A Unified Form of Fuzzy C-Means and K-Means algorithms and its Partitional Implementation
This paper proposes as an element of novelty the Unified Form (UF) clustering algorithm, which treats Fuzzy C-Means (FCM) and K-Means (KM) algorithms as a single configurable algorithm. UF algorithm was designed to facilitate the FCM and KM algorithms software implementation by offering a solution t...
Uloženo v:
| Vydáno v: | Knowledge-based systems Ročník 214; s. 106731 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
28.02.2021
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes as an element of novelty the Unified Form (UF) clustering algorithm, which treats Fuzzy C-Means (FCM) and K-Means (KM) algorithms as a single configurable algorithm. UF algorithm was designed to facilitate the FCM and KM algorithms software implementation by offering a solution to implement a single algorithm, which can be configured to work as FCM or KM. The second element of novelty of this paper is the Partitional Implementation of Unified Form (PIUF) algorithm, which is built upon the UF algorithm and designed to solve in an elegant manner the challenges of processing large datasets in a sequential manner and the scalability of the UF algorithm for processing datasets of any size. PIUF algorithm has the advantage of overcoming any possible hardware limitations that can occur if large volumes of data are processed (required to be stored, loaded in memory and processed by a certain specified computational system). PIUF algorithm is designed and formulated to be used on a single machine if the processed dataset is very big and it cannot be entirely loaded in the memory; at the same time it can be scaled to multiple processing nodes for reducing the processing time required to find the optimal solution. UF and PIUF algorithms are implemented and validated in BigTim platform, which is a distributed platform developed by the authors, and offers support for processing various datasets in a parallel manner but they can be implemented in any other data processing platforms. The Iris dataset is considered and next modified to obtain different datasets of different sizes in order to test the algorithms implementations in BigTim platform in different configurations. The analysis of PIUF algorithm and the comparison with FCM, KM and DBSCAN clustering algorithms are carried out using two performance indices; three performance indices are employed to evaluate the quality of the obtained clusters.
•A unified form (UF) to treat Fuzzy C-means and K-means algorithms is proposed.•UF algorithm reduces the effort required for the software implementation.•UF algorithm runs as a distributed algorithm.•UF algorithm is implemented and validated using BigTim distributed platform.•The results are analyzed and compared using several performance indices. |
|---|---|
| AbstractList | This paper proposes as an element of novelty the Unified Form (UF) clustering algorithm, which treats Fuzzy C-Means (FCM) and K-Means (KM) algorithms as a single configurable algorithm. UF algorithm was designed to facilitate the FCM and KM algorithms software implementation by offering a solution to implement a single algorithm, which can be configured to work as FCM or KM. The second element of novelty of this paper is the Partitional Implementation of Unified Form (PIUF) algorithm, which is built upon the UF algorithm and designed to solve in an elegant manner the challenges of processing large datasets in a sequential manner and the scalability of the UF algorithm for processing datasets of any size. PIUF algorithm has the advantage of overcoming any possible hardware limitations that can occur if large volumes of data are processed (required to be stored, loaded in memory and processed by a certain specified computational system). PIUF algorithm is designed and formulated to be used on a single machine if the processed dataset is very big and it cannot be entirely loaded in the memory; at the same time it can be scaled to multiple processing nodes for reducing the processing time required to find the optimal solution. UF and PIUF algorithms are implemented and validated in BigTim platform, which is a distributed platform developed by the authors, and offers support for processing various datasets in a parallel manner but they can be implemented in any other data processing platforms. The Iris dataset is considered and next modified to obtain different datasets of different sizes in order to test the algorithms implementations in BigTim platform in different configurations. The analysis of PIUF algorithm and the comparison with FCM, KM and DBSCAN clustering algorithms are carried out using two performance indices; three performance indices are employed to evaluate the quality of the obtained clusters. This paper proposes as an element of novelty the Unified Form (UF) clustering algorithm, which treats Fuzzy C-Means (FCM) and K-Means (KM) algorithms as a single configurable algorithm. UF algorithm was designed to facilitate the FCM and KM algorithms software implementation by offering a solution to implement a single algorithm, which can be configured to work as FCM or KM. The second element of novelty of this paper is the Partitional Implementation of Unified Form (PIUF) algorithm, which is built upon the UF algorithm and designed to solve in an elegant manner the challenges of processing large datasets in a sequential manner and the scalability of the UF algorithm for processing datasets of any size. PIUF algorithm has the advantage of overcoming any possible hardware limitations that can occur if large volumes of data are processed (required to be stored, loaded in memory and processed by a certain specified computational system). PIUF algorithm is designed and formulated to be used on a single machine if the processed dataset is very big and it cannot be entirely loaded in the memory; at the same time it can be scaled to multiple processing nodes for reducing the processing time required to find the optimal solution. UF and PIUF algorithms are implemented and validated in BigTim platform, which is a distributed platform developed by the authors, and offers support for processing various datasets in a parallel manner but they can be implemented in any other data processing platforms. The Iris dataset is considered and next modified to obtain different datasets of different sizes in order to test the algorithms implementations in BigTim platform in different configurations. The analysis of PIUF algorithm and the comparison with FCM, KM and DBSCAN clustering algorithms are carried out using two performance indices; three performance indices are employed to evaluate the quality of the obtained clusters. •A unified form (UF) to treat Fuzzy C-means and K-means algorithms is proposed.•UF algorithm reduces the effort required for the software implementation.•UF algorithm runs as a distributed algorithm.•UF algorithm is implemented and validated using BigTim distributed platform.•The results are analyzed and compared using several performance indices. |
| ArticleNumber | 106731 |
| Author | Borlea, Ioan-Daniel Borlea, Alexandra-Bianca Iercan, Daniel Precup, Radu-Emil |
| Author_xml | – sequence: 1 givenname: Ioan-Daniel surname: Borlea fullname: Borlea, Ioan-Daniel email: daniel.borlea@student.upt.ro organization: Department of Automation and Applied Informatics, Politehnica University of Timisoara, Bd. V. Parvan 2, RO-300223 Timisoara, Romania – sequence: 2 givenname: Radu-Emil orcidid: 0000-0002-2060-7403 surname: Precup fullname: Precup, Radu-Emil email: radu.precup@aut.upt.ro organization: Department of Automation and Applied Informatics, Politehnica University of Timisoara, Bd. V. Parvan 2, RO-300223 Timisoara, Romania – sequence: 3 givenname: Alexandra-Bianca orcidid: 0000-0003-2289-6824 surname: Borlea fullname: Borlea, Alexandra-Bianca email: alexandra.barbu@student.upt.ro organization: Department of Automation and Applied Informatics, Politehnica University of Timisoara, Bd. V. Parvan 2, RO-300223 Timisoara, Romania – sequence: 4 givenname: Daniel surname: Iercan fullname: Iercan, Daniel email: daniel.iercan@aut.upt.ro organization: Department of Automation and Applied Informatics, Politehnica University of Timisoara, Bd. V. Parvan 2, RO-300223 Timisoara, Romania |
| BookMark | eNqFULFOwzAUtFCRaAt_wGCJOcV2GsdhQEIVhQoQDDAwWa7zDC6JXWwXqXw9qQILA0zv6XR3796N0MB5BwgdUzKhhPLT1eTN-biNE0bYDuJlTvfQkIqSZeWUVAM0JFVBspIU9ACNYlwRQhijYoieL_CTs8ZCjec-tNgbPN98fm7xLLsD5SJWrsY3P3vz4oNNr20P2xTxgwrJJuudavCiXTfQgktqBxyifaOaCEffc4ye5pePs-vs9v5qMbu4zXSeT1NWCVgWS1IqoZlQhBU6p3VNc1ZTJsTSKOCmEozzkhmApTElrSvNDeNlxUXF8zE66X3Xwb9vICa58pvQ5YmSFYSygnd3OtZZz9LBxxjASG37nCko20hK5K5KuZJ9lXJXpeyr7MTTX-J1sK0K2_9k570Muvc_LAQZtQWnobYBdJK1t38bfAFFrpF_ |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_119129 crossref_primary_10_1016_j_engappai_2022_104743 crossref_primary_10_1016_j_future_2022_11_009 crossref_primary_10_1016_j_knosys_2024_111748 crossref_primary_10_1016_j_bspc_2023_105368 crossref_primary_10_1016_j_engappai_2022_104904 crossref_primary_10_1016_j_eswa_2022_118029 crossref_primary_10_1109_TFUZZ_2024_3443878 crossref_primary_10_1155_2022_2674987 crossref_primary_10_3390_computers12080147 crossref_primary_10_1016_j_ins_2022_09_038 crossref_primary_10_1016_j_engappai_2022_105285 crossref_primary_10_1109_TCSVT_2024_3435383 crossref_primary_10_1016_j_eswa_2024_124264 crossref_primary_10_1016_j_eswa_2024_124660 crossref_primary_10_1109_TIE_2023_3239864 crossref_primary_10_1007_s00500_021_06460_3 crossref_primary_10_1016_j_knosys_2022_109937 crossref_primary_10_1016_j_engappai_2022_105541 crossref_primary_10_1016_j_knosys_2021_107538 crossref_primary_10_1016_j_ins_2023_02_055 crossref_primary_10_1016_j_ins_2022_11_139 crossref_primary_10_1016_j_eswa_2022_119224 crossref_primary_10_1016_j_eswa_2022_119222 crossref_primary_10_1016_j_bspc_2022_103986 crossref_primary_10_1016_j_ins_2022_09_045 crossref_primary_10_1016_j_neunet_2024_106427 crossref_primary_10_1016_j_eswa_2022_118935 crossref_primary_10_1007_s11042_025_20693_6 crossref_primary_10_1016_j_jer_2025_08_015 crossref_primary_10_1016_j_asoc_2023_110968 crossref_primary_10_1016_j_ins_2023_119466 crossref_primary_10_1016_j_knosys_2024_112537 crossref_primary_10_1007_s00521_022_07647_x crossref_primary_10_1016_j_engappai_2021_104649 crossref_primary_10_1016_j_bspc_2022_104174 crossref_primary_10_1109_TCYB_2022_3198997 crossref_primary_10_1016_j_future_2022_09_011 crossref_primary_10_1016_j_eswa_2022_117398 crossref_primary_10_1016_j_eswa_2022_118525 crossref_primary_10_1109_TFUZZ_2025_3574947 crossref_primary_10_1109_TKDE_2023_3274547 crossref_primary_10_1016_j_patcog_2023_109404 crossref_primary_10_1016_j_procs_2022_01_009 crossref_primary_10_1007_s00521_021_06734_9 crossref_primary_10_1016_j_asoc_2021_107933 crossref_primary_10_3390_app112311202 crossref_primary_10_1016_j_engappai_2022_104795 crossref_primary_10_1016_j_engappai_2021_104499 crossref_primary_10_1371_journal_pone_0302741 crossref_primary_10_3233_IDA_230264 crossref_primary_10_1007_s12652_023_04569_x crossref_primary_10_1016_j_engappai_2022_104672 crossref_primary_10_1016_j_eswa_2022_118873 crossref_primary_10_1016_j_health_2022_100112 crossref_primary_10_3390_s23239581 crossref_primary_10_1016_j_istruc_2022_04_076 crossref_primary_10_4316_AECE_2022_01007 crossref_primary_10_1016_j_knosys_2022_108538 crossref_primary_10_1109_TII_2023_3321332 crossref_primary_10_3389_fams_2025_1598165 crossref_primary_10_1016_j_bspc_2023_104754 crossref_primary_10_1016_j_engappai_2022_104822 crossref_primary_10_1155_2021_5589285 crossref_primary_10_1016_j_knosys_2022_109063 crossref_primary_10_1016_j_asoc_2021_107874 crossref_primary_10_1142_S0129156425400518 crossref_primary_10_1109_TCYB_2022_3166975 crossref_primary_10_3233_JIFS_223754 crossref_primary_10_1016_j_eswa_2022_118051 crossref_primary_10_1038_s41598_023_36309_8 crossref_primary_10_1007_s11053_025_10504_y crossref_primary_10_1016_j_ins_2021_11_038 crossref_primary_10_1016_j_eswa_2022_117524 crossref_primary_10_1109_TCYB_2022_3211499 crossref_primary_10_1016_j_eswa_2022_117885 crossref_primary_10_1016_j_heliyon_2024_e37804 crossref_primary_10_1016_j_ins_2022_07_178 crossref_primary_10_1155_2021_8178495 crossref_primary_10_1016_j_asoc_2024_111712 crossref_primary_10_4018_IJWLTT_325348 crossref_primary_10_1109_TNNLS_2024_3486912 crossref_primary_10_1016_j_engappai_2021_104444 crossref_primary_10_3390_math12111639 crossref_primary_10_1016_j_eswa_2022_118960 crossref_primary_10_1016_j_knosys_2022_109444 crossref_primary_10_2478_amns_2023_2_00137 crossref_primary_10_1109_JSEN_2023_3343399 crossref_primary_10_3390_en18185033 crossref_primary_10_3390_su15129758 crossref_primary_10_1007_s40747_021_00542_3 crossref_primary_10_1016_j_eswa_2023_119536 crossref_primary_10_1109_TSMC_2023_3293462 crossref_primary_10_1016_j_eswa_2025_128567 crossref_primary_10_1016_j_heliyon_2024_e29182 crossref_primary_10_1155_2021_2883559 crossref_primary_10_1016_j_asoc_2022_109939 crossref_primary_10_1016_j_egyr_2022_09_077 crossref_primary_10_4316_AECE_2024_04001 crossref_primary_10_1016_j_engappai_2022_104916 crossref_primary_10_1088_2631_8695_adfac8 crossref_primary_10_1109_TII_2022_3184407 crossref_primary_10_1016_j_eswa_2022_118152 crossref_primary_10_1016_j_bspc_2023_105771 crossref_primary_10_1016_j_eswa_2022_117583 crossref_primary_10_1007_s00500_022_07406_z crossref_primary_10_1007_s10489_022_03698_8 crossref_primary_10_1016_j_chaos_2024_114670 crossref_primary_10_1155_2022_7711386 crossref_primary_10_1007_s40747_022_00763_0 crossref_primary_10_1142_S0129156424401153 crossref_primary_10_1016_j_eswa_2022_118956 crossref_primary_10_1109_TCYB_2021_3131749 crossref_primary_10_1016_j_eswa_2022_117905 crossref_primary_10_1007_s10489_024_05506_x crossref_primary_10_1016_j_eswa_2024_123263 crossref_primary_10_2478_cait_2023_0010 |
| Cites_doi | 10.15837/ijccc.2017.6.3111 10.1109/TFUZZ.2012.2201485 10.1109/91.531779 10.1016/j.knosys.2019.07.008 10.1016/j.compind.2015.03.001 10.1016/j.procs.2018.10.277 10.1016/j.ins.2015.11.040 10.1016/0098-3004(84)90020-7 10.1145/2523616.2523633 10.1109/FUZZY.1995.409988 10.1016/j.ins.2020.02.066 10.24846/v29i4y202002 10.1016/j.future.2016.03.004 10.1109/TPAMI.2002.1114856 10.1109/TKDE.2008.88 10.1007/s12530-013-9084-7 10.1109/TPAMI.1986.4767778 10.14778/1687553.1687609 10.1016/j.knosys.2017.01.003 10.1109/TFUZZ.2019.2936333 10.1109/TII.2019.2917520 10.1016/j.neucom.2016.10.068 10.1145/2094114.2094118 10.1007/s40815-017-0432-9 10.1109/TETC.2014.2330519 10.1145/2020408.2020515 10.1007/s13042-015-0367-0 10.1109/SACI46893.2019.9111590 10.1080/00207721.2014.911422 10.1145/235968.233324 10.1016/j.comcom.2007.05.024 10.1016/j.asoc.2018.06.047 10.4316/AECE.2017.04001 10.1109/SACI.2016.7507361 10.12693/APhysPolA.131.1117 10.1109/TPAMI.2002.1017616 10.1109/TPAMI.1984.4767478 10.1109/TCYB.2013.2291234 10.12792/iciae2015.012 10.1109/EAIS.2013.6604098 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.robot.2016.04.007 10.1007/s00521-014-1644-7 10.1016/j.patcog.2012.07.021 10.1145/996841.996844 10.1109/SACI.2018.8441018 10.1109/TFUZZ.2018.2862394 10.1016/j.ifacol.2016.07.089 10.1145/1376616.1376726 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Feb 28, 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Feb 28, 2021 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2020.106731 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2020_106731 S0950705120308601 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-98eb5b07a8c28a025c31dd132d1288bfae6f9826672feebff71d9c6f267968963 |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618605200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 18:46:10 EST 2025 Sat Nov 29 07:07:43 EST 2025 Tue Nov 18 21:11:20 EST 2025 Fri Feb 23 02:48:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | K-means algorithm Partitional Implementation Fuzzy C-means algorithm Distributed platforms Unified form of Fuzzy C-Means algorithms and K-Means algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-98eb5b07a8c28a025c31dd132d1288bfae6f9826672feebff71d9c6f267968963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2060-7403 0000-0003-2289-6824 |
| PQID | 2501256334 |
| PQPubID | 2035257 |
| ParticipantIDs | proquest_journals_2501256334 crossref_citationtrail_10_1016_j_knosys_2020_106731 crossref_primary_10_1016_j_knosys_2020_106731 elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106731 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-28 |
| PublicationDateYYYYMMDD | 2021-02-28 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Borlea, Precup, Dragan, Borlea (b59) 2017; 17 (b66) 2020 Botcha, Medara (b18) 2016; 5 Baruah, Angelov (b34) 2014; 44 Zhang, Wang, Li, Yeh, Jian, Dong (b57) 2020; 522 T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clustering method for very large databases, in: Proceedings of 1996 ACM SIGMOD International Conference on Management of Data, 25(2), 1996, pp. 103–114. V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, Apache Hadoop Yarn: Yet another resource negotiator, in: Proceedings of 4th Annual Symposium on Cloud Computing, Santa Clara, CA, USA, 2013, pp. 1–5. J. Brank, M. Grobelnik, D. Mladenic, A survey of ontology evaluation techniques, in: Proceedings of 18th International Multi-Conference on Information Society, Ljubljana, Slovenia, 2005, pp. 166–169. Bezdek, Ehrlich, Full (b2) 1984; 10 Zhang, Hou, Ji, Yin (b48) 2016; 47 Cannon, Dave, Bezdek (b29) 1986; PAMI-8 Ludwing (b20) 2015; 6 Thusoo, Sarma, Jain, Shao, Chakka, Anthony, Liu, Wyckoff, Murthy (b16) 2009; 2 Osaba, Del Ser, Sadollah, Bilbao, Camacho (b53) 2018; 71 Zhao, Ma, He (b14) 2009; vol. 5931 Ester, Kriegel, Sander, Xu (b12) 1996 Baranyi, Yam, Varlaki (b41) 2013 Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (b60) 2002; 24 Roman, Precup, David (b46) 2018; 139 Precup, David, Petriu, Szedlak-Stinean, Bojan-Dragos (b55) 2016; 49 Dempster, Laird, Rubin (b3) 1977; 39 T. Thinsungnoen, N. Kaoungku, P. Durongdumronchai, K. Kerdprasop, N. Kerdprasop, The clustering validity with Silhouette and sum of squared errors, in: Proceedings of 3rd International Conference on Industrial Application Engineering, Kitakyushu, Japan, 2015, pp. 4–51. Selim, Ismail (b62) 1984; PAMI-6 I.-D. Borlea, R.-E. Precup, F. Dragan, A.-B. Borlea, Parallel implementation of K-means algorithm using MapReduce approach, in: Proceedings of IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2018, pp. 75–80. Dzitac, Filip, Manolescu (b35) 2017; 12 Li, Song, Zhang, Ouyang, Khan (b21) 2016; 65 B. Yuan, G.J. Klir, J.F. Swan-Stone, Evolutionary fuzzy C-means clustering algorithm, in: Proceedings of 1995 IEEE International Conference on Fuzzy Systems, vol. 4, Yokohama, Japan, 1995, pp. 2221–2226. Kovács, Szayer, Tajti, Burdelis, Korondi (b43) 2016; 82 Marino, Manic (b51) 2019; 15 I.-D. Borlea, R.-E. Precup, F. Dragan, On the architecture of a clustering platform for the analysis of big volumes of data, in: Proceedings of IEEE 11th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2016 pp. 145–150. Beruvides, Quiza, Haber (b49) 2016; 334 Zhang, Lam, Sun, Liang (b47) 2020; 28 Eaton, Zikopoulos, Deutsch, Lapis, Deroos (b1) 2012 Maulik, Bandyopadhyay (b61) 2002; 24 Havens, Bezdek, Leckie, Hall, Palaniswami (b9) 2012; 20 Precup, Angelov, Costa, Sayed-Mouchaweh (b38) 2015; 74 A. Hinneburg, D.A. Keim, Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering. Proceedings of 25th International Conference on Very Large Data Bases, Edinburgh, UK, 1999 506–517. Li, Wang, Wang, Hu, Li, Li (b19) 2014; vol. 8451 Cosgun, Kula, Kahraman (b50) 2017; 120 Aggarwal, Zhai (b26) 2012 Pozna, Precup (b37) 2014; 11 P. Angelov, I. Škrjanc, S. Blažič, Robust evolving cloud-based controller for a hydraulic plant, in: Proceedings of 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems, Singapore, 2013, pp. 1–8. Abbasi, Younis (b25) 2007; 30 T.A. Henzinger, R. Jhala, R. Majumdar, Race checking by context inferenc, in: Proceedings of ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation, Washington DC, USA, 2004, 2004, pp. 1–13. Lee, Lee, Choi, Chung, Moon (b24) 2011; 40 Precup, Tomescu (b45) 2015; 26 Zapata, Perozo, Angulo, Contreras (b56) 2020; 18 Mac Queen (b7) 1967 A. Ene, S. Im, B. Mosley, Fast clustering using MapReduce, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 2011, pp. 521–521. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, in: Proceedings of 6th Symposium on Operating Systems Design and Implementation, San Francisco, CA, USA, 2004, pp. 137–150. Blažič, Škrjanc, Matko (b42) 2014; 5 Precup, Roman, Teban, Albu, Petriu, Pozna (b44) 2020; 29 A. Hinneburg, D.A. Keim, An efficient approach to clustering in large multimedia databases with noise, in: Proceedings of Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 1998, pp. 58–65. Zhou, Yang, Fujita, Chen, Wen (b58) 2020; 187 Krishnapuram, Keller (b30) 1996; 4 Mls, Cimler, Vaščák, Puheim (b52) 2017; 232 I.-D. Borlea, D. Iercan, R.-E. Precup, F. Dragan, A.-B. Borlea, Implementing a platform to run clustering algorithms using distributed computing, in: Proceedings of IEEE 13th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2019, pp. 217–222. Starkey, Hagras, Shakya, Owusu (b39) 2019; 27 Li, Ng, Cheung, Huang (b63) 2008; 20 Arbelaitz, Gurrutxaga, Muguerza, Perez, Perona (b68) 2013; 46 C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a not-so-foreign language for data processing, in: Proceedings of 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 2008, pp. 1099–1110. Borthakur (b22) 2008 Precup, David (b54) 2019 Andoga, Fozo (b40) 2017; 131 Alvarez Gil, Johanyák, Kovács (b32) 2018; 16 Dua, KarraTaniskidou (b65) 2017 Fahad, Alshatri, Tari, Alamri, Khalil, Zomaya, Foufou, Bouras (b4) 2014; 2 Liao, Xu, Herrera-Viedma, Herrera (b36) 2018; 20 10.1016/j.knosys.2020.106731_b5 10.1016/j.knosys.2020.106731_b27 Fahad (10.1016/j.knosys.2020.106731_b4) 2014; 2 Selim (10.1016/j.knosys.2020.106731_b62) 1984; PAMI-6 10.1016/j.knosys.2020.106731_b28 Borthakur (10.1016/j.knosys.2020.106731_b22) 2008 Precup (10.1016/j.knosys.2020.106731_b38) 2015; 74 Precup (10.1016/j.knosys.2020.106731_b45) 2015; 26 10.1016/j.knosys.2020.106731_b64 10.1016/j.knosys.2020.106731_b23 Borlea (10.1016/j.knosys.2020.106731_b59) 2017; 17 10.1016/j.knosys.2020.106731_b67 Bezdek (10.1016/j.knosys.2020.106731_b2) 1984; 10 Li (10.1016/j.knosys.2020.106731_b21) 2016; 65 Havens (10.1016/j.knosys.2020.106731_b9) 2012; 20 Osaba (10.1016/j.knosys.2020.106731_b53) 2018; 71 Precup (10.1016/j.knosys.2020.106731_b54) 2019 Eaton (10.1016/j.knosys.2020.106731_b1) 2012 10.1016/j.knosys.2020.106731_b6 10.1016/j.knosys.2020.106731_b8 10.1016/j.knosys.2020.106731_b13 Lee (10.1016/j.knosys.2020.106731_b24) 2011; 40 10.1016/j.knosys.2020.106731_b15 Krishnapuram (10.1016/j.knosys.2020.106731_b30) 1996; 4 10.1016/j.knosys.2020.106731_b17 Pozna (10.1016/j.knosys.2020.106731_b37) 2014; 11 Kovács (10.1016/j.knosys.2020.106731_b43) 2016; 82 Ludwing (10.1016/j.knosys.2020.106731_b20) 2015; 6 Baruah (10.1016/j.knosys.2020.106731_b34) 2014; 44 10.1016/j.knosys.2020.106731_b10 Liao (10.1016/j.knosys.2020.106731_b36) 2018; 20 10.1016/j.knosys.2020.106731_b11 Starkey (10.1016/j.knosys.2020.106731_b39) 2019; 27 (10.1016/j.knosys.2020.106731_b66) 2020 Dempster (10.1016/j.knosys.2020.106731_b3) 1977; 39 Zhao (10.1016/j.knosys.2020.106731_b14) 2009; vol. 5931 Ester (10.1016/j.knosys.2020.106731_b12) 1996 Aggarwal (10.1016/j.knosys.2020.106731_b26) 2012 Dua (10.1016/j.knosys.2020.106731_b65) 2017 Zhang (10.1016/j.knosys.2020.106731_b57) 2020; 522 Thusoo (10.1016/j.knosys.2020.106731_b16) 2009; 2 Kanungo (10.1016/j.knosys.2020.106731_b60) 2002; 24 Zhang (10.1016/j.knosys.2020.106731_b47) 2020; 28 Cannon (10.1016/j.knosys.2020.106731_b29) 1986; PAMI-8 Zapata (10.1016/j.knosys.2020.106731_b56) 2020; 18 Roman (10.1016/j.knosys.2020.106731_b46) 2018; 139 Zhang (10.1016/j.knosys.2020.106731_b48) 2016; 47 Marino (10.1016/j.knosys.2020.106731_b51) 2019; 15 Abbasi (10.1016/j.knosys.2020.106731_b25) 2007; 30 Blažič (10.1016/j.knosys.2020.106731_b42) 2014; 5 Mac Queen (10.1016/j.knosys.2020.106731_b7) 1967 Dzitac (10.1016/j.knosys.2020.106731_b35) 2017; 12 Beruvides (10.1016/j.knosys.2020.106731_b49) 2016; 334 Andoga (10.1016/j.knosys.2020.106731_b40) 2017; 131 Precup (10.1016/j.knosys.2020.106731_b55) 2016; 49 Zhou (10.1016/j.knosys.2020.106731_b58) 2020; 187 10.1016/j.knosys.2020.106731_b31 10.1016/j.knosys.2020.106731_b33 Li (10.1016/j.knosys.2020.106731_b19) 2014; vol. 8451 Botcha (10.1016/j.knosys.2020.106731_b18) 2016; 5 Mls (10.1016/j.knosys.2020.106731_b52) 2017; 232 Alvarez Gil (10.1016/j.knosys.2020.106731_b32) 2018; 16 Baranyi (10.1016/j.knosys.2020.106731_b41) 2013 Precup (10.1016/j.knosys.2020.106731_b44) 2020; 29 Arbelaitz (10.1016/j.knosys.2020.106731_b68) 2013; 46 Li (10.1016/j.knosys.2020.106731_b63) 2008; 20 Maulik (10.1016/j.knosys.2020.106731_b61) 2002; 24 Cosgun (10.1016/j.knosys.2020.106731_b50) 2017; 120 |
| References_xml | – year: 2013 ident: b41 article-title: TP Model Transformation in Polytopic Model-Based Control – volume: 2 start-page: 267 year: 2014 end-page: 279 ident: b4 article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis publication-title: IEEE Trans. Emerg. Top. Comput. – volume: 120 start-page: 186 year: 2017 end-page: 197 ident: b50 article-title: Markdown optimization for an apparel retailer under cross-price and initial inventory effects publication-title: Knowl.-Based Syst. – volume: 29 start-page: 399 year: 2020 end-page: 410 ident: b44 article-title: Model-free control of finger dynamics in prosthetic hand myoelectric-based control systems publication-title: Stud. Inf. Control – start-page: 226 year: 1996 end-page: 231 ident: b12 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96) – volume: PAMI-8 start-page: 248 year: 1986 end-page: 255 ident: b29 article-title: Efficient implementation of the fuzzy C-means clustering algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, Apache Hadoop Yarn: Yet another resource negotiator, in: Proceedings of 4th Annual Symposium on Cloud Computing, Santa Clara, CA, USA, 2013, pp. 1–5. – volume: 20 start-page: 1130 year: 2012 end-page: 1146 ident: b9 article-title: Fuzzy C-means algorithms for very large data publication-title: IEEE Trans. Fuzzy Syst. – volume: 26 start-page: 541 year: 2015 end-page: 550 ident: b45 article-title: Stable fuzzy logic control of a general class of chaotic systems publication-title: Neural Comput. Appl. – reference: B. Yuan, G.J. Klir, J.F. Swan-Stone, Evolutionary fuzzy C-means clustering algorithm, in: Proceedings of 1995 IEEE International Conference on Fuzzy Systems, vol. 4, Yokohama, Japan, 1995, pp. 2221–2226. – volume: 27 start-page: 502 year: 2019 end-page: 514 ident: b39 article-title: iPatch: A many-objective type-2 fuzzy logic system for field workforce optimization publication-title: IEEE Trans. Fuzzy Syst. – volume: 334 start-page: 161 year: 2016 end-page: 173 ident: b49 article-title: Multi-objective optimization based on an improved cross-entropy method. A case study of a micro-scale manufacturing process publication-title: Inform. Sci. – volume: 74 start-page: 75 year: 2015 end-page: 94 ident: b38 article-title: An overview on fault diagnosis and nature-inspired optimal control of industrial process applications publication-title: Comput. Ind. – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b2 article-title: FCM: The fuzzy C-means clustering algorithm publication-title: Comput. Geosci. – volume: 65 start-page: 90 year: 2016 end-page: 101 ident: b21 article-title: Mapreduce-based fast fuzzy C-means algorithm for large-scale underwater image segmentation publication-title: Future Gener. Comput. Syst. – volume: 4 start-page: 385 year: 1996 end-page: 393 ident: b30 article-title: The possibilistic C-means algorithm: insights and recommendations publication-title: IEEE Trans. Fuzzy Syst. – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: b3 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 12 start-page: 748 year: 2017 end-page: 789 ident: b35 article-title: Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh publication-title: Int. J. Comput. Commun. Control – volume: 40 start-page: 11 year: 2011 end-page: 20 ident: b24 article-title: Parallel data processing with mapreduce: a survey publication-title: ACM SIGMOD Record – volume: 15 start-page: 4442 year: 2019 end-page: 4454 ident: b51 article-title: Modeling and planning under uncertainty using deep neural networks publication-title: IEEE Trans. Ind. Inf. – year: 2008 ident: b22 article-title: HDFS architecture guide – reference: T. Thinsungnoen, N. Kaoungku, P. Durongdumronchai, K. Kerdprasop, N. Kerdprasop, The clustering validity with Silhouette and sum of squared errors, in: Proceedings of 3rd International Conference on Industrial Application Engineering, Kitakyushu, Japan, 2015, pp. 4–51. – reference: T.A. Henzinger, R. Jhala, R. Majumdar, Race checking by context inferenc, in: Proceedings of ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation, Washington DC, USA, 2004, 2004, pp. 1–13. – volume: 5 start-page: 1240 year: 2016 end-page: 1244 ident: b18 article-title: Implementing K-means clustering algorithm using MapReduce paradigm publication-title: Int. J. Sci. Res. – volume: 139 start-page: 372 year: 2018 end-page: 380 ident: b46 article-title: Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems publication-title: Procedia Comput. Sci. – volume: 24 start-page: 1650 year: 2002 end-page: 1654 ident: b61 article-title: Performance evaluation of some clustering algorithms and validity indices publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: P. Angelov, I. Škrjanc, S. Blažič, Robust evolving cloud-based controller for a hydraulic plant, in: Proceedings of 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems, Singapore, 2013, pp. 1–8. – year: 2019 ident: b54 article-title: Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems – reference: I.-D. Borlea, R.-E. Precup, F. Dragan, A.-B. Borlea, Parallel implementation of K-means algorithm using MapReduce approach, in: Proceedings of IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2018, pp. 75–80. – volume: 17 start-page: 3 year: 2017 end-page: 10 ident: b59 article-title: Centroid update approach to K-means clustering publication-title: Adv. Electr. Comput. Eng. – volume: vol. 8451 start-page: 357 year: 2014 end-page: 371 ident: b19 article-title: An efficient K-means clustering algorithm on mapreduce publication-title: Database Systems for Advanced Applications – volume: 187 year: 2020 ident: b58 article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data publication-title: Knowl.-Based Syst. – volume: 20 start-page: 2084 year: 2018 end-page: 2110 ident: b36 article-title: Hesitant fuzzy linguistic term set and its application in decision making: A state-of-the-art survey publication-title: Int. J. Fuzzy Syst. – volume: 18 start-page: 1 year: 2020 end-page: 18 ident: b56 article-title: A hybrid swarm algorithm for collective construction of 3D structures publication-title: Int. J. Artif. Intell. – start-page: 77 year: 2012 end-page: 128 ident: b26 article-title: A survey of text clustering algorithms publication-title: Mining Text Data – volume: 71 start-page: 277 year: 2018 end-page: 290 ident: b53 article-title: A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem publication-title: Appl. Soft Comput. – year: 2020 ident: b66 article-title: Iris dataset 2019 – reference: A. Ene, S. Im, B. Mosley, Fast clustering using MapReduce, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 2011, pp. 521–521. – volume: 5 start-page: 3 year: 2014 end-page: 10 ident: b42 article-title: A robust fuzzy adaptive law for evolving control systems publication-title: Evol. Syst. – reference: I.-D. Borlea, D. Iercan, R.-E. Precup, F. Dragan, A.-B. Borlea, Implementing a platform to run clustering algorithms using distributed computing, in: Proceedings of IEEE 13th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2019, pp. 217–222. – volume: 11 start-page: 21 year: 2014 end-page: 39 ident: b37 article-title: Applications of signatures to expert systems modeling publication-title: Acta Polytech. Hung. – reference: I.-D. Borlea, R.-E. Precup, F. Dragan, On the architecture of a clustering platform for the analysis of big volumes of data, in: Proceedings of IEEE 11th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2016 pp. 145–150. – volume: 49 start-page: 55 year: 2016 end-page: 60 ident: b55 article-title: Grey wolf optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity publication-title: IFAC-PapersOnLine – volume: 44 start-page: 1619 year: 2014 end-page: 1631 ident: b34 article-title: DEC: Dynamically evolving clustering and its application to structure identification of evolving fuzzy models publication-title: IEEE Trans. Cybern. – volume: 47 start-page: 1084 year: 2016 end-page: 1094 ident: b48 article-title: Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations publication-title: Internat. J. Systems Sci. – reference: C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a not-so-foreign language for data processing, in: Proceedings of 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 2008, pp. 1099–1110. – reference: J. Brank, M. Grobelnik, D. Mladenic, A survey of ontology evaluation techniques, in: Proceedings of 18th International Multi-Conference on Information Society, Ljubljana, Slovenia, 2005, pp. 166–169. – reference: T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clustering method for very large databases, in: Proceedings of 1996 ACM SIGMOD International Conference on Management of Data, 25(2), 1996, pp. 103–114. – volume: 131 start-page: 1117 year: 2017 end-page: 1119 ident: b40 article-title: Near magnetic field of a small turbojet engine publication-title: Acta Phys. Polon. A – volume: vol. 5931 start-page: 674 year: 2009 end-page: 679 ident: b14 article-title: Parallel K-means clustering based on mapreduce publication-title: Cloud Computing. CloudCom 2009 – volume: 522 start-page: 1 year: 2020 end-page: 16 ident: b57 article-title: Enhancing MOEA/D with information feedback models for large-scale many-objective optimization publication-title: Inform. Sci. – reference: A. Hinneburg, D.A. Keim, Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering. Proceedings of 25th International Conference on Very Large Data Bases, Edinburgh, UK, 1999 506–517. – volume: 30 start-page: 2826 year: 2007 end-page: 2841 ident: b25 article-title: A survey on clustering algorithms for wireless sensor networks publication-title: Comput. Commun. – volume: 82 start-page: 24 year: 2016 end-page: 34 ident: b43 article-title: A novel potential field method for path planning of mobile robots by adapting animal motion attributes publication-title: Robot. Auton. Syst. – volume: 232 start-page: 58 year: 2017 end-page: 68 ident: b52 article-title: Interactive evolutionary optimization of fuzzy cognitive maps publication-title: Neurocomputing – reference: A. Hinneburg, D.A. Keim, An efficient approach to clustering in large multimedia databases with noise, in: Proceedings of Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 1998, pp. 58–65. – year: 2017 ident: b65 article-title: UCI Machine Learning Repository – volume: 28 start-page: 2375 year: 2020 end-page: 2388 ident: b47 article-title: Fault detection for fuzzy semi-Markov jump systems based on interval type-2 fuzzy approach publication-title: IEEE Trans. Fuzzy Syst. – volume: 24 start-page: 881 year: 2002 end-page: 892 ident: b60 article-title: An efficient K-means clustering algorithm: analysis and implementation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 16 start-page: 20 year: 2018 end-page: 40 ident: b32 article-title: Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation publication-title: Int. J. Artif. Intell. – volume: 6 start-page: 923 year: 2015 end-page: 934 ident: b20 article-title: Mapreduce-based fuzzy C-means clustering algorithm: implementation and scalability publication-title: Int. J. Mach. Learn. Cybern. – year: 2012 ident: b1 article-title: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data – start-page: 281 year: 1967 end-page: 297 ident: b7 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics – volume: 20 start-page: 1519 year: 2008 end-page: 1534 ident: b63 article-title: Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters publication-title: IEEE Trans. Knowl. Data Eng. – reference: J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, in: Proceedings of 6th Symposium on Operating Systems Design and Implementation, San Francisco, CA, USA, 2004, pp. 137–150. – volume: 46 start-page: 243 year: 2013 end-page: 256 ident: b68 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recognit. – volume: 2 start-page: 1626 year: 2009 end-page: 1629 ident: b16 article-title: Hive: a warehousing solution over a map-reduce framework publication-title: Proc. VLDB Endowment – volume: PAMI-6 start-page: 81 year: 1984 end-page: 87 ident: b62 article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 12 start-page: 748 issue: 6 year: 2017 ident: 10.1016/j.knosys.2020.106731_b35 article-title: Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh publication-title: Int. J. Comput. Commun. Control doi: 10.15837/ijccc.2017.6.3111 – volume: 20 start-page: 1130 issue: 6 year: 2012 ident: 10.1016/j.knosys.2020.106731_b9 article-title: Fuzzy C-means algorithms for very large data publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2012.2201485 – volume: 4 start-page: 385 issue: 3 year: 1996 ident: 10.1016/j.knosys.2020.106731_b30 article-title: The possibilistic C-means algorithm: insights and recommendations publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.531779 – year: 2012 ident: 10.1016/j.knosys.2020.106731_b1 – volume: 187 year: 2020 ident: 10.1016/j.knosys.2020.106731_b58 article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.07.008 – volume: 74 start-page: 75 year: 2015 ident: 10.1016/j.knosys.2020.106731_b38 article-title: An overview on fault diagnosis and nature-inspired optimal control of industrial process applications publication-title: Comput. Ind. doi: 10.1016/j.compind.2015.03.001 – volume: 139 start-page: 372 year: 2018 ident: 10.1016/j.knosys.2020.106731_b46 article-title: Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.10.277 – volume: 334 start-page: 161 year: 2016 ident: 10.1016/j.knosys.2020.106731_b49 article-title: Multi-objective optimization based on an improved cross-entropy method. A case study of a micro-scale manufacturing process publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.11.040 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 10.1016/j.knosys.2020.106731_b2 article-title: FCM: The fuzzy C-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – ident: 10.1016/j.knosys.2020.106731_b23 doi: 10.1145/2523616.2523633 – ident: 10.1016/j.knosys.2020.106731_b31 doi: 10.1109/FUZZY.1995.409988 – volume: 522 start-page: 1 year: 2020 ident: 10.1016/j.knosys.2020.106731_b57 article-title: Enhancing MOEA/D with information feedback models for large-scale many-objective optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.02.066 – volume: 29 start-page: 399 issue: 4 year: 2020 ident: 10.1016/j.knosys.2020.106731_b44 article-title: Model-free control of finger dynamics in prosthetic hand myoelectric-based control systems publication-title: Stud. Inf. Control doi: 10.24846/v29i4y202002 – volume: 65 start-page: 90 issue: C year: 2016 ident: 10.1016/j.knosys.2020.106731_b21 article-title: Mapreduce-based fast fuzzy C-means algorithm for large-scale underwater image segmentation publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2016.03.004 – volume: 24 start-page: 1650 issue: 12 year: 2002 ident: 10.1016/j.knosys.2020.106731_b61 article-title: Performance evaluation of some clustering algorithms and validity indices publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1114856 – year: 2013 ident: 10.1016/j.knosys.2020.106731_b41 – start-page: 77 year: 2012 ident: 10.1016/j.knosys.2020.106731_b26 article-title: A survey of text clustering algorithms – volume: 20 start-page: 1519 issue: 11 year: 2008 ident: 10.1016/j.knosys.2020.106731_b63 article-title: Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.88 – ident: 10.1016/j.knosys.2020.106731_b27 – volume: 5 start-page: 1240 issue: 7 year: 2016 ident: 10.1016/j.knosys.2020.106731_b18 article-title: Implementing K-means clustering algorithm using MapReduce paradigm publication-title: Int. J. Sci. Res. – volume: 5 start-page: 3 issue: 1 year: 2014 ident: 10.1016/j.knosys.2020.106731_b42 article-title: A robust fuzzy adaptive law for evolving control systems publication-title: Evol. Syst. doi: 10.1007/s12530-013-9084-7 – volume: PAMI-8 start-page: 248 issue: 2 year: 1986 ident: 10.1016/j.knosys.2020.106731_b29 article-title: Efficient implementation of the fuzzy C-means clustering algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767778 – volume: 2 start-page: 1626 issue: 2 year: 2009 ident: 10.1016/j.knosys.2020.106731_b16 article-title: Hive: a warehousing solution over a map-reduce framework publication-title: Proc. VLDB Endowment doi: 10.14778/1687553.1687609 – volume: 120 start-page: 186 year: 2017 ident: 10.1016/j.knosys.2020.106731_b50 article-title: Markdown optimization for an apparel retailer under cross-price and initial inventory effects publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.01.003 – ident: 10.1016/j.knosys.2020.106731_b5 – volume: vol. 5931 start-page: 674 year: 2009 ident: 10.1016/j.knosys.2020.106731_b14 article-title: Parallel K-means clustering based on mapreduce – volume: 28 start-page: 2375 issue: 10 year: 2020 ident: 10.1016/j.knosys.2020.106731_b47 article-title: Fault detection for fuzzy semi-Markov jump systems based on interval type-2 fuzzy approach publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2936333 – volume: 15 start-page: 4442 issue: 8 year: 2019 ident: 10.1016/j.knosys.2020.106731_b51 article-title: Modeling and planning under uncertainty using deep neural networks publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2917520 – volume: 232 start-page: 58 year: 2017 ident: 10.1016/j.knosys.2020.106731_b52 article-title: Interactive evolutionary optimization of fuzzy cognitive maps publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.068 – volume: 40 start-page: 11 issue: 4 year: 2011 ident: 10.1016/j.knosys.2020.106731_b24 article-title: Parallel data processing with mapreduce: a survey publication-title: ACM SIGMOD Record doi: 10.1145/2094114.2094118 – volume: 20 start-page: 2084 issue: 7 year: 2018 ident: 10.1016/j.knosys.2020.106731_b36 article-title: Hesitant fuzzy linguistic term set and its application in decision making: A state-of-the-art survey publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-017-0432-9 – volume: 2 start-page: 267 issue: 3 year: 2014 ident: 10.1016/j.knosys.2020.106731_b4 article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2014.2330519 – ident: 10.1016/j.knosys.2020.106731_b17 doi: 10.1145/2020408.2020515 – year: 2017 ident: 10.1016/j.knosys.2020.106731_b65 – volume: 6 start-page: 923 issue: 6 year: 2015 ident: 10.1016/j.knosys.2020.106731_b20 article-title: Mapreduce-based fuzzy C-means clustering algorithm: implementation and scalability publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-015-0367-0 – year: 2008 ident: 10.1016/j.knosys.2020.106731_b22 – ident: 10.1016/j.knosys.2020.106731_b10 doi: 10.1109/SACI46893.2019.9111590 – volume: 47 start-page: 1084 issue: 5 year: 2016 ident: 10.1016/j.knosys.2020.106731_b48 article-title: Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations publication-title: Internat. J. Systems Sci. doi: 10.1080/00207721.2014.911422 – ident: 10.1016/j.knosys.2020.106731_b8 doi: 10.1145/235968.233324 – volume: 30 start-page: 2826 issue: 14–15 year: 2007 ident: 10.1016/j.knosys.2020.106731_b25 article-title: A survey on clustering algorithms for wireless sensor networks publication-title: Comput. Commun. doi: 10.1016/j.comcom.2007.05.024 – volume: 71 start-page: 277 year: 2018 ident: 10.1016/j.knosys.2020.106731_b53 article-title: A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.06.047 – start-page: 226 year: 1996 ident: 10.1016/j.knosys.2020.106731_b12 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 17 start-page: 3 issue: 4 year: 2017 ident: 10.1016/j.knosys.2020.106731_b59 article-title: Centroid update approach to K-means clustering publication-title: Adv. Electr. Comput. Eng. doi: 10.4316/AECE.2017.04001 – ident: 10.1016/j.knosys.2020.106731_b64 doi: 10.1109/SACI.2016.7507361 – volume: 131 start-page: 1117 issue: 4 year: 2017 ident: 10.1016/j.knosys.2020.106731_b40 article-title: Near magnetic field of a small turbojet engine publication-title: Acta Phys. Polon. A doi: 10.12693/APhysPolA.131.1117 – year: 2019 ident: 10.1016/j.knosys.2020.106731_b54 – ident: 10.1016/j.knosys.2020.106731_b6 – volume: 24 start-page: 881 issue: 7 year: 2002 ident: 10.1016/j.knosys.2020.106731_b60 article-title: An efficient K-means clustering algorithm: analysis and implementation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017616 – volume: 18 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.knosys.2020.106731_b56 article-title: A hybrid swarm algorithm for collective construction of 3D structures publication-title: Int. J. Artif. Intell. – ident: 10.1016/j.knosys.2020.106731_b13 – volume: PAMI-6 start-page: 81 issue: 1 year: 1984 ident: 10.1016/j.knosys.2020.106731_b62 article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1984.4767478 – volume: 44 start-page: 1619 issue: 9 year: 2014 ident: 10.1016/j.knosys.2020.106731_b34 article-title: DEC: Dynamically evolving clustering and its application to structure identification of evolving fuzzy models publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2291234 – ident: 10.1016/j.knosys.2020.106731_b67 doi: 10.12792/iciae2015.012 – ident: 10.1016/j.knosys.2020.106731_b33 doi: 10.1109/EAIS.2013.6604098 – volume: vol. 8451 start-page: 357 year: 2014 ident: 10.1016/j.knosys.2020.106731_b19 article-title: An efficient K-means clustering algorithm on mapreduce – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.knosys.2020.106731_b3 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 82 start-page: 24 year: 2016 ident: 10.1016/j.knosys.2020.106731_b43 article-title: A novel potential field method for path planning of mobile robots by adapting animal motion attributes publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.04.007 – volume: 26 start-page: 541 issue: 3 year: 2015 ident: 10.1016/j.knosys.2020.106731_b45 article-title: Stable fuzzy logic control of a general class of chaotic systems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1644-7 – start-page: 281 year: 1967 ident: 10.1016/j.knosys.2020.106731_b7 article-title: Some methods for classification and analysis of multivariate observations – volume: 46 start-page: 243 issue: 1 year: 2013 ident: 10.1016/j.knosys.2020.106731_b68 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.07.021 – ident: 10.1016/j.knosys.2020.106731_b11 doi: 10.1145/996841.996844 – ident: 10.1016/j.knosys.2020.106731_b28 doi: 10.1109/SACI.2018.8441018 – volume: 27 start-page: 502 issue: 3 year: 2019 ident: 10.1016/j.knosys.2020.106731_b39 article-title: iPatch: A many-objective type-2 fuzzy logic system for field workforce optimization publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2862394 – volume: 49 start-page: 55 issue: 5 year: 2016 ident: 10.1016/j.knosys.2020.106731_b55 article-title: Grey wolf optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.07.089 – volume: 16 start-page: 20 issue: 1 year: 2018 ident: 10.1016/j.knosys.2020.106731_b32 article-title: Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation publication-title: Int. J. Artif. Intell. – volume: 11 start-page: 21 issue: 2 year: 2014 ident: 10.1016/j.knosys.2020.106731_b37 article-title: Applications of signatures to expert systems modeling publication-title: Acta Polytech. Hung. – ident: 10.1016/j.knosys.2020.106731_b15 doi: 10.1145/1376616.1376726 – year: 2020 ident: 10.1016/j.knosys.2020.106731_b66 |
| SSID | ssj0002218 |
| Score | 2.6105204 |
| Snippet | This paper proposes as an element of novelty the Unified Form (UF) clustering algorithm, which treats Fuzzy C-Means (FCM) and K-Means (KM) algorithms as a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106731 |
| SubjectTerms | Algorithms Clustering Data processing Datasets Distributed platforms Fuzzy C-means algorithm Implementation Indexes K-means algorithm Memory Partitional Implementation Performance indices Unified form of Fuzzy C-Means algorithms and K-Means algorithms |
| Title | A Unified Form of Fuzzy C-Means and K-Means algorithms and its Partitional Implementation |
| URI | https://dx.doi.org/10.1016/j.knosys.2020.106731 https://www.proquest.com/docview/2501256334 |
| Volume | 214 |
| WOSCitedRecordID | wos000618605200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL34iNgXxA3Dw1zpdzLKgVo6VMqEPlFDmOPTbapMvaadr_w__Js2MnGV-DA5fIcuo0eu-X55-f_d5D6KWAWT8XkUeE0NuMQjLCZQirVh76mej7fmbSLn6axNMpm8-Tw17vm4uFuVjERcEuL5PVf1U19IGydejsP6i7eSh0QBuUDldQO1z_SvEDzSOVZpYj4KOaDI42V1fw5ZP3EuYls1swdu3FcVmdrL8sz5tNhEP9SOsgNKmDlzY6qejy2LFzxRE9DeY2IXTrci-rhTS09KDkBanj2BsrDEZ2Y8rifeT5hgyX7SmPdpwNvKk4eW3cLg2EZSVqn23nodZrQb1OFLhxpblwGmfB2jNMtW-yT-K-zUQra8vMYlgKBP2ka7qpF3SMr_fLKaH2Tpzufy1KkMU-vIzujGI7-VzLwD39kI6OJpN0NpzPXq3OiC5OpjfxbaWWW2ibxmECxnN7cDCcv2umfEqNI7l5bxejaQ4S_vzHv-NAP7ABQ3Fm99FduzbBgxpTD1BPFg_RPVf3A1shPkKfB9hCDGuI4VJhAzFsIYZBcXjs2g3ETDdADHcghq9D7DE6Gg1nb94SW6KDCN8P1iRhMguzfsyZoIwDfxa-l-eeT3PgPSxTXEYqgRVsFFMlZaZU7OWJiBTV7ksGxv8J2irKQj5FWChFWSg8PwxokDGfM1iZK-nBgFAo7u0g3wktFTZ_vS6jskjdQcXTtBZ1qkWd1qLeQaQZtarzt9zw-9jpI7UctOaWKeDphpF7Tn2pNQdwPwQCGEYgq90_336G7rSfyR7aWlcb-RzdFhfrk_PqhcXbdxresb8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Form+of+Fuzzy+C-Means+and+K-Means+algorithms+and+its+Partitional+Implementation&rft.jtitle=Knowledge-based+systems&rft.au=Borlea%2C+Ioan-Daniel&rft.au=Precup%2C+Radu-Emil&rft.au=Borlea%2C+Alexandra-Bianca&rft.au=Iercan%2C+Daniel&rft.date=2021-02-28&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=214&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2020.106731&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |