207-w 10.1007/978-3-031-07305-2_10 10.3390/en16083490 10.1177/0954409718777374 10.1049/itr2.12176 10.1080/00423114.2020.1780455 10.1007/s12239-021-0129-9 10.1177/0954409716629705 10.5370/JEET.2016.11.4.1042 10.1504/IJMA.2022.120487 10.1109/87.930970 10.1080/15472450.2022.2046472 10.1109/TMECH.2022.3233705 10.1109/TVT.2022.3205452 10.5604/01.3001.0014.4234 10.1177/16878132221130574 10.1080/00423114.2018.1437273 10.1016/j.arcontrol.2004.02.004 10.1002/pamm.201710366 10.1049/iet-pel.2013.0882 10.1038/s41598-023-29526-8 10.3390/pr10122748 10.1109/TPEL.2020.2971637 10.1080/00423114.2014.881514 10.1109/TMAG.2018.2842433 10.1080/00423114.2002.11666243 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.3390/pr11092677 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | A771812087 10_3390_pr11092677 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c334t-a0fb89c47c808080c85e1d6dd304de9da523c3803c628f411fbb640aa44ba8ba3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001074280900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9717 |
| IngestDate | Fri Jul 25 12:02:20 EDT 2025 Tue Nov 04 18:36:25 EST 2025 Tue Nov 18 21:55:01 EST 2025 Sat Nov 29 07:18:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-a0fb89c47c808080c85e1d6dd304de9da523c3803c628f411fbb640aa44ba8ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-9766-0940 |
| OpenAccessLink | https://www.proquest.com/docview/2869559012?pq-origsite=%requestingapplication% |
| PQID | 2869559012 |
| PQPubID | 2032344 |
| ParticipantIDs | proquest_journals_2869559012 gale_infotracacademiconefile_A771812087 crossref_primary_10_3390_pr11092677 crossref_citationtrail_10_3390_pr11092677 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Lu (ref_16) 2017; 231 Lu (ref_14) 2019; 233 Deng (ref_21) 2023; 28 ref_36 ref_35 ref_34 ref_33 ref_32 ref_31 Oh (ref_3) 2018; 54 ref_17 ref_39 ref_38 ref_37 Ahn (ref_10) 2016; 11 Liu (ref_11) 2021; 59 Sresakoolchai (ref_27) 2023; 13 Mei (ref_5) 2002; 37 Mei (ref_19) 2001; 9 Fu (ref_1) 2020; 28 Yang (ref_15) 2022; 14 ref_23 Cheng (ref_24) 2023; 27 Busturia (ref_4) 2004; 28 ref_20 Wei (ref_22) 2022; 16 Chudzikiewicz (ref_6) 2020; 55 ref_2 ref_29 Moriya (ref_30) 2022; 9 Wang (ref_25) 2022; 72 Mei (ref_8) 2014; 7 ref_9 Grether (ref_13) 2017; 17 (ref_18) 2021; 22 Farazi (ref_28) 2021; 11 Ji (ref_7) 2018; 56 Kurzeck (ref_12) 2014; 52 Zhu (ref_26) 2020; 35 |
| References_xml | – ident: ref_9 – volume: 28 start-page: 3 year: 2020 ident: ref_1 article-title: Active suspension in railway vehicles: A literature survey publication-title: Railw. Eng. Sci. doi: 10.1007/s40534-020-00207-w – ident: ref_32 – ident: ref_17 doi: 10.1007/978-3-031-07305-2_10 – ident: ref_23 doi: 10.3390/en16083490 – ident: ref_34 – volume: 233 start-page: 33 year: 2019 ident: ref_14 article-title: Robust active guidance control using the µ-synthesis method for a tramcar with independently rotating wheelsets publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit doi: 10.1177/0954409718777374 – volume: 16 start-page: 813 year: 2022 ident: ref_22 article-title: Deep reinforcement learning based active safety control for distributed drive electric vehicles publication-title: IET Intell. Transp. Syst. doi: 10.1049/itr2.12176 – volume: 59 start-page: 1719 year: 2021 ident: ref_11 article-title: Active control of independently-rotating wheels with gyroscopes and tachometers–simple solutions for perfect curving and high stability performance publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2020.1780455 – volume: 22 start-page: 1495 year: 2021 ident: ref_18 article-title: Neuro-fuzzy modelling and stable PD controller for angular position in steering systems publication-title: Int. J. Automot. Technol. doi: 10.1007/s12239-021-0129-9 – volume: 231 start-page: 295 year: 2017 ident: ref_16 article-title: Integrated active control of independently rotating wheels on rail vehicles via observers publication-title: Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit doi: 10.1177/0954409716629705 – volume: 11 start-page: 1042 year: 2016 ident: ref_10 article-title: Control of the lateral displacement restoring force of IRWs for sharp curved driving publication-title: J. Electr. Eng. Technol. doi: 10.5370/JEET.2016.11.4.1042 – ident: ref_39 – ident: ref_37 – ident: ref_35 – volume: 9 start-page: 22 year: 2022 ident: ref_30 article-title: A robotic wheel locally transforming its diameters and the reinforcement learning for robust locomotion publication-title: Int. J. Mechatron. Autom. doi: 10.1504/IJMA.2022.120487 – volume: 9 start-page: 599 year: 2001 ident: ref_19 article-title: Robust control for independently rotating wheelsets on a railway vehicle using practical sensors publication-title: IEEE Trans. Control. Syst. Technol. doi: 10.1109/87.930970 – volume: 27 start-page: 396 year: 2023 ident: ref_24 article-title: Online longitudinal trajectory planning for connected and autonomous vehicles in mixed traffic flow with deep reinforcement learning approach publication-title: J. Intell. Transp. Syst. doi: 10.1080/15472450.2022.2046472 – volume: 28 start-page: 668 year: 2023 ident: ref_21 article-title: Fault-tolerant predictive control with deep-reinforcement-learning-based torque distribution for four in-wheel motor drive electric vehicles publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3233705 – volume: 72 start-page: 227 year: 2022 ident: ref_25 article-title: Deep reinforcement learning based active pantograph control strategy in high-speed railway publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3205452 – volume: 55 start-page: 73 year: 2020 ident: ref_6 article-title: Modeling and simulation of a control system of wheels of wheelset publication-title: Arch. Transp. doi: 10.5604/01.3001.0014.4234 – volume: 14 start-page: 16878132221130574 year: 2022 ident: ref_15 article-title: Robust LPV-H∞ control for active steering of tram with independently rotating wheels publication-title: Adv. Mech. Eng. doi: 10.1177/16878132221130574 – volume: 56 start-page: 1883 year: 2018 ident: ref_7 article-title: Boundary conditions of active steering control of independent rotating wheelset based on hub motor and wheel rotating speed difference feedback publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2018.1437273 – ident: ref_31 – ident: ref_33 – ident: ref_2 – volume: 28 start-page: 207 year: 2004 ident: ref_4 article-title: Combined active steering and traction for mechatronic bogie vehicles with independently rotating wheels publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2004.02.004 – volume: 17 start-page: 797 year: 2017 ident: ref_13 article-title: Dynamics of a running gear with IRWs on curved tracks for a robust control development publication-title: PAMM doi: 10.1002/pamm.201710366 – volume: 7 start-page: 2279 year: 2014 ident: ref_8 article-title: Control of wheel motors for the provision of traction and steering of railway vehicles publication-title: IET Power Electron. doi: 10.1049/iet-pel.2013.0882 – volume: 13 start-page: 2439 year: 2023 ident: ref_27 article-title: Railway infrastructure maintenance efficiency improvement using deep reinforcement learning integrated with digital twin based on track geometry and component defects publication-title: Sci. Rep. doi: 10.1038/s41598-023-29526-8 – ident: ref_29 doi: 10.3390/pr10122748 – volume: 35 start-page: 9368 year: 2020 ident: ref_26 article-title: Decentralized cooperative control of multiple energy storage systems in urban railway based on multiagent deep reinforcement learning publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2971637 – volume: 52 start-page: 109 year: 2014 ident: ref_12 article-title: Mechatronic track guidance on disturbed track: The trade-off between actuator performance and wheel wear publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2014.881514 – ident: ref_38 – ident: ref_36 – volume: 11 start-page: 100425 year: 2021 ident: ref_28 article-title: Deep reinforcement learning in transportation research: A review publication-title: Transp. Res. Interdiscip. Perspect. – volume: 54 start-page: 8205305 year: 2018 ident: ref_3 article-title: Design, modeling, and analysis of a railway traction motor with independently rotating wheelsets publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2018.2842433 – volume: 37 start-page: 326 year: 2002 ident: ref_5 article-title: Dynamics and control assessment of rail vehicles using permanent magnet wheel motors publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2002.11666243 – ident: ref_20 |
| SSID | ssj0000913856 |
| Score | 2.2835171 |
| Snippet | This paper proposes an active steering controller for Driven Independently Rotating Wheelset (DIRW) vehicles based on deep reinforcement learning (DRL). For... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2677 |
| SubjectTerms | Active control Algorithms Control algorithms Control theory Controllers Deep learning Design Digital twins Dynamic models Efficiency H-infinity control Machine learning Neural networks Product enhancement Railway tracks Reinforcement Robotics Robust control Rotation Scale models Steering Trains Vehicles Wheels Wheelsets |
| Title | Active Steering Controller for Driven Independently Rotating Wheelset Vehicles Based on Deep Reinforcement Learning |
| URI | https://www.proquest.com/docview/2869559012 |
| Volume | 11 |
| WOSCitedRecordID | wos001074280900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M7P dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB31gwM9AC1ULW1XlkCCHkKd2Os4J7TbbkWFWEXLh8opcmynRVrtLklA6oXfjsfxbotU9cIlF48iR2O_GY8n7wG8zmjfVrFG1QDKIy5VP3JhqIrcHhepqVhiDPViE-l4LC8vszwU3JrQVrnERA_UZq6xRn6SSIFkaQ5P3y9-RqgahberQUJjHTaRJSHxrXv5qsaCnJeyLzpWUuZO9yeLGhk2E5Gm_8Sh-9HYh5jzp_87uWfwJCSXZNCthm1Ys7Md2LpDObgD22EzN-RtYJw-fg7NwKMe-dx2ZuS0a2Cf2pq4pJac1YiJ5GIlmdtOb8hkjrf4ztjhOQbYlnyz177JjgxdaDRkPiNn1i7IxHp2Vu0LkSQQul69gK_noy-nH6KgxhBpxngbKVqVMtM81UhFKamWfRsbYQyj3NjMKHek1UxSpkUiKx7HVVkKTpXivFSyVGwXNmbzmd0D4rJKYZkqVaxKXgmDnIXS8oxx42K21ftwvPRNoQNVOSpmTAt3ZEE_Frd-3IdXK9tFR9Bxr9UbdHGB3-vepFX4-cDNB_mvikGaYqpDpbM8XLq4CNu5KW79-_Lh4QN4jHr0XRPaIWy09S97BI_07_ZHU_dgczga55MerH8cvuv5tYrPPyM3kl98yr__BcCJ9eU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRLlALRQUShgCRD0ENWJvY5zQGjpUnXVdrUqBZVTcGwHkFa7SxJA_VP8RmbysQWp4tYD54wsx3l-M-OM3wA8S3jf56GlrgFcBlKbfoBuKA9wj6vY5SJyjtfNJuLxWJ-dJZMV-NXdhaGyyo4Ta6J2c0tn5LuRViSWhnz6evEtoK5R9He1a6HRwOLQn__ElK18NRri930eRftvT_cOgrarQGCFkFVgeJ7pxMrYkqSi5lb3feiUc5jYO584g6mZFZoLqyKdyzDMs0xJboyUmdGZETjuNViVBPYerE5Gx5OPy1MdUtnUfdXooAqR8N1FQZqekYrjvzzf5fxfO7X92__bctyBW234zAYN3tdhxc824OYfooobsN7SVcletpraO3ehHNS8zt5VjRnba0r0p75gGLazYUGsz0bLpsDV9JydzKlOAY3RY1EIUbEP_ktdRsjeoPN3bD5jQ-8X7MTX-rO2PmplrWTt53vw_kqWYhN6s_nM3weGcbPywmQmNJnMlSNVRu1lIqTDqMTbLdjpsJDaVoydeoJMU0zKCDfpBW624OnSdtFIkFxq9YIgldL74kjWtNcrcD6k8JUO4piCOa7RcruDVNoSVple4OnBvx8_gRsHp8dH6dFofPgQ1iKM-ZqSu23oVcV3_wiu2x_V17J43O4NBp-uGn-_ASDhT5E |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDqHxAGwwMRhgCRDsIWoSu47zgFBZqagGVTV-aDwFx3YAqWpLEkD71_jruEucDqSJtz3wnJPlOJ_vvnPO3wE8SsOBKyJDXQNCEQilBwGGoSLAPS4TW_DY2rBpNpFMp-rkJJ1twK_uLgyVVXY-sXHUdmnojLwfK0liaehP-4Uvi5iNxs9X3wLqIEV_Wrt2Gi1EjtzpT0zfqmeTEX7rx3E8fvnu8FXgOwwEhnNRBzoscpUakRiSV1ShUQMXWWktJvnWpVZjmma4CrmRsSpEFBV5LkWotRC5VrnmOO4l2ERKLuIebM4mb2Yf1yc8pLipBrLVROU8DfurkvQ9Y5kkf0XB82NBE-DG1__npbkB1zytZsN2H2zDhlvswNU_xBZ3YNu7sYo99VrbBzehGjb-nr2tWzN22Jbuz13JkM6zUUnRgE3WzYLr-Sk7XlL9AhpjJCNqUbMP7ktTXsheICmwbLlgI-dW7Ng1urSmOYJlXsr28y14fyFLsQu9xXLhbgNDPi0d17mOdC4KaUmtUTmRcmGRrTizBwcdLjLjRdqpV8g8w2SNMJSdYWgPHq5tV600yblWTwheGb0vjmS0v3aB8yHlr2yYJETyQoWW-x28Mu_IquwMW3f-_fgBXEHQZa8n06O7sBUjFWwr8fahV5ff3T24bH7UX6vyvt8mDD5dNPx-A4_lWFE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Steering+Controller+for+Driven+Independently+Rotating+Wheelset+Vehicles+Based+on+Deep+Reinforcement+Learning&rft.jtitle=Processes&rft.au=Lu%2C+Zhenggang&rft.au=Wei%2C+Juyao&rft.au=Wang%2C+Zehan&rft.date=2023-09-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=11&rft.issue=9&rft.spage=2677&rft_id=info:doi/10.3390%2Fpr11092677&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr11092677 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |