The automatic design of parameter adaptation techniques for differential evolution with genetic programming

This study proposes a technique aimed at the automatic search for parameter adaptation strategies in a differential evolution algorithm with genetic programming symbolic regression. Genetic programming is applied to find the symbolic expression for scaling factor control during the optimization proc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 239; s. 108070
Hlavní autoři: Stanovov, Vladimir, Akhmedova, Shakhnaz, Semenkin, Eugene
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 05.03.2022
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study proposes a technique aimed at the automatic search for parameter adaptation strategies in a differential evolution algorithm with genetic programming symbolic regression. Genetic programming is applied to find the symbolic expression for scaling factor control during the optimization process of differential evolution based on the current computational resource, ratio of successful solutions and adapted scaling factor value. The design of the parameter adaptation technique is performed by a computational experiment, which consisted in solving several complex optimization problems. Better symbolic expressions are selected with regards to the Friedman ranking procedure, and the best solutions are additionally evaluated to compare them to the existing parameter adaptation techniques. The experimental results show that the automatically designed parameter adaptation techniques described by symbolic expressions are capable of outperforming existing parameter adaptation methods, while using different information sources. The analysis of automatically generated solutions shows that the proposed technique can be considered an automatic knowledge extraction method. This is due to the results showing that well-performing parameter adaptation can behave differently from state-of-the-art methods, thereby revealing previously unknown algorithm properties.
AbstractList This study proposes a technique aimed at the automatic search for parameter adaptation strategies in a differential evolution algorithm with genetic programming symbolic regression. Genetic programming is applied to find the symbolic expression for scaling factor control during the optimization process of differential evolution based on the current computational resource, ratio of successful solutions and adapted scaling factor value. The design of the parameter adaptation technique is performed by a computational experiment, which consisted in solving several complex optimization problems. Better symbolic expressions are selected with regards to the Friedman ranking procedure, and the best solutions are additionally evaluated to compare them to the existing parameter adaptation techniques. The experimental results show that the automatically designed parameter adaptation techniques described by symbolic expressions are capable of outperforming existing parameter adaptation methods, while using different information sources. The analysis of automatically generated solutions shows that the proposed technique can be considered an automatic knowledge extraction method. This is due to the results showing that well-performing parameter adaptation can behave differently from state-of-the-art methods, thereby revealing previously unknown algorithm properties.
ArticleNumber 108070
Author Stanovov, Vladimir
Semenkin, Eugene
Akhmedova, Shakhnaz
Author_xml – sequence: 1
  givenname: Vladimir
  orcidid: 0000-0002-1695-5798
  surname: Stanovov
  fullname: Stanovov, Vladimir
  email: vladimirstanovov@yandex.ru
– sequence: 2
  givenname: Shakhnaz
  orcidid: 0000-0003-2927-1974
  surname: Akhmedova
  fullname: Akhmedova, Shakhnaz
  email: shahnaz@inbox.ru
– sequence: 3
  givenname: Eugene
  surname: Semenkin
  fullname: Semenkin, Eugene
  email: eugenesemenkin@yandex.ru
BookMark eNqFkElPAzEMhSMEEmX5BxwicZ7iZJbMcEBCiE1C4lLOUZo4bbokJUlB_fdMGU4c4GTJfu_Z_k7IoQ8eCblgMGbAmqvFeOlD2qUxB876VgsCDsiItYIXooLukIygq6EQULNjcpLSAgA4Z-2ILCdzpGqbw1plp6nB5GaeBks3Kqo1ZoxUGbXJ_TR4mlHPvXvfYqI2RGqctRjRZ6dWFD_Cavut-nR5TmfocZ-4iWHWJ62dn52RI6tWCc9_6il5e7if3D0VL6-Pz3e3L4UuyyoXne6MarTWqkEuYFoLzaGshQUrrJlaUfGurlrFkFUNCNPUipesnWpmWmVYU56SyyG3372_NctF2Ebfr5S8KVshWN3UvaoaVDqGlCJauYlureJOMpB7rHIhB6xyj1UOWHvb9S-bdgOdHJVb_We-GczYv__hMMqkHXqNxkXUWZrg_g74Ag_LmrI
CitedBy_id crossref_primary_10_1016_j_knosys_2022_110129
crossref_primary_10_1007_s11227_025_07054_8
crossref_primary_10_1007_s11227_025_07535_w
crossref_primary_10_1051_itmconf_20245902019
crossref_primary_10_1007_s10586_023_04173_w
crossref_primary_10_3390_a16030133
crossref_primary_10_1016_j_ins_2022_07_075
crossref_primary_10_1016_j_swevo_2025_102081
crossref_primary_10_3390_math10244666
crossref_primary_10_1016_j_neucom_2023_126899
crossref_primary_10_1007_s00500_025_10631_x
crossref_primary_10_3390_math12203168
crossref_primary_10_3390_s24155057
crossref_primary_10_3390_math11132937
crossref_primary_10_1016_j_asoc_2025_113137
crossref_primary_10_1007_s13042_023_02006_1
crossref_primary_10_1016_j_engappai_2023_106210
crossref_primary_10_1016_j_asoc_2023_110427
crossref_primary_10_1016_j_swevo_2022_101142
crossref_primary_10_3390_a15040122
crossref_primary_10_3390_math12040516
crossref_primary_10_1016_j_aej_2025_02_046
crossref_primary_10_3390_axioms13010059
Cites_doi 10.1016/j.swevo.2018.03.007
10.1109/CEC45853.2021.9504795
10.1007/s00500-010-0652-5
10.1016/j.neucom.2017.05.054
10.1109/ICEC.1994.350025
10.1016/j.asoc.2018.09.034
10.1108/K-09-2013-0201
10.1109/CEC45853.2021.9504792
10.1007/978-3-642-25566-3_40
10.1007/s00500-010-0646-3
10.1007/s00500-010-0647-2
10.1162/EVCO_r_00180
10.1016/j.ins.2021.03.016
10.1109/SSCI47803.2020.9308467
10.1007/11729976_9
10.1109/CEC48606.2020.9185901
10.1109/TEVC.2017.2680320
10.1007/s00500-010-0639-2
10.1109/TEVC.2009.2014613
10.1109/CEC45853.2021.9504782
10.1109/CEC.2018.8477977
10.1007/s00500-010-0650-7
10.1007/s00500-010-0641-8
10.1109/TEVC.2017.2712906
10.1145/1276958.1277273
10.1016/j.swevo.2018.10.013
10.1016/j.eswa.2016.04.018
10.1109/CEC.2005.1554780
10.1109/TEVC.2006.872133
10.1007/978-3-030-44094-7_7
10.1109/CEC45853.2021.9504814
10.1109/CEC45853.2021.9504829
10.1007/BFb0055930
10.1007/s00500-010-0642-7
10.1145/2598394.2609874
10.1016/j.swevo.2016.01.004
10.1007/s00500-010-0644-5
10.1007/s00500-010-0649-0
10.1016/j.swevo.2018.10.014
10.1109/CEC.2005.1554902
10.1145/2908812.2908942
10.1109/CEC48606.2020.9185551
10.1109/CEC.2019.8790158
10.1109/CEC.2017.7969307
10.1023/A:1008202821328
10.1007/s00500-010-0640-9
10.1007/s00500-010-0645-4
10.1007/s00500-010-0648-1
10.1109/TEVC.2010.2059031
10.1109/CEC.2019.8789904
10.1145/2330784.2330796
10.1109/TEVC.2015.2429314
10.1145/3449726.3463286
10.1007/978-3-319-96514-7_4
10.1007/s10710-015-9249-1
10.1109/CEC48606.2020.9185577
10.1007/s00500-010-0651-6
10.1007/s00500-010-0643-6
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 5, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 5, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.108070
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_108070
S0950705121011461
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-9c9da6ccca6e270b57c20357f0f7fdbf7429548a1e14607d65a2318bc1d8ad163
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000806866700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:40:53 EST 2025
Sat Nov 29 07:04:30 EST 2025
Tue Nov 18 22:38:35 EST 2025
Fri Feb 23 02:39:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Parameter adaptation
Genetic programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-9c9da6ccca6e270b57c20357f0f7fdbf7429548a1e14607d65a2318bc1d8ad163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2927-1974
0000-0002-1695-5798
PQID 2638771565
PQPubID 2035257
ParticipantIDs proquest_journals_2638771565
crossref_primary_10_1016_j_knosys_2021_108070
crossref_citationtrail_10_1016_j_knosys_2021_108070
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_108070
PublicationCentury 2000
PublicationDate 2022-03-05
PublicationDateYYYYMMDD 2022-03-05
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Price, Storn, Lampinen (b5) 2005
J. Brest, M. Maucec, B. Bosković, Differential evolution algorithm for single objective bound-constrained optimization: Algorithm j2020, in: 2020 IEEE Congress on Evolutionary Computation, CEC, 2020, pp. 1–8.
Stanovov, Akhmedova, Semenkin (b57) 2019; 50
Bonyadi, Michalewicz (b9) 2017; 25
Tanabe, Fukunaga (b37) 2014
Burke, Hyde, Kendall, Ochoa, Özcan, Woodward (b1) 2019
Wang, Wu, Rahnamayan (b76) 2011; 15
Miller, Thomson (b44) 2000
Stanovov, Akhmedova, Semenkin (b61) 2021; 566
Stanovov (b63) 2021
Yang, Tang, Yao (b77) 2011; 15
J. Brest, M.S. Maucec, B. Boškovic, Self-adaptive differential evolution algorithm with population size reduction for single objective bound-constrained optimization: Algorithm j21, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 817–824.
Ali, Awad, Suganthan, Shatnawi, Reynolds (b6) 2018; 275
Weber, Neri, Tirronen (b74) 2011; 15
S.O. Haraldsson, J. Woodward, Automated design of algorithms and genetic improvement: contrast and commonalities, in: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, 2014.
T. Perkis, Stack-based genetic programming, in: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, vol.1, 1994, pp. 148–153.
García-Martínez, Rodríguez, Lozano (b75) 2011; 15
N. Cramer, A Representation for the adaptive generation of simple sequential programs, in: ICGA, 1985.
A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in: 2005 IEEE Congress on Evolutionary Computation, Vol. 2, 2005, pp. 1769–1776.
Hoos (b15) 2012
L. Diosan, M. Oltean, Evolving crossover operators for function optimization, in: EuroGP, 2006.
Das, Suganthan (b29) 2011; 15
Nordin (b43) 1994
V. Stanovov, S. Akhmedova, E. Semenkin, Visualizing parameter adaptation in differential evolution with expected fitness improvement, in: 2020 IEEE Symposium Series on Computational Intelligence, SSCI, 2020, pp. 321–328.
Das, Mullick, Suganthan (b12) 2016; 27
Zhang, Sanderson (b36) 2009; 13
Beyer, Sendhoff (b8) 2017; 21
LaTorre, Muelas, na Sánchez (b80) 2011; 15
Koza (b38) 1992
Neumaier, Fendl, Schilly, Leitner (b86) 2011; 15
S.M. Gustafson, E. Burke, N. Krasnogor, On improving genetic programming for symbolic regression, in: 2005 IEEE Congress on Evolutionary Computation, Vol. 1, 2005, pp. 912–919.
Pillay, Qu (b47) 2018
Pillay (b48) 2011
Eiben, Smit (b13) 2012
Tatsis, Parsopoulos (b17) 2019; 74
Wagdy, Hadi, Mohamed, Agrawal, Kumar, Suganthan (b22) 2020
Awad, Ali, Liang, Qu, Suganthan (b23) 2016
P. Bujok, P. Kolenovsky, Differential evolution with distance-based mutation-selection applied to CEC 2021 single objective numerical optimisation, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 849–856.
Stanovov, Akhmedova, Semenkin (b26) 2021
Birattari, Yuan, Balaprakash, Stützle (b16) 2010
Lozano, Molina, Herrera (b24) 2011; 15
Brest, Greiner, Boškovic, Mernik, Žumer (b33) 2006; 10
Sloss, Gustafson (b3) 2019
C. Ryan, J. Collins, M. O’Neill, Grammatical evolution: Evolving programs for an arbitrary language, in: EuroGP, 1998.
Branke, Nguyen, Pickardt, Zhang (b52) 2016; 20
Bartz-Beielstein (b87) 2006
Brest, Maučec, Boškovic (b60) 2017
U. Skvorc, T. Eftimov, P. Korosec, CEC Real-parameter optimization competitions: Progress from 2013 to 2018, in: 2019 IEEE Congress on Evolutionary Computation, CEC, 2019, pp. 3126–3133.
Duarte, Martí, Gortázar (b84) 2011; 15
M. Lones, Optimising Optimisers with Push GP, in: EuroGP, 2020.
Sinha, Malo, Deb (b4) 2018; 22
J. Koza, Hierarchical genetic algorithms operating on populations of computer programs, in: IJCAI, 1989.
V. Stanovov, S. Akhmedova, E. Semenkin, LSHADE algorithm with rank-based selective pressure strategy for solving CEC 2017 benchmark problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC, 2018, pp. 1–8.
Brest, Maucec (b78) 2011; 15
Molina, Lozano, Sánchez, Herrera (b81) 2011; 15
Burke, Hyde, Kendall, Ochoa, Özcan, Woodward (b19) 2009
de Oca, Aydin, Stützle (b83) 2011; 15
Sosa-Ascencio, Ochoa, Terashima-Marín, Conant-Pablos (b53) 2015; 17
S. Biswas, D. Saha, S. De, A.D. Cobb, S. Das, B. Jalaian, Improving differential evolution through Bayesian hyperparameter optimization, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 832–840.
T. Kadavy, M. Pluhacek, A. Viktorin, R. Šenkeřik, SOMA-CLP for competition on bound constrained single objective numerical optimization benchmark: a competition entry on bound constrained single objective numerical optimization at the genetic and evolutionary computation conference (GECCO) 2021, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021.
Zhao, Suganthan, Das (b79) 2011; 15
S.J. Mousavirad, M.H. Moghadam, M. Saadatmand, R.K. Chakrabortty, An ordered and roulette-wheel-based mutation incorporated L-SHADE algorithm for Solving CEC2021 Single Objective Numerical Optimisation Problems, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021.
E. Burke, M. Hyde, G. Kendall, J. Woodward, Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one, in: GECCO ’07, 2007.
Tanabe, Fukunaga (b31) 2013
Lones (b21) 2021
Langdon, Poli, McPhee, Koza (b40) 2008
J. Woodward, J. Swan, The automatic generation of mutation operators for genetic algorithms, in: GECCO ’12, 2012.
Viktorin, Senkerik, Pluhacek, Kadavy, Zamuda (b18) 2019; 50
J. Zhang, A.C. Sanderson, JADE: Self-adaptive differential evolution with fast and reliable convergence performance, in: 2007 IEEE Congress on Evolutionary Computation, 2007, pp. 2251–2258.
García-Nieto, Alba (b82) 2011; 15
Piotrowski, Napiorkowski (b32) 2018; 43
F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in: LION, 2011.
Herrera, Lozano, Molina (b25) 2010
K. Sim, E. Hart, A Ccmbined generative and selective hyper-heuristic for the vehicle routing problem, in: Proceedings of the Genetic and Evolutionary Computation Conference 2016, 2016.
J. Brest, M. Maucec, B. Bovsković, The 100-digit challenge: Algorithm jDE100, in: 2019 IEEE Congress on Evolutionary Computation, CEC, 2019, pp. 19–26.
E. Warchulski, J. Arabas, A new step-size adaptation rule for CMA-ES based on the population midpoint fitness, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 825–831.
Eshelman, Schaffer (b72) 1992
A. Mohamed, A.A. Hadi, A. Fattouh, K. Jambi, LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation, CEC, 2017, pp. 145–152.
A. Mohamed, A.A. Hadi, A.K. Mohamed, N.H. Awad, Evaluating the performance of adaptive GainingSharing knowledge based algorithm on CEC 2020 benchmark problems, in: 2020 IEEE Congress on Evolutionary Computation, CEC, 2020, pp. 1–8.
K.M. Sallam, S.M. Elsayed, R.K. Chakrabortty, M. Ryan, Improved multi-operator differential evolution algorithm for solving unconstrained problems, in: 2020 IEEE Congress on Evolutionary Computation, CEC, 2020, pp. 1–8.
Kar (b10) 2016; 59
Storn, Price (b28) 1997; 11
A.W. Mohamed, A.A. Hadi, P. Agrawal, K.M. Sallam, A.K. Mohamed, Gaining-sharing knowledge based algorithm with adaptive parameters hybrid with IMODE algorithm for solving CEC 2021 benchmark problems, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 841–848.
Drake, Hyde, Ibrahim, Özcan (b51) 2014; 43
Gardeux, Chelouah, Siarry, Glover (b85) 2011; 15
Maheswaranathan, Metz, Tucker, Sohl-Dickstein (b7) 2018
Cuong, Bao, Binh (b65) 2021
Burke (10.1016/j.knosys.2021.108070_b1) 2019
10.1016/j.knosys.2021.108070_b30
Stanovov (10.1016/j.knosys.2021.108070_b57) 2019; 50
Duarte (10.1016/j.knosys.2021.108070_b84) 2011; 15
10.1016/j.knosys.2021.108070_b73
10.1016/j.knosys.2021.108070_b70
10.1016/j.knosys.2021.108070_b71
Tatsis (10.1016/j.knosys.2021.108070_b17) 2019; 74
10.1016/j.knosys.2021.108070_b39
Birattari (10.1016/j.knosys.2021.108070_b16) 2010
Piotrowski (10.1016/j.knosys.2021.108070_b32) 2018; 43
10.1016/j.knosys.2021.108070_b34
Pillay (10.1016/j.knosys.2021.108070_b47) 2018
Price (10.1016/j.knosys.2021.108070_b5) 2005
10.1016/j.knosys.2021.108070_b35
Brest (10.1016/j.knosys.2021.108070_b78) 2011; 15
Brest (10.1016/j.knosys.2021.108070_b60) 2017
Lozano (10.1016/j.knosys.2021.108070_b24) 2011; 15
Bartz-Beielstein (10.1016/j.knosys.2021.108070_b87) 2006
Cuong (10.1016/j.knosys.2021.108070_b65) 2021
Das (10.1016/j.knosys.2021.108070_b12) 2016; 27
10.1016/j.knosys.2021.108070_b2
Eshelman (10.1016/j.knosys.2021.108070_b72) 1992
10.1016/j.knosys.2021.108070_b41
Awad (10.1016/j.knosys.2021.108070_b23) 2016
10.1016/j.knosys.2021.108070_b42
Miller (10.1016/j.knosys.2021.108070_b44) 2000
Stanovov (10.1016/j.knosys.2021.108070_b26) 2021
Das (10.1016/j.knosys.2021.108070_b29) 2011; 15
10.1016/j.knosys.2021.108070_b49
García-Martínez (10.1016/j.knosys.2021.108070_b75) 2011; 15
10.1016/j.knosys.2021.108070_b45
Pillay (10.1016/j.knosys.2021.108070_b48) 2011
10.1016/j.knosys.2021.108070_b46
Wagdy (10.1016/j.knosys.2021.108070_b22) 2020
de Oca (10.1016/j.knosys.2021.108070_b83) 2011; 15
Gardeux (10.1016/j.knosys.2021.108070_b85) 2011; 15
Herrera (10.1016/j.knosys.2021.108070_b25) 2010
Bonyadi (10.1016/j.knosys.2021.108070_b9) 2017; 25
Stanovov (10.1016/j.knosys.2021.108070_b61) 2021; 566
10.1016/j.knosys.2021.108070_b54
10.1016/j.knosys.2021.108070_b11
10.1016/j.knosys.2021.108070_b55
Neumaier (10.1016/j.knosys.2021.108070_b86) 2011; 15
10.1016/j.knosys.2021.108070_b50
Koza (10.1016/j.knosys.2021.108070_b38) 1992
Sloss (10.1016/j.knosys.2021.108070_b3) 2019
Langdon (10.1016/j.knosys.2021.108070_b40) 2008
Lones (10.1016/j.knosys.2021.108070_b21) 2021
Kar (10.1016/j.knosys.2021.108070_b10) 2016; 59
LaTorre (10.1016/j.knosys.2021.108070_b80) 2011; 15
Stanovov (10.1016/j.knosys.2021.108070_b63) 2021
10.1016/j.knosys.2021.108070_b14
10.1016/j.knosys.2021.108070_b58
Viktorin (10.1016/j.knosys.2021.108070_b18) 2019; 50
10.1016/j.knosys.2021.108070_b59
10.1016/j.knosys.2021.108070_b56
Storn (10.1016/j.knosys.2021.108070_b28) 1997; 11
Branke (10.1016/j.knosys.2021.108070_b52) 2016; 20
Nordin (10.1016/j.knosys.2021.108070_b43) 1994
Molina (10.1016/j.knosys.2021.108070_b81) 2011; 15
Beyer (10.1016/j.knosys.2021.108070_b8) 2017; 21
Ali (10.1016/j.knosys.2021.108070_b6) 2018; 275
10.1016/j.knosys.2021.108070_b66
10.1016/j.knosys.2021.108070_b20
Brest (10.1016/j.knosys.2021.108070_b33) 2006; 10
10.1016/j.knosys.2021.108070_b64
10.1016/j.knosys.2021.108070_b62
Wang (10.1016/j.knosys.2021.108070_b76) 2011; 15
Burke (10.1016/j.knosys.2021.108070_b19) 2009
García-Nieto (10.1016/j.knosys.2021.108070_b82) 2011; 15
Drake (10.1016/j.knosys.2021.108070_b51) 2014; 43
Zhao (10.1016/j.knosys.2021.108070_b79) 2011; 15
Maheswaranathan (10.1016/j.knosys.2021.108070_b7) 2018
10.1016/j.knosys.2021.108070_b27
Tanabe (10.1016/j.knosys.2021.108070_b31) 2013
10.1016/j.knosys.2021.108070_b69
Weber (10.1016/j.knosys.2021.108070_b74) 2011; 15
Yang (10.1016/j.knosys.2021.108070_b77) 2011; 15
10.1016/j.knosys.2021.108070_b67
10.1016/j.knosys.2021.108070_b68
Sinha (10.1016/j.knosys.2021.108070_b4) 2018; 22
Eiben (10.1016/j.knosys.2021.108070_b13) 2012
Sosa-Ascencio (10.1016/j.knosys.2021.108070_b53) 2015; 17
Hoos (10.1016/j.knosys.2021.108070_b15) 2012
Zhang (10.1016/j.knosys.2021.108070_b36) 2009; 13
Tanabe (10.1016/j.knosys.2021.108070_b37) 2014
References_xml – start-page: 1311
  year: 2017
  end-page: 1318
  ident: b60
  article-title: Single objective real-parameter optimization algorithm jSO
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation
– volume: 15
  start-page: 2221
  year: 2011
  end-page: 2232
  ident: b82
  article-title: Restart particle swarm optimization with velocity modulation: a scalability test
  publication-title: Soft Comput.
– reference: U. Skvorc, T. Eftimov, P. Korosec, CEC Real-parameter optimization competitions: Progress from 2013 to 2018, in: 2019 IEEE Congress on Evolutionary Computation, CEC, 2019, pp. 3126–3133.
– year: 2012
  ident: b13
  article-title: Evolutionary algorithm parameters and methods to tune them
  publication-title: Autonomous Search
– reference: S.M. Gustafson, E. Burke, N. Krasnogor, On improving genetic programming for symbolic regression, in: 2005 IEEE Congress on Evolutionary Computation, Vol. 1, 2005, pp. 912–919.
– volume: 21
  start-page: 746
  year: 2017
  end-page: 759
  ident: b8
  article-title: Simplify your covariance matrix adaptation evolution strategy
  publication-title: IEEE Trans. Evol. Comput.
– volume: 43
  start-page: 88
  year: 2018
  end-page: 108
  ident: b32
  article-title: Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure?
  publication-title: Swarm Evol. Comput.
– reference: S.J. Mousavirad, M.H. Moghadam, M. Saadatmand, R.K. Chakrabortty, An ordered and roulette-wheel-based mutation incorporated L-SHADE algorithm for Solving CEC2021 Single Objective Numerical Optimisation Problems, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021.
– reference: J. Woodward, J. Swan, The automatic generation of mutation operators for genetic algorithms, in: GECCO ’12, 2012.
– reference: S.O. Haraldsson, J. Woodward, Automated design of algorithms and genetic improvement: contrast and commonalities, in: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, 2014.
– reference: A. Mohamed, A.A. Hadi, A.K. Mohamed, N.H. Awad, Evaluating the performance of adaptive GainingSharing knowledge based algorithm on CEC 2020 benchmark problems, in: 2020 IEEE Congress on Evolutionary Computation, CEC, 2020, pp. 1–8.
– volume: 15
  start-page: 2233
  year: 2011
  end-page: 2255
  ident: b83
  article-title: An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms
  publication-title: Soft Comput.
– volume: 15
  start-page: 2257
  year: 2011
  end-page: 2273
  ident: b84
  article-title: Path relinking for large-scale global optimization
  publication-title: Soft Comput.
– volume: 50
  year: 2019
  ident: b57
  article-title: Selective pressure strategy in differential evolution: Exploitation improvement in solving global optimization problems
  publication-title: Swarm Evol. Comput.
– year: 1994
  ident: b43
  article-title: A compiling genetic programming system that directly manipulates the machine-code
– reference: L. Diosan, M. Oltean, Evolving crossover operators for function optimization, in: EuroGP, 2006.
– volume: 566
  start-page: 215
  year: 2021
  end-page: 238
  ident: b61
  article-title: Biased parameter adaptation in differential evolution
  publication-title: Inform. Sci.
– volume: 15
  start-page: 2175
  year: 2011
  end-page: 2185
  ident: b79
  article-title: Self-adaptive differential evolution with multi-trajectory search for large-scale optimization
  publication-title: Soft Comput.
– year: 2019
  ident: b3
  article-title: 2019 Evolutionary algorithms review
  publication-title: GPTP
– year: 2006
  ident: b87
  article-title: Experimental research in evolutionary computation - the new experimentalism
  publication-title: Nat. Comput. Ser.
– reference: J. Koza, Hierarchical genetic algorithms operating on populations of computer programs, in: IJCAI, 1989.
– reference: E. Warchulski, J. Arabas, A new step-size adaptation rule for CMA-ES based on the population midpoint fitness, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 825–831.
– volume: 22
  start-page: 276
  year: 2018
  end-page: 295
  ident: b4
  article-title: A review on bilevel optimization: From classical to evolutionary approaches and applications
  publication-title: IEEE Trans. Evol. Comput.
– year: 2008
  ident: b40
  article-title: Genetic programming: An introduction and tutorial, with a survey of techniques and applications
  publication-title: Computational Intelligence: A Compendium
– reference: F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in: LION, 2011.
– volume: 25
  start-page: 1
  year: 2017
  end-page: 54
  ident: b9
  article-title: Particle swarm optimization for single objective continuous space problems: A review
  publication-title: Evol. Comput.
– start-page: 71
  year: 2013
  end-page: 78
  ident: b31
  article-title: Success-history based parameter adaptation for differential evolution
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation
– reference: S. Biswas, D. Saha, S. De, A.D. Cobb, S. Das, B. Jalaian, Improving differential evolution through Bayesian hyperparameter optimization, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 832–840.
– volume: 74
  start-page: 368
  year: 2019
  end-page: 384
  ident: b17
  article-title: Dynamic parameter adaptation in metaheuristics using gradient approximation and line search
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 2141
  year: 2011
  end-page: 2155
  ident: b77
  article-title: Scalability of generalized adaptive differential evolution for large-scale continuous optimization
  publication-title: Soft Comput.
– start-page: 25
  year: 2018
  end-page: 31
  ident: b47
  article-title: Generation constructive hyper-heuristics
  publication-title: Hyper-Heuristics: Theory and Applications
– reference: M. Lones, Optimising Optimisers with Push GP, in: EuroGP, 2020.
– reference: T. Perkis, Stack-based genetic programming, in: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, vol.1, 1994, pp. 148–153.
– volume: 17
  start-page: 119
  year: 2015
  end-page: 144
  ident: b53
  article-title: Grammar-based generation of variable-selection heuristics for constraint satisfaction problems
  publication-title: Genet. Programm. Evol. Mach.
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: b33
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
– reference: N. Cramer, A Representation for the adaptive generation of simple sequential programs, in: ICGA, 1985.
– year: 2021
  ident: b63
  article-title: Results of Automatic Design of Parameter Adaptation Techniques for Differential Evolution with Genetic Programming
– reference: P. Bujok, P. Kolenovsky, Differential evolution with distance-based mutation-selection applied to CEC 2021 single objective numerical optimisation, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 849–856.
– volume: 15
  start-page: 2275
  year: 2011
  end-page: 2285
  ident: b85
  article-title: EM323: a line search based algorithm for solving high-dimensional continuous non-linear optimization problems
  publication-title: Soft Comput.
– start-page: 1658
  year: 2014
  end-page: 1665
  ident: b37
  article-title: Improving the search performance of SHADE using linear population size reduction
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation
– reference: A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in: 2005 IEEE Congress on Evolutionary Computation, Vol. 2, 2005, pp. 1769–1776.
– reference: J. Brest, M. Maucec, B. Bosković, Differential evolution algorithm for single objective bound-constrained optimization: Algorithm j2020, in: 2020 IEEE Congress on Evolutionary Computation, CEC, 2020, pp. 1–8.
– start-page: 453
  year: 2019
  end-page: 477
  ident: b1
  article-title: A classification of hyper-heuristic approaches: Revisited
  publication-title: Handbook of Metaheuristics
– volume: 15
  start-page: 2085
  year: 2011
  end-page: 2087
  ident: b24
  article-title: Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems
  publication-title: Soft Comput.
– volume: 20
  start-page: 110
  year: 2016
  end-page: 124
  ident: b52
  article-title: Automated design of production scheduling heuristics: A review
  publication-title: IEEE Trans. Evol. Comput.
– reference: V. Stanovov, S. Akhmedova, E. Semenkin, LSHADE algorithm with rank-based selective pressure strategy for solving CEC 2017 benchmark problems, in: 2018 IEEE Congress on Evolutionary Computation, CEC, 2018, pp. 1–8.
– volume: 15
  start-page: 2187
  year: 2011
  end-page: 2199
  ident: b80
  article-title: A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test
  publication-title: Soft Comput.
– year: 2010
  ident: b16
  article-title: F-race and iterated F-race: An overview
  publication-title: Experimental Methods for the Analysis of Optimization Algorithms
– volume: 15
  start-page: 2089
  year: 2011
  end-page: 2107
  ident: b74
  article-title: Shuffle or update parallel differential evolution for large-scale optimization
  publication-title: Soft Comput.
– year: 2021
  ident: b21
  article-title: Evolving continuous optimisers from scratch
– year: 1992
  ident: b72
  article-title: Real-coded genetic algorithms and interval-schemata
  publication-title: Found. Genet. Algorithms
– reference: A. Mohamed, A.A. Hadi, A. Fattouh, K. Jambi, LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary Computation, CEC, 2017, pp. 145–152.
– reference: T. Kadavy, M. Pluhacek, A. Viktorin, R. Šenkeřik, SOMA-CLP for competition on bound constrained single objective numerical optimization benchmark: a competition entry on bound constrained single objective numerical optimization at the genetic and evolutionary computation conference (GECCO) 2021, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021.
– reference: J. Zhang, A.C. Sanderson, JADE: Self-adaptive differential evolution with fast and reliable convergence performance, in: 2007 IEEE Congress on Evolutionary Computation, 2007, pp. 2251–2258.
– volume: 27
  start-page: 1
  year: 2016
  end-page: 30
  ident: b12
  article-title: Recent advances in differential evolution – an updated survey
  publication-title: Swarm Evol. Comput.
– start-page: 177
  year: 2009
  end-page: 201
  ident: b19
  article-title: Exploring hyper-heuristic methodologies with genetic programming
– reference: K.M. Sallam, S.M. Elsayed, R.K. Chakrabortty, M. Ryan, Improved multi-operator differential evolution algorithm for solving unconstrained problems, in: 2020 IEEE Congress on Evolutionary Computation, CEC, 2020, pp. 1–8.
– volume: 50
  year: 2019
  ident: b18
  article-title: Distance based parameter adaptation for Success-History based differential evolution
  publication-title: Swarm Evol. Comput.
– volume: 15
  start-page: 2127
  year: 2011
  end-page: 2140
  ident: b76
  article-title: Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems
  publication-title: Soft Comput.
– year: 2018
  ident: b7
  article-title: Guided evolutionary strategies: escaping the curse of dimensionality in random search
– year: 2016
  ident: b23
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization
– volume: 43
  start-page: 1500
  year: 2014
  end-page: 1511
  ident: b51
  article-title: A genetic programming hyper-heuristic for the multidimensional knapsack problem
  publication-title: Kybernetes
– reference: E. Burke, M. Hyde, G. Kendall, J. Woodward, Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one, in: GECCO ’07, 2007.
– reference: K. Sim, E. Hart, A Ccmbined generative and selective hyper-heuristic for the vehicle routing problem, in: Proceedings of the Genetic and Evolutionary Computation Conference 2016, 2016.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b28
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– reference: C. Ryan, J. Collins, M. O’Neill, Grammatical evolution: Evolving programs for an arbitrary language, in: EuroGP, 1998.
– start-page: 809
  year: 2021
  end-page: 816
  ident: b26
  article-title: Nl-SHADE-RSP algorithm with adaptive archive and selective pressure for CEC 2021 numerical optimization
  publication-title: 2021 IEEE Congress on Evolutionary Computation
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: b29
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
– year: 2011
  ident: b48
  article-title: Evolving heuristics for the school timetabling problem
– volume: 15
  start-page: 2109
  year: 2011
  end-page: 2126
  ident: b75
  article-title: Role differentiation and malleable mating for differential evolution: an analysis on large-scale optimisation
  publication-title: Soft Comput.
– reference: J. Brest, M.S. Maucec, B. Boškovic, Self-adaptive differential evolution algorithm with population size reduction for single objective bound-constrained optimization: Algorithm j21, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 817–824.
– volume: 15
  start-page: 2157
  year: 2011
  end-page: 2174
  ident: b78
  article-title: Self-adaptive differential evolution algorithm using population size reduction and three strategies
  publication-title: Soft Comput.
– volume: 15
  start-page: 2287
  year: 2011
  end-page: 2298
  ident: b86
  article-title: VXQR: derivative-free unconstrained optimization based on QR factorizations
  publication-title: Soft Comput.
– year: 2020
  ident: b22
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2021 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization
– year: 2012
  ident: b15
  article-title: Automated algorithm configuration and parameter tuning
  publication-title: Autonomous Search
– reference: V. Stanovov, S. Akhmedova, E. Semenkin, Visualizing parameter adaptation in differential evolution with expected fitness improvement, in: 2020 IEEE Symposium Series on Computational Intelligence, SSCI, 2020, pp. 321–328.
– year: 2010
  ident: b25
  article-title: TEst Suite for the Special Issue of Soft Computing on Scalability of Evolutionary Algorithms and Other Metaheuristics for Large Scale Continuous Optimization Problems, Technical Report
– reference: A.W. Mohamed, A.A. Hadi, P. Agrawal, K.M. Sallam, A.K. Mohamed, Gaining-sharing knowledge based algorithm with adaptive parameters hybrid with IMODE algorithm for solving CEC 2021 benchmark problems, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 841–848.
– volume: 59
  start-page: 20
  year: 2016
  end-page: 32
  ident: b10
  article-title: Bio inspired computing – a review of algorithms and scope of applications
  publication-title: Expert Syst. Appl.
– year: 2005
  ident: b5
  article-title: Differential Evolution: A Practical Approach To Global Optimization
– reference: J. Brest, M. Maucec, B. Bovsković, The 100-digit challenge: Algorithm jDE100, in: 2019 IEEE Congress on Evolutionary Computation, CEC, 2019, pp. 19–26.
– volume: 275
  start-page: 155
  year: 2018
  end-page: 166
  ident: b6
  article-title: An improved class of real-coded Genetic Algorithms for numerical optimization
  publication-title: Neurocomputing
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b36
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– year: 2000
  ident: b44
  article-title: Cartesian genetic programming 1
– year: 1992
  ident: b38
  article-title: Genetic programming - on the programming of computers by means of natural selection
  publication-title: Complex Adaptive Systems
– year: 2021
  ident: b65
  article-title: Technical report: A Multi-start Local Search Algorithm with L-SHADE for Single Objective Bound Constrained Optimization
– volume: 15
  start-page: 2201
  year: 2011
  end-page: 2220
  ident: b81
  article-title: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-chains
  publication-title: Soft Comput.
– year: 2008
  ident: 10.1016/j.knosys.2021.108070_b40
  article-title: Genetic programming: An introduction and tutorial, with a survey of techniques and applications
– year: 2011
  ident: 10.1016/j.knosys.2021.108070_b48
– start-page: 809
  year: 2021
  ident: 10.1016/j.knosys.2021.108070_b26
  article-title: Nl-SHADE-RSP algorithm with adaptive archive and selective pressure for CEC 2021 numerical optimization
– volume: 43
  start-page: 88
  issn: 2210-6502
  year: 2018
  ident: 10.1016/j.knosys.2021.108070_b32
  article-title: Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure?
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.03.007
– start-page: 453
  year: 2019
  ident: 10.1016/j.knosys.2021.108070_b1
  article-title: A classification of hyper-heuristic approaches: Revisited
– ident: 10.1016/j.knosys.2021.108070_b71
  doi: 10.1109/CEC45853.2021.9504795
– volume: 15
  start-page: 2287
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b86
  article-title: VXQR: derivative-free unconstrained optimization based on QR factorizations
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0652-5
– year: 2020
  ident: 10.1016/j.knosys.2021.108070_b22
– year: 2021
  ident: 10.1016/j.knosys.2021.108070_b65
– volume: 275
  start-page: 155
  year: 2018
  ident: 10.1016/j.knosys.2021.108070_b6
  article-title: An improved class of real-coded Genetic Algorithms for numerical optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.054
– ident: 10.1016/j.knosys.2021.108070_b45
  doi: 10.1109/ICEC.1994.350025
– volume: 74
  start-page: 368
  year: 2019
  ident: 10.1016/j.knosys.2021.108070_b17
  article-title: Dynamic parameter adaptation in metaheuristics using gradient approximation and line search
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.034
– ident: 10.1016/j.knosys.2021.108070_b41
– year: 2021
  ident: 10.1016/j.knosys.2021.108070_b63
– volume: 43
  start-page: 1500
  year: 2014
  ident: 10.1016/j.knosys.2021.108070_b51
  article-title: A genetic programming hyper-heuristic for the multidimensional knapsack problem
  publication-title: Kybernetes
  doi: 10.1108/K-09-2013-0201
– ident: 10.1016/j.knosys.2021.108070_b69
  doi: 10.1109/CEC45853.2021.9504792
– year: 2005
  ident: 10.1016/j.knosys.2021.108070_b5
– year: 2018
  ident: 10.1016/j.knosys.2021.108070_b7
– ident: 10.1016/j.knosys.2021.108070_b14
  doi: 10.1007/978-3-642-25566-3_40
– volume: 15
  start-page: 2187
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b80
  article-title: A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0646-3
– volume: 15
  start-page: 2201
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b81
  article-title: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-chains
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0647-2
– volume: 25
  start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2021.108070_b9
  article-title: Particle swarm optimization for single objective continuous space problems: A review
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_r_00180
– year: 2010
  ident: 10.1016/j.knosys.2021.108070_b16
  article-title: F-race and iterated F-race: An overview
– volume: 566
  start-page: 215
  year: 2021
  ident: 10.1016/j.knosys.2021.108070_b61
  article-title: Biased parameter adaptation in differential evolution
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.03.016
– ident: 10.1016/j.knosys.2021.108070_b62
  doi: 10.1109/SSCI47803.2020.9308467
– start-page: 71
  year: 2013
  ident: 10.1016/j.knosys.2021.108070_b31
  article-title: Success-history based parameter adaptation for differential evolution
– ident: 10.1016/j.knosys.2021.108070_b54
  doi: 10.1007/11729976_9
– start-page: 1658
  year: 2014
  ident: 10.1016/j.knosys.2021.108070_b37
  article-title: Improving the search performance of SHADE using linear population size reduction
– ident: 10.1016/j.knosys.2021.108070_b58
  doi: 10.1109/CEC48606.2020.9185901
– volume: 21
  start-page: 746
  year: 2017
  ident: 10.1016/j.knosys.2021.108070_b8
  article-title: Simplify your covariance matrix adaptation evolution strategy
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2680320
– volume: 15
  start-page: 2085
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b24
  article-title: Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0639-2
– year: 1992
  ident: 10.1016/j.knosys.2021.108070_b72
  article-title: Real-coded genetic algorithms and interval-schemata
  publication-title: Found. Genet. Algorithms
– volume: 13
  start-page: 945
  year: 2009
  ident: 10.1016/j.knosys.2021.108070_b36
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– year: 1994
  ident: 10.1016/j.knosys.2021.108070_b43
– ident: 10.1016/j.knosys.2021.108070_b42
– ident: 10.1016/j.knosys.2021.108070_b67
  doi: 10.1109/CEC45853.2021.9504782
– year: 2012
  ident: 10.1016/j.knosys.2021.108070_b13
  article-title: Evolutionary algorithm parameters and methods to tune them
– ident: 10.1016/j.knosys.2021.108070_b27
  doi: 10.1109/CEC.2018.8477977
– volume: 15
  start-page: 2257
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b84
  article-title: Path relinking for large-scale global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0650-7
– year: 2019
  ident: 10.1016/j.knosys.2021.108070_b3
  article-title: 2019 Evolutionary algorithms review
– start-page: 177
  year: 2009
  ident: 10.1016/j.knosys.2021.108070_b19
  article-title: Exploring hyper-heuristic methodologies with genetic programming
– volume: 15
  start-page: 2109
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b75
  article-title: Role differentiation and malleable mating for differential evolution: an analysis on large-scale optimisation
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0641-8
– volume: 22
  start-page: 276
  year: 2018
  ident: 10.1016/j.knosys.2021.108070_b4
  article-title: A review on bilevel optimization: From classical to evolutionary approaches and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2712906
– ident: 10.1016/j.knosys.2021.108070_b49
  doi: 10.1145/1276958.1277273
– volume: 50
  year: 2019
  ident: 10.1016/j.knosys.2021.108070_b18
  article-title: Distance based parameter adaptation for Success-History based differential evolution
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.013
– volume: 59
  start-page: 20
  year: 2016
  ident: 10.1016/j.knosys.2021.108070_b10
  article-title: Bio inspired computing – a review of algorithms and scope of applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.018
– year: 2000
  ident: 10.1016/j.knosys.2021.108070_b44
– ident: 10.1016/j.knosys.2021.108070_b66
– ident: 10.1016/j.knosys.2021.108070_b39
  doi: 10.1109/CEC.2005.1554780
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.knosys.2021.108070_b33
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– ident: 10.1016/j.knosys.2021.108070_b20
  doi: 10.1007/978-3-030-44094-7_7
– ident: 10.1016/j.knosys.2021.108070_b70
  doi: 10.1109/CEC45853.2021.9504814
– year: 2016
  ident: 10.1016/j.knosys.2021.108070_b23
– ident: 10.1016/j.knosys.2021.108070_b68
  doi: 10.1109/CEC45853.2021.9504829
– ident: 10.1016/j.knosys.2021.108070_b46
  doi: 10.1007/BFb0055930
– volume: 15
  start-page: 2127
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b76
  article-title: Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0642-7
– ident: 10.1016/j.knosys.2021.108070_b2
  doi: 10.1145/2598394.2609874
– year: 2012
  ident: 10.1016/j.knosys.2021.108070_b15
  article-title: Automated algorithm configuration and parameter tuning
– volume: 27
  start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2021.108070_b12
  article-title: Recent advances in differential evolution – an updated survey
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.01.004
– volume: 15
  start-page: 2157
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b78
  article-title: Self-adaptive differential evolution algorithm using population size reduction and three strategies
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0644-5
– volume: 15
  start-page: 2233
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b83
  article-title: An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0649-0
– volume: 50
  year: 2019
  ident: 10.1016/j.knosys.2021.108070_b57
  article-title: Selective pressure strategy in differential evolution: Exploitation improvement in solving global optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.014
– ident: 10.1016/j.knosys.2021.108070_b73
  doi: 10.1109/CEC.2005.1554902
– ident: 10.1016/j.knosys.2021.108070_b50
  doi: 10.1145/2908812.2908942
– year: 2010
  ident: 10.1016/j.knosys.2021.108070_b25
– ident: 10.1016/j.knosys.2021.108070_b35
  doi: 10.1109/CEC48606.2020.9185551
– ident: 10.1016/j.knosys.2021.108070_b11
  doi: 10.1109/CEC.2019.8790158
– ident: 10.1016/j.knosys.2021.108070_b56
  doi: 10.1109/CEC.2017.7969307
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.knosys.2021.108070_b28
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 15
  start-page: 2089
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b74
  article-title: Shuffle or update parallel differential evolution for large-scale optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0640-9
– volume: 15
  start-page: 2175
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b79
  article-title: Self-adaptive differential evolution with multi-trajectory search for large-scale optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0645-4
– volume: 15
  start-page: 2221
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b82
  article-title: Restart particle swarm optimization with velocity modulation: a scalability test
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0648-1
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b29
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– ident: 10.1016/j.knosys.2021.108070_b34
  doi: 10.1109/CEC.2019.8789904
– ident: 10.1016/j.knosys.2021.108070_b55
  doi: 10.1145/2330784.2330796
– volume: 20
  start-page: 110
  year: 2016
  ident: 10.1016/j.knosys.2021.108070_b52
  article-title: Automated design of production scheduling heuristics: A review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2429314
– start-page: 1311
  year: 2017
  ident: 10.1016/j.knosys.2021.108070_b60
  article-title: Single objective real-parameter optimization algorithm jSO
– ident: 10.1016/j.knosys.2021.108070_b30
– year: 2021
  ident: 10.1016/j.knosys.2021.108070_b21
– ident: 10.1016/j.knosys.2021.108070_b64
  doi: 10.1145/3449726.3463286
– start-page: 25
  year: 2018
  ident: 10.1016/j.knosys.2021.108070_b47
  article-title: Generation constructive hyper-heuristics
  doi: 10.1007/978-3-319-96514-7_4
– volume: 17
  start-page: 119
  year: 2015
  ident: 10.1016/j.knosys.2021.108070_b53
  article-title: Grammar-based generation of variable-selection heuristics for constraint satisfaction problems
  publication-title: Genet. Programm. Evol. Mach.
  doi: 10.1007/s10710-015-9249-1
– ident: 10.1016/j.knosys.2021.108070_b59
  doi: 10.1109/CEC48606.2020.9185577
– volume: 15
  start-page: 2275
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b85
  article-title: EM323: a line search based algorithm for solving high-dimensional continuous non-linear optimization problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0651-6
– year: 1992
  ident: 10.1016/j.knosys.2021.108070_b38
  article-title: Genetic programming - on the programming of computers by means of natural selection
– volume: 15
  start-page: 2141
  year: 2011
  ident: 10.1016/j.knosys.2021.108070_b77
  article-title: Scalability of generalized adaptive differential evolution for large-scale continuous optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0643-6
– year: 2006
  ident: 10.1016/j.knosys.2021.108070_b87
  article-title: Experimental research in evolutionary computation - the new experimentalism
  publication-title: Nat. Comput. Ser.
SSID ssj0002218
Score 2.4619365
Snippet This study proposes a technique aimed at the automatic search for parameter adaptation strategies in a differential evolution algorithm with genetic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108070
SubjectTerms Adaptation
Algorithms
Automatic
Design factors
Design parameters
Differential evolution
Evolution
Evolutionary algorithms
Evolutionary computation
Extraction
Genetic algorithms
Genetic programming
Genetics
Information sources
Optimization
Parameter adaptation
Programming
Property
Scaling factors
Symbolism
Symbols
Title The automatic design of parameter adaptation techniques for differential evolution with genetic programming
URI https://dx.doi.org/10.1016/j.knosys.2021.108070
https://www.proquest.com/docview/2638771565
Volume 239
WOSCitedRecordID wos000806866700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5FKQcu7IhCqebA1cgeL2MfIxQEFFVILSg3azyLkia1o-KYil_PmzVRI9QWiYsV2RnP5L1v5i15C0LviBQia_I4IorwKMsaEjHBC1Dk0qJJpSoSU53_x1d6elrOZtW30eiXz4UZVrRty-vrav1fWQ33gNk6dfYe7A4vhRvwGZgOV2A7XO_MeLbpO1uLVZgIDRPXzHQclq6JyARbuyDDUMLVlGUI7VJ67UeXg1unddbChDrh0Ud0XXqZ5zTbE--ci7RgFK5EdNDYdbfibugGE1e7YmJxuQhhwZPlHGRyNxg99mzOlvOW_Q4Dtf_S9QybbvQidh0VYOPqSK186z3by6Bxbsg4orErOivtIVxS0PqzuNo9pYmtebR34lvnw8X7ZdvBDwODnyQmbtK2I7lRS_tMT6dnA0NXp2OD2XxAaF6VY3Qw-TydfQlCnBDjGg7L81mXJjRwf66_aTU35LtRWs6foEfO2sATi5KnaCTbZ-ix7-SB3cH-HC0BNDiABlvQ4E7hABq8BQ3eggYDaPAuaHAADdagwQ40eAc0L9D3j9PzD58i14Yj4mma9VHFK8EKDlu9kITGTU45idOcqlhRJRpFM_1fcckSCRSNqShyBkZD2fBElEyAvv8Sjduula8QLnjDhOIZlynPmCIsy7kACZvIRkjF40OUejLW3NWo161SVrUPRryoLfFrTfzaEv8QRWHU2tZoueX71HOodnqm1R9rANUtI488Q2u35eE5iDBKE7CMXv_zi9-gh9stc4TG_dVGvkUP-NAvfl4dO3D-Ab_xtzw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+automatic+design+of+parameter+adaptation+techniques+for+differential+evolution+with+genetic+programming&rft.jtitle=Knowledge-based+systems&rft.au=Stanovov%2C+Vladimir&rft.au=Akhmedova%2C+Shakhnaz&rft.au=Semenkin%2C+Eugene&rft.date=2022-03-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=239&rft_id=info:doi/10.1016%2Fj.knosys.2021.108070&rft.externalDocID=S0950705121011461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon