A Unified Form of Fuzzy C-Means and K-Means algorithms and its Partitional Implementation

This paper proposes as an element of novelty the Unified Form (UF) clustering algorithm, which treats Fuzzy C-Means (FCM) and K-Means (KM) algorithms as a single configurable algorithm. UF algorithm was designed to facilitate the FCM and KM algorithms software implementation by offering a solution t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 214; s. 106731
Hlavní autoři: Borlea, Ioan-Daniel, Precup, Radu-Emil, Borlea, Alexandra-Bianca, Iercan, Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 28.02.2021
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes as an element of novelty the Unified Form (UF) clustering algorithm, which treats Fuzzy C-Means (FCM) and K-Means (KM) algorithms as a single configurable algorithm. UF algorithm was designed to facilitate the FCM and KM algorithms software implementation by offering a solution to implement a single algorithm, which can be configured to work as FCM or KM. The second element of novelty of this paper is the Partitional Implementation of Unified Form (PIUF) algorithm, which is built upon the UF algorithm and designed to solve in an elegant manner the challenges of processing large datasets in a sequential manner and the scalability of the UF algorithm for processing datasets of any size. PIUF algorithm has the advantage of overcoming any possible hardware limitations that can occur if large volumes of data are processed (required to be stored, loaded in memory and processed by a certain specified computational system). PIUF algorithm is designed and formulated to be used on a single machine if the processed dataset is very big and it cannot be entirely loaded in the memory; at the same time it can be scaled to multiple processing nodes for reducing the processing time required to find the optimal solution. UF and PIUF algorithms are implemented and validated in BigTim platform, which is a distributed platform developed by the authors, and offers support for processing various datasets in a parallel manner but they can be implemented in any other data processing platforms. The Iris dataset is considered and next modified to obtain different datasets of different sizes in order to test the algorithms implementations in BigTim platform in different configurations. The analysis of PIUF algorithm and the comparison with FCM, KM and DBSCAN clustering algorithms are carried out using two performance indices; three performance indices are employed to evaluate the quality of the obtained clusters. •A unified form (UF) to treat Fuzzy C-means and K-means algorithms is proposed.•UF algorithm reduces the effort required for the software implementation.•UF algorithm runs as a distributed algorithm.•UF algorithm is implemented and validated using BigTim distributed platform.•The results are analyzed and compared using several performance indices.
AbstractList This paper proposes as an element of novelty the Unified Form (UF) clustering algorithm, which treats Fuzzy C-Means (FCM) and K-Means (KM) algorithms as a single configurable algorithm. UF algorithm was designed to facilitate the FCM and KM algorithms software implementation by offering a solution to implement a single algorithm, which can be configured to work as FCM or KM. The second element of novelty of this paper is the Partitional Implementation of Unified Form (PIUF) algorithm, which is built upon the UF algorithm and designed to solve in an elegant manner the challenges of processing large datasets in a sequential manner and the scalability of the UF algorithm for processing datasets of any size. PIUF algorithm has the advantage of overcoming any possible hardware limitations that can occur if large volumes of data are processed (required to be stored, loaded in memory and processed by a certain specified computational system). PIUF algorithm is designed and formulated to be used on a single machine if the processed dataset is very big and it cannot be entirely loaded in the memory; at the same time it can be scaled to multiple processing nodes for reducing the processing time required to find the optimal solution. UF and PIUF algorithms are implemented and validated in BigTim platform, which is a distributed platform developed by the authors, and offers support for processing various datasets in a parallel manner but they can be implemented in any other data processing platforms. The Iris dataset is considered and next modified to obtain different datasets of different sizes in order to test the algorithms implementations in BigTim platform in different configurations. The analysis of PIUF algorithm and the comparison with FCM, KM and DBSCAN clustering algorithms are carried out using two performance indices; three performance indices are employed to evaluate the quality of the obtained clusters.
This paper proposes as an element of novelty the Unified Form (UF) clustering algorithm, which treats Fuzzy C-Means (FCM) and K-Means (KM) algorithms as a single configurable algorithm. UF algorithm was designed to facilitate the FCM and KM algorithms software implementation by offering a solution to implement a single algorithm, which can be configured to work as FCM or KM. The second element of novelty of this paper is the Partitional Implementation of Unified Form (PIUF) algorithm, which is built upon the UF algorithm and designed to solve in an elegant manner the challenges of processing large datasets in a sequential manner and the scalability of the UF algorithm for processing datasets of any size. PIUF algorithm has the advantage of overcoming any possible hardware limitations that can occur if large volumes of data are processed (required to be stored, loaded in memory and processed by a certain specified computational system). PIUF algorithm is designed and formulated to be used on a single machine if the processed dataset is very big and it cannot be entirely loaded in the memory; at the same time it can be scaled to multiple processing nodes for reducing the processing time required to find the optimal solution. UF and PIUF algorithms are implemented and validated in BigTim platform, which is a distributed platform developed by the authors, and offers support for processing various datasets in a parallel manner but they can be implemented in any other data processing platforms. The Iris dataset is considered and next modified to obtain different datasets of different sizes in order to test the algorithms implementations in BigTim platform in different configurations. The analysis of PIUF algorithm and the comparison with FCM, KM and DBSCAN clustering algorithms are carried out using two performance indices; three performance indices are employed to evaluate the quality of the obtained clusters. •A unified form (UF) to treat Fuzzy C-means and K-means algorithms is proposed.•UF algorithm reduces the effort required for the software implementation.•UF algorithm runs as a distributed algorithm.•UF algorithm is implemented and validated using BigTim distributed platform.•The results are analyzed and compared using several performance indices.
ArticleNumber 106731
Author Borlea, Ioan-Daniel
Borlea, Alexandra-Bianca
Iercan, Daniel
Precup, Radu-Emil
Author_xml – sequence: 1
  givenname: Ioan-Daniel
  surname: Borlea
  fullname: Borlea, Ioan-Daniel
  email: daniel.borlea@student.upt.ro
  organization: Department of Automation and Applied Informatics, Politehnica University of Timisoara, Bd. V. Parvan 2, RO-300223 Timisoara, Romania
– sequence: 2
  givenname: Radu-Emil
  orcidid: 0000-0002-2060-7403
  surname: Precup
  fullname: Precup, Radu-Emil
  email: radu.precup@aut.upt.ro
  organization: Department of Automation and Applied Informatics, Politehnica University of Timisoara, Bd. V. Parvan 2, RO-300223 Timisoara, Romania
– sequence: 3
  givenname: Alexandra-Bianca
  orcidid: 0000-0003-2289-6824
  surname: Borlea
  fullname: Borlea, Alexandra-Bianca
  email: alexandra.barbu@student.upt.ro
  organization: Department of Automation and Applied Informatics, Politehnica University of Timisoara, Bd. V. Parvan 2, RO-300223 Timisoara, Romania
– sequence: 4
  givenname: Daniel
  surname: Iercan
  fullname: Iercan, Daniel
  email: daniel.iercan@aut.upt.ro
  organization: Department of Automation and Applied Informatics, Politehnica University of Timisoara, Bd. V. Parvan 2, RO-300223 Timisoara, Romania
BookMark eNqFULFOwzAUtFCRaAt_wGCJOcV2GsdhQEIVhQoQDDAwWa7zDC6JXWwXqXw9qQILA0zv6XR3796N0MB5BwgdUzKhhPLT1eTN-biNE0bYDuJlTvfQkIqSZeWUVAM0JFVBspIU9ACNYlwRQhijYoieL_CTs8ZCjec-tNgbPN98fm7xLLsD5SJWrsY3P3vz4oNNr20P2xTxgwrJJuudavCiXTfQgktqBxyifaOaCEffc4ye5pePs-vs9v5qMbu4zXSeT1NWCVgWS1IqoZlQhBU6p3VNc1ZTJsTSKOCmEozzkhmApTElrSvNDeNlxUXF8zE66X3Xwb9vICa58pvQ5YmSFYSygnd3OtZZz9LBxxjASG37nCko20hK5K5KuZJ9lXJXpeyr7MTTX-J1sK0K2_9k570Muvc_LAQZtQWnobYBdJK1t38bfAFFrpF_
CitedBy_id crossref_primary_10_1016_j_ins_2023_119129
crossref_primary_10_1016_j_engappai_2022_104743
crossref_primary_10_1016_j_future_2022_11_009
crossref_primary_10_1016_j_knosys_2024_111748
crossref_primary_10_1016_j_bspc_2023_105368
crossref_primary_10_1016_j_engappai_2022_104904
crossref_primary_10_1016_j_eswa_2022_118029
crossref_primary_10_1109_TFUZZ_2024_3443878
crossref_primary_10_1155_2022_2674987
crossref_primary_10_3390_computers12080147
crossref_primary_10_1016_j_ins_2022_09_038
crossref_primary_10_1016_j_engappai_2022_105285
crossref_primary_10_1109_TCSVT_2024_3435383
crossref_primary_10_1016_j_eswa_2024_124264
crossref_primary_10_1016_j_eswa_2024_124660
crossref_primary_10_1109_TIE_2023_3239864
crossref_primary_10_1007_s00500_021_06460_3
crossref_primary_10_1016_j_knosys_2022_109937
crossref_primary_10_1016_j_engappai_2022_105541
crossref_primary_10_1016_j_knosys_2021_107538
crossref_primary_10_1016_j_ins_2023_02_055
crossref_primary_10_1016_j_ins_2022_11_139
crossref_primary_10_1016_j_eswa_2022_119224
crossref_primary_10_1016_j_eswa_2022_119222
crossref_primary_10_1016_j_bspc_2022_103986
crossref_primary_10_1016_j_ins_2022_09_045
crossref_primary_10_1016_j_neunet_2024_106427
crossref_primary_10_1016_j_eswa_2022_118935
crossref_primary_10_1007_s11042_025_20693_6
crossref_primary_10_1016_j_jer_2025_08_015
crossref_primary_10_1016_j_asoc_2023_110968
crossref_primary_10_1016_j_ins_2023_119466
crossref_primary_10_1016_j_knosys_2024_112537
crossref_primary_10_1007_s00521_022_07647_x
crossref_primary_10_1016_j_engappai_2021_104649
crossref_primary_10_1016_j_bspc_2022_104174
crossref_primary_10_1109_TCYB_2022_3198997
crossref_primary_10_1016_j_future_2022_09_011
crossref_primary_10_1016_j_eswa_2022_117398
crossref_primary_10_1016_j_eswa_2022_118525
crossref_primary_10_1109_TFUZZ_2025_3574947
crossref_primary_10_1109_TKDE_2023_3274547
crossref_primary_10_1016_j_patcog_2023_109404
crossref_primary_10_1016_j_procs_2022_01_009
crossref_primary_10_1007_s00521_021_06734_9
crossref_primary_10_1016_j_asoc_2021_107933
crossref_primary_10_3390_app112311202
crossref_primary_10_1016_j_engappai_2022_104795
crossref_primary_10_1016_j_engappai_2021_104499
crossref_primary_10_1371_journal_pone_0302741
crossref_primary_10_3233_IDA_230264
crossref_primary_10_1007_s12652_023_04569_x
crossref_primary_10_1016_j_engappai_2022_104672
crossref_primary_10_1016_j_eswa_2022_118873
crossref_primary_10_1016_j_health_2022_100112
crossref_primary_10_3390_s23239581
crossref_primary_10_1016_j_istruc_2022_04_076
crossref_primary_10_4316_AECE_2022_01007
crossref_primary_10_1016_j_knosys_2022_108538
crossref_primary_10_1109_TII_2023_3321332
crossref_primary_10_3389_fams_2025_1598165
crossref_primary_10_1016_j_bspc_2023_104754
crossref_primary_10_1016_j_engappai_2022_104822
crossref_primary_10_1155_2021_5589285
crossref_primary_10_1016_j_knosys_2022_109063
crossref_primary_10_1016_j_asoc_2021_107874
crossref_primary_10_1142_S0129156425400518
crossref_primary_10_1109_TCYB_2022_3166975
crossref_primary_10_3233_JIFS_223754
crossref_primary_10_1016_j_eswa_2022_118051
crossref_primary_10_1038_s41598_023_36309_8
crossref_primary_10_1007_s11053_025_10504_y
crossref_primary_10_1016_j_ins_2021_11_038
crossref_primary_10_1016_j_eswa_2022_117524
crossref_primary_10_1109_TCYB_2022_3211499
crossref_primary_10_1016_j_eswa_2022_117885
crossref_primary_10_1016_j_heliyon_2024_e37804
crossref_primary_10_1016_j_ins_2022_07_178
crossref_primary_10_1155_2021_8178495
crossref_primary_10_1016_j_asoc_2024_111712
crossref_primary_10_4018_IJWLTT_325348
crossref_primary_10_1109_TNNLS_2024_3486912
crossref_primary_10_1016_j_engappai_2021_104444
crossref_primary_10_3390_math12111639
crossref_primary_10_1016_j_eswa_2022_118960
crossref_primary_10_1016_j_knosys_2022_109444
crossref_primary_10_2478_amns_2023_2_00137
crossref_primary_10_1109_JSEN_2023_3343399
crossref_primary_10_3390_en18185033
crossref_primary_10_3390_su15129758
crossref_primary_10_1007_s40747_021_00542_3
crossref_primary_10_1016_j_eswa_2023_119536
crossref_primary_10_1109_TSMC_2023_3293462
crossref_primary_10_1016_j_eswa_2025_128567
crossref_primary_10_1016_j_heliyon_2024_e29182
crossref_primary_10_1155_2021_2883559
crossref_primary_10_1016_j_asoc_2022_109939
crossref_primary_10_1016_j_egyr_2022_09_077
crossref_primary_10_4316_AECE_2024_04001
crossref_primary_10_1016_j_engappai_2022_104916
crossref_primary_10_1088_2631_8695_adfac8
crossref_primary_10_1109_TII_2022_3184407
crossref_primary_10_1016_j_eswa_2022_118152
crossref_primary_10_1016_j_bspc_2023_105771
crossref_primary_10_1016_j_eswa_2022_117583
crossref_primary_10_1007_s00500_022_07406_z
crossref_primary_10_1007_s10489_022_03698_8
crossref_primary_10_1016_j_chaos_2024_114670
crossref_primary_10_1155_2022_7711386
crossref_primary_10_1007_s40747_022_00763_0
crossref_primary_10_1142_S0129156424401153
crossref_primary_10_1016_j_eswa_2022_118956
crossref_primary_10_1109_TCYB_2021_3131749
crossref_primary_10_1016_j_eswa_2022_117905
crossref_primary_10_1007_s10489_024_05506_x
crossref_primary_10_1016_j_eswa_2024_123263
crossref_primary_10_2478_cait_2023_0010
Cites_doi 10.15837/ijccc.2017.6.3111
10.1109/TFUZZ.2012.2201485
10.1109/91.531779
10.1016/j.knosys.2019.07.008
10.1016/j.compind.2015.03.001
10.1016/j.procs.2018.10.277
10.1016/j.ins.2015.11.040
10.1016/0098-3004(84)90020-7
10.1145/2523616.2523633
10.1109/FUZZY.1995.409988
10.1016/j.ins.2020.02.066
10.24846/v29i4y202002
10.1016/j.future.2016.03.004
10.1109/TPAMI.2002.1114856
10.1109/TKDE.2008.88
10.1007/s12530-013-9084-7
10.1109/TPAMI.1986.4767778
10.14778/1687553.1687609
10.1016/j.knosys.2017.01.003
10.1109/TFUZZ.2019.2936333
10.1109/TII.2019.2917520
10.1016/j.neucom.2016.10.068
10.1145/2094114.2094118
10.1007/s40815-017-0432-9
10.1109/TETC.2014.2330519
10.1145/2020408.2020515
10.1007/s13042-015-0367-0
10.1109/SACI46893.2019.9111590
10.1080/00207721.2014.911422
10.1145/235968.233324
10.1016/j.comcom.2007.05.024
10.1016/j.asoc.2018.06.047
10.4316/AECE.2017.04001
10.1109/SACI.2016.7507361
10.12693/APhysPolA.131.1117
10.1109/TPAMI.2002.1017616
10.1109/TPAMI.1984.4767478
10.1109/TCYB.2013.2291234
10.12792/iciae2015.012
10.1109/EAIS.2013.6604098
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.robot.2016.04.007
10.1007/s00521-014-1644-7
10.1016/j.patcog.2012.07.021
10.1145/996841.996844
10.1109/SACI.2018.8441018
10.1109/TFUZZ.2018.2862394
10.1016/j.ifacol.2016.07.089
10.1145/1376616.1376726
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Feb 28, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Feb 28, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2020.106731
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2020_106731
S0950705120308601
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-98eb5b07a8c28a025c31dd132d1288bfae6f9826672feebff71d9c6f267968963
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618605200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:46:10 EST 2025
Sat Nov 29 07:07:43 EST 2025
Tue Nov 18 21:11:20 EST 2025
Fri Feb 23 02:48:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords K-means algorithm
Partitional Implementation
Fuzzy C-means algorithm
Distributed platforms
Unified form of Fuzzy C-Means algorithms and K-Means algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-98eb5b07a8c28a025c31dd132d1288bfae6f9826672feebff71d9c6f267968963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2060-7403
0000-0003-2289-6824
PQID 2501256334
PQPubID 2035257
ParticipantIDs proquest_journals_2501256334
crossref_citationtrail_10_1016_j_knosys_2020_106731
crossref_primary_10_1016_j_knosys_2020_106731
elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106731
PublicationCentury 2000
PublicationDate 2021-02-28
PublicationDateYYYYMMDD 2021-02-28
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-28
  day: 28
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Borlea, Precup, Dragan, Borlea (b59) 2017; 17
(b66) 2020
Botcha, Medara (b18) 2016; 5
Baruah, Angelov (b34) 2014; 44
Zhang, Wang, Li, Yeh, Jian, Dong (b57) 2020; 522
T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clustering method for very large databases, in: Proceedings of 1996 ACM SIGMOD International Conference on Management of Data, 25(2), 1996, pp. 103–114.
V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, Apache Hadoop Yarn: Yet another resource negotiator, in: Proceedings of 4th Annual Symposium on Cloud Computing, Santa Clara, CA, USA, 2013, pp. 1–5.
J. Brank, M. Grobelnik, D. Mladenic, A survey of ontology evaluation techniques, in: Proceedings of 18th International Multi-Conference on Information Society, Ljubljana, Slovenia, 2005, pp. 166–169.
Bezdek, Ehrlich, Full (b2) 1984; 10
Zhang, Hou, Ji, Yin (b48) 2016; 47
Cannon, Dave, Bezdek (b29) 1986; PAMI-8
Ludwing (b20) 2015; 6
Thusoo, Sarma, Jain, Shao, Chakka, Anthony, Liu, Wyckoff, Murthy (b16) 2009; 2
Osaba, Del Ser, Sadollah, Bilbao, Camacho (b53) 2018; 71
Zhao, Ma, He (b14) 2009; vol. 5931
Ester, Kriegel, Sander, Xu (b12) 1996
Baranyi, Yam, Varlaki (b41) 2013
Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (b60) 2002; 24
Roman, Precup, David (b46) 2018; 139
Precup, David, Petriu, Szedlak-Stinean, Bojan-Dragos (b55) 2016; 49
Dempster, Laird, Rubin (b3) 1977; 39
T. Thinsungnoen, N. Kaoungku, P. Durongdumronchai, K. Kerdprasop, N. Kerdprasop, The clustering validity with Silhouette and sum of squared errors, in: Proceedings of 3rd International Conference on Industrial Application Engineering, Kitakyushu, Japan, 2015, pp. 4–51.
Selim, Ismail (b62) 1984; PAMI-6
I.-D. Borlea, R.-E. Precup, F. Dragan, A.-B. Borlea, Parallel implementation of K-means algorithm using MapReduce approach, in: Proceedings of IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2018, pp. 75–80.
Dzitac, Filip, Manolescu (b35) 2017; 12
Li, Song, Zhang, Ouyang, Khan (b21) 2016; 65
B. Yuan, G.J. Klir, J.F. Swan-Stone, Evolutionary fuzzy C-means clustering algorithm, in: Proceedings of 1995 IEEE International Conference on Fuzzy Systems, vol. 4, Yokohama, Japan, 1995, pp. 2221–2226.
Kovács, Szayer, Tajti, Burdelis, Korondi (b43) 2016; 82
Marino, Manic (b51) 2019; 15
I.-D. Borlea, R.-E. Precup, F. Dragan, On the architecture of a clustering platform for the analysis of big volumes of data, in: Proceedings of IEEE 11th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2016 pp. 145–150.
Beruvides, Quiza, Haber (b49) 2016; 334
Zhang, Lam, Sun, Liang (b47) 2020; 28
Eaton, Zikopoulos, Deutsch, Lapis, Deroos (b1) 2012
Maulik, Bandyopadhyay (b61) 2002; 24
Havens, Bezdek, Leckie, Hall, Palaniswami (b9) 2012; 20
Precup, Angelov, Costa, Sayed-Mouchaweh (b38) 2015; 74
A. Hinneburg, D.A. Keim, Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering. Proceedings of 25th International Conference on Very Large Data Bases, Edinburgh, UK, 1999 506–517.
Li, Wang, Wang, Hu, Li, Li (b19) 2014; vol. 8451
Cosgun, Kula, Kahraman (b50) 2017; 120
Aggarwal, Zhai (b26) 2012
Pozna, Precup (b37) 2014; 11
P. Angelov, I. Škrjanc, S. Blažič, Robust evolving cloud-based controller for a hydraulic plant, in: Proceedings of 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems, Singapore, 2013, pp. 1–8.
Abbasi, Younis (b25) 2007; 30
T.A. Henzinger, R. Jhala, R. Majumdar, Race checking by context inferenc, in: Proceedings of ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation, Washington DC, USA, 2004, 2004, pp. 1–13.
Lee, Lee, Choi, Chung, Moon (b24) 2011; 40
Precup, Tomescu (b45) 2015; 26
Zapata, Perozo, Angulo, Contreras (b56) 2020; 18
Mac Queen (b7) 1967
A. Ene, S. Im, B. Mosley, Fast clustering using MapReduce, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 2011, pp. 521–521.
J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, in: Proceedings of 6th Symposium on Operating Systems Design and Implementation, San Francisco, CA, USA, 2004, pp. 137–150.
Blažič, Škrjanc, Matko (b42) 2014; 5
Precup, Roman, Teban, Albu, Petriu, Pozna (b44) 2020; 29
A. Hinneburg, D.A. Keim, An efficient approach to clustering in large multimedia databases with noise, in: Proceedings of Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 1998, pp. 58–65.
Zhou, Yang, Fujita, Chen, Wen (b58) 2020; 187
Krishnapuram, Keller (b30) 1996; 4
Mls, Cimler, Vaščák, Puheim (b52) 2017; 232
I.-D. Borlea, D. Iercan, R.-E. Precup, F. Dragan, A.-B. Borlea, Implementing a platform to run clustering algorithms using distributed computing, in: Proceedings of IEEE 13th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2019, pp. 217–222.
Starkey, Hagras, Shakya, Owusu (b39) 2019; 27
Li, Ng, Cheung, Huang (b63) 2008; 20
Arbelaitz, Gurrutxaga, Muguerza, Perez, Perona (b68) 2013; 46
C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a not-so-foreign language for data processing, in: Proceedings of 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 2008, pp. 1099–1110.
Borthakur (b22) 2008
Precup, David (b54) 2019
Andoga, Fozo (b40) 2017; 131
Alvarez Gil, Johanyák, Kovács (b32) 2018; 16
Dua, KarraTaniskidou (b65) 2017
Fahad, Alshatri, Tari, Alamri, Khalil, Zomaya, Foufou, Bouras (b4) 2014; 2
Liao, Xu, Herrera-Viedma, Herrera (b36) 2018; 20
10.1016/j.knosys.2020.106731_b5
10.1016/j.knosys.2020.106731_b27
Fahad (10.1016/j.knosys.2020.106731_b4) 2014; 2
Selim (10.1016/j.knosys.2020.106731_b62) 1984; PAMI-6
10.1016/j.knosys.2020.106731_b28
Borthakur (10.1016/j.knosys.2020.106731_b22) 2008
Precup (10.1016/j.knosys.2020.106731_b38) 2015; 74
Precup (10.1016/j.knosys.2020.106731_b45) 2015; 26
10.1016/j.knosys.2020.106731_b64
10.1016/j.knosys.2020.106731_b23
Borlea (10.1016/j.knosys.2020.106731_b59) 2017; 17
10.1016/j.knosys.2020.106731_b67
Bezdek (10.1016/j.knosys.2020.106731_b2) 1984; 10
Li (10.1016/j.knosys.2020.106731_b21) 2016; 65
Havens (10.1016/j.knosys.2020.106731_b9) 2012; 20
Osaba (10.1016/j.knosys.2020.106731_b53) 2018; 71
Precup (10.1016/j.knosys.2020.106731_b54) 2019
Eaton (10.1016/j.knosys.2020.106731_b1) 2012
10.1016/j.knosys.2020.106731_b6
10.1016/j.knosys.2020.106731_b8
10.1016/j.knosys.2020.106731_b13
Lee (10.1016/j.knosys.2020.106731_b24) 2011; 40
10.1016/j.knosys.2020.106731_b15
Krishnapuram (10.1016/j.knosys.2020.106731_b30) 1996; 4
10.1016/j.knosys.2020.106731_b17
Pozna (10.1016/j.knosys.2020.106731_b37) 2014; 11
Kovács (10.1016/j.knosys.2020.106731_b43) 2016; 82
Ludwing (10.1016/j.knosys.2020.106731_b20) 2015; 6
Baruah (10.1016/j.knosys.2020.106731_b34) 2014; 44
10.1016/j.knosys.2020.106731_b10
Liao (10.1016/j.knosys.2020.106731_b36) 2018; 20
10.1016/j.knosys.2020.106731_b11
Starkey (10.1016/j.knosys.2020.106731_b39) 2019; 27
(10.1016/j.knosys.2020.106731_b66) 2020
Dempster (10.1016/j.knosys.2020.106731_b3) 1977; 39
Zhao (10.1016/j.knosys.2020.106731_b14) 2009; vol. 5931
Ester (10.1016/j.knosys.2020.106731_b12) 1996
Aggarwal (10.1016/j.knosys.2020.106731_b26) 2012
Dua (10.1016/j.knosys.2020.106731_b65) 2017
Zhang (10.1016/j.knosys.2020.106731_b57) 2020; 522
Thusoo (10.1016/j.knosys.2020.106731_b16) 2009; 2
Kanungo (10.1016/j.knosys.2020.106731_b60) 2002; 24
Zhang (10.1016/j.knosys.2020.106731_b47) 2020; 28
Cannon (10.1016/j.knosys.2020.106731_b29) 1986; PAMI-8
Zapata (10.1016/j.knosys.2020.106731_b56) 2020; 18
Roman (10.1016/j.knosys.2020.106731_b46) 2018; 139
Zhang (10.1016/j.knosys.2020.106731_b48) 2016; 47
Marino (10.1016/j.knosys.2020.106731_b51) 2019; 15
Abbasi (10.1016/j.knosys.2020.106731_b25) 2007; 30
Blažič (10.1016/j.knosys.2020.106731_b42) 2014; 5
Mac Queen (10.1016/j.knosys.2020.106731_b7) 1967
Dzitac (10.1016/j.knosys.2020.106731_b35) 2017; 12
Beruvides (10.1016/j.knosys.2020.106731_b49) 2016; 334
Andoga (10.1016/j.knosys.2020.106731_b40) 2017; 131
Precup (10.1016/j.knosys.2020.106731_b55) 2016; 49
Zhou (10.1016/j.knosys.2020.106731_b58) 2020; 187
10.1016/j.knosys.2020.106731_b31
10.1016/j.knosys.2020.106731_b33
Li (10.1016/j.knosys.2020.106731_b19) 2014; vol. 8451
Botcha (10.1016/j.knosys.2020.106731_b18) 2016; 5
Mls (10.1016/j.knosys.2020.106731_b52) 2017; 232
Alvarez Gil (10.1016/j.knosys.2020.106731_b32) 2018; 16
Baranyi (10.1016/j.knosys.2020.106731_b41) 2013
Precup (10.1016/j.knosys.2020.106731_b44) 2020; 29
Arbelaitz (10.1016/j.knosys.2020.106731_b68) 2013; 46
Li (10.1016/j.knosys.2020.106731_b63) 2008; 20
Maulik (10.1016/j.knosys.2020.106731_b61) 2002; 24
Cosgun (10.1016/j.knosys.2020.106731_b50) 2017; 120
References_xml – year: 2013
  ident: b41
  article-title: TP Model Transformation in Polytopic Model-Based Control
– volume: 2
  start-page: 267
  year: 2014
  end-page: 279
  ident: b4
  article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 120
  start-page: 186
  year: 2017
  end-page: 197
  ident: b50
  article-title: Markdown optimization for an apparel retailer under cross-price and initial inventory effects
  publication-title: Knowl.-Based Syst.
– volume: 29
  start-page: 399
  year: 2020
  end-page: 410
  ident: b44
  article-title: Model-free control of finger dynamics in prosthetic hand myoelectric-based control systems
  publication-title: Stud. Inf. Control
– start-page: 226
  year: 1996
  end-page: 231
  ident: b12
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96)
– volume: PAMI-8
  start-page: 248
  year: 1986
  end-page: 255
  ident: b29
  article-title: Efficient implementation of the fuzzy C-means clustering algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, Apache Hadoop Yarn: Yet another resource negotiator, in: Proceedings of 4th Annual Symposium on Cloud Computing, Santa Clara, CA, USA, 2013, pp. 1–5.
– volume: 20
  start-page: 1130
  year: 2012
  end-page: 1146
  ident: b9
  article-title: Fuzzy C-means algorithms for very large data
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 26
  start-page: 541
  year: 2015
  end-page: 550
  ident: b45
  article-title: Stable fuzzy logic control of a general class of chaotic systems
  publication-title: Neural Comput. Appl.
– reference: B. Yuan, G.J. Klir, J.F. Swan-Stone, Evolutionary fuzzy C-means clustering algorithm, in: Proceedings of 1995 IEEE International Conference on Fuzzy Systems, vol. 4, Yokohama, Japan, 1995, pp. 2221–2226.
– volume: 27
  start-page: 502
  year: 2019
  end-page: 514
  ident: b39
  article-title: iPatch: A many-objective type-2 fuzzy logic system for field workforce optimization
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 334
  start-page: 161
  year: 2016
  end-page: 173
  ident: b49
  article-title: Multi-objective optimization based on an improved cross-entropy method. A case study of a micro-scale manufacturing process
  publication-title: Inform. Sci.
– volume: 74
  start-page: 75
  year: 2015
  end-page: 94
  ident: b38
  article-title: An overview on fault diagnosis and nature-inspired optimal control of industrial process applications
  publication-title: Comput. Ind.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b2
  article-title: FCM: The fuzzy C-means clustering algorithm
  publication-title: Comput. Geosci.
– volume: 65
  start-page: 90
  year: 2016
  end-page: 101
  ident: b21
  article-title: Mapreduce-based fast fuzzy C-means algorithm for large-scale underwater image segmentation
  publication-title: Future Gener. Comput. Syst.
– volume: 4
  start-page: 385
  year: 1996
  end-page: 393
  ident: b30
  article-title: The possibilistic C-means algorithm: insights and recommendations
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b3
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 12
  start-page: 748
  year: 2017
  end-page: 789
  ident: b35
  article-title: Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh
  publication-title: Int. J. Comput. Commun. Control
– volume: 40
  start-page: 11
  year: 2011
  end-page: 20
  ident: b24
  article-title: Parallel data processing with mapreduce: a survey
  publication-title: ACM SIGMOD Record
– volume: 15
  start-page: 4442
  year: 2019
  end-page: 4454
  ident: b51
  article-title: Modeling and planning under uncertainty using deep neural networks
  publication-title: IEEE Trans. Ind. Inf.
– year: 2008
  ident: b22
  article-title: HDFS architecture guide
– reference: T. Thinsungnoen, N. Kaoungku, P. Durongdumronchai, K. Kerdprasop, N. Kerdprasop, The clustering validity with Silhouette and sum of squared errors, in: Proceedings of 3rd International Conference on Industrial Application Engineering, Kitakyushu, Japan, 2015, pp. 4–51.
– reference: T.A. Henzinger, R. Jhala, R. Majumdar, Race checking by context inferenc, in: Proceedings of ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation, Washington DC, USA, 2004, 2004, pp. 1–13.
– volume: 5
  start-page: 1240
  year: 2016
  end-page: 1244
  ident: b18
  article-title: Implementing K-means clustering algorithm using MapReduce paradigm
  publication-title: Int. J. Sci. Res.
– volume: 139
  start-page: 372
  year: 2018
  end-page: 380
  ident: b46
  article-title: Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems
  publication-title: Procedia Comput. Sci.
– volume: 24
  start-page: 1650
  year: 2002
  end-page: 1654
  ident: b61
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: P. Angelov, I. Škrjanc, S. Blažič, Robust evolving cloud-based controller for a hydraulic plant, in: Proceedings of 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems, Singapore, 2013, pp. 1–8.
– year: 2019
  ident: b54
  article-title: Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems
– reference: I.-D. Borlea, R.-E. Precup, F. Dragan, A.-B. Borlea, Parallel implementation of K-means algorithm using MapReduce approach, in: Proceedings of IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2018, pp. 75–80.
– volume: 17
  start-page: 3
  year: 2017
  end-page: 10
  ident: b59
  article-title: Centroid update approach to K-means clustering
  publication-title: Adv. Electr. Comput. Eng.
– volume: vol. 8451
  start-page: 357
  year: 2014
  end-page: 371
  ident: b19
  article-title: An efficient K-means clustering algorithm on mapreduce
  publication-title: Database Systems for Advanced Applications
– volume: 187
  year: 2020
  ident: b58
  article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data
  publication-title: Knowl.-Based Syst.
– volume: 20
  start-page: 2084
  year: 2018
  end-page: 2110
  ident: b36
  article-title: Hesitant fuzzy linguistic term set and its application in decision making: A state-of-the-art survey
  publication-title: Int. J. Fuzzy Syst.
– volume: 18
  start-page: 1
  year: 2020
  end-page: 18
  ident: b56
  article-title: A hybrid swarm algorithm for collective construction of 3D structures
  publication-title: Int. J. Artif. Intell.
– start-page: 77
  year: 2012
  end-page: 128
  ident: b26
  article-title: A survey of text clustering algorithms
  publication-title: Mining Text Data
– volume: 71
  start-page: 277
  year: 2018
  end-page: 290
  ident: b53
  article-title: A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem
  publication-title: Appl. Soft Comput.
– year: 2020
  ident: b66
  article-title: Iris dataset 2019
– reference: A. Ene, S. Im, B. Mosley, Fast clustering using MapReduce, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 2011, pp. 521–521.
– volume: 5
  start-page: 3
  year: 2014
  end-page: 10
  ident: b42
  article-title: A robust fuzzy adaptive law for evolving control systems
  publication-title: Evol. Syst.
– reference: I.-D. Borlea, D. Iercan, R.-E. Precup, F. Dragan, A.-B. Borlea, Implementing a platform to run clustering algorithms using distributed computing, in: Proceedings of IEEE 13th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2019, pp. 217–222.
– volume: 11
  start-page: 21
  year: 2014
  end-page: 39
  ident: b37
  article-title: Applications of signatures to expert systems modeling
  publication-title: Acta Polytech. Hung.
– reference: I.-D. Borlea, R.-E. Precup, F. Dragan, On the architecture of a clustering platform for the analysis of big volumes of data, in: Proceedings of IEEE 11th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2016 pp. 145–150.
– volume: 49
  start-page: 55
  year: 2016
  end-page: 60
  ident: b55
  article-title: Grey wolf optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity
  publication-title: IFAC-PapersOnLine
– volume: 44
  start-page: 1619
  year: 2014
  end-page: 1631
  ident: b34
  article-title: DEC: Dynamically evolving clustering and its application to structure identification of evolving fuzzy models
  publication-title: IEEE Trans. Cybern.
– volume: 47
  start-page: 1084
  year: 2016
  end-page: 1094
  ident: b48
  article-title: Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations
  publication-title: Internat. J. Systems Sci.
– reference: C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a not-so-foreign language for data processing, in: Proceedings of 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 2008, pp. 1099–1110.
– reference: J. Brank, M. Grobelnik, D. Mladenic, A survey of ontology evaluation techniques, in: Proceedings of 18th International Multi-Conference on Information Society, Ljubljana, Slovenia, 2005, pp. 166–169.
– reference: T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clustering method for very large databases, in: Proceedings of 1996 ACM SIGMOD International Conference on Management of Data, 25(2), 1996, pp. 103–114.
– volume: 131
  start-page: 1117
  year: 2017
  end-page: 1119
  ident: b40
  article-title: Near magnetic field of a small turbojet engine
  publication-title: Acta Phys. Polon. A
– volume: vol. 5931
  start-page: 674
  year: 2009
  end-page: 679
  ident: b14
  article-title: Parallel K-means clustering based on mapreduce
  publication-title: Cloud Computing. CloudCom 2009
– volume: 522
  start-page: 1
  year: 2020
  end-page: 16
  ident: b57
  article-title: Enhancing MOEA/D with information feedback models for large-scale many-objective optimization
  publication-title: Inform. Sci.
– reference: A. Hinneburg, D.A. Keim, Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering. Proceedings of 25th International Conference on Very Large Data Bases, Edinburgh, UK, 1999 506–517.
– volume: 30
  start-page: 2826
  year: 2007
  end-page: 2841
  ident: b25
  article-title: A survey on clustering algorithms for wireless sensor networks
  publication-title: Comput. Commun.
– volume: 82
  start-page: 24
  year: 2016
  end-page: 34
  ident: b43
  article-title: A novel potential field method for path planning of mobile robots by adapting animal motion attributes
  publication-title: Robot. Auton. Syst.
– volume: 232
  start-page: 58
  year: 2017
  end-page: 68
  ident: b52
  article-title: Interactive evolutionary optimization of fuzzy cognitive maps
  publication-title: Neurocomputing
– reference: A. Hinneburg, D.A. Keim, An efficient approach to clustering in large multimedia databases with noise, in: Proceedings of Fourth International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 1998, pp. 58–65.
– year: 2017
  ident: b65
  article-title: UCI Machine Learning Repository
– volume: 28
  start-page: 2375
  year: 2020
  end-page: 2388
  ident: b47
  article-title: Fault detection for fuzzy semi-Markov jump systems based on interval type-2 fuzzy approach
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 24
  start-page: 881
  year: 2002
  end-page: 892
  ident: b60
  article-title: An efficient K-means clustering algorithm: analysis and implementation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 20
  year: 2018
  end-page: 40
  ident: b32
  article-title: Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation
  publication-title: Int. J. Artif. Intell.
– volume: 6
  start-page: 923
  year: 2015
  end-page: 934
  ident: b20
  article-title: Mapreduce-based fuzzy C-means clustering algorithm: implementation and scalability
  publication-title: Int. J. Mach. Learn. Cybern.
– year: 2012
  ident: b1
  article-title: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data
– start-page: 281
  year: 1967
  end-page: 297
  ident: b7
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics
– volume: 20
  start-page: 1519
  year: 2008
  end-page: 1534
  ident: b63
  article-title: Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, in: Proceedings of 6th Symposium on Operating Systems Design and Implementation, San Francisco, CA, USA, 2004, pp. 137–150.
– volume: 46
  start-page: 243
  year: 2013
  end-page: 256
  ident: b68
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
– volume: 2
  start-page: 1626
  year: 2009
  end-page: 1629
  ident: b16
  article-title: Hive: a warehousing solution over a map-reduce framework
  publication-title: Proc. VLDB Endowment
– volume: PAMI-6
  start-page: 81
  year: 1984
  end-page: 87
  ident: b62
  article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 12
  start-page: 748
  issue: 6
  year: 2017
  ident: 10.1016/j.knosys.2020.106731_b35
  article-title: Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh
  publication-title: Int. J. Comput. Commun. Control
  doi: 10.15837/ijccc.2017.6.3111
– volume: 20
  start-page: 1130
  issue: 6
  year: 2012
  ident: 10.1016/j.knosys.2020.106731_b9
  article-title: Fuzzy C-means algorithms for very large data
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2012.2201485
– volume: 4
  start-page: 385
  issue: 3
  year: 1996
  ident: 10.1016/j.knosys.2020.106731_b30
  article-title: The possibilistic C-means algorithm: insights and recommendations
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.531779
– year: 2012
  ident: 10.1016/j.knosys.2020.106731_b1
– volume: 187
  year: 2020
  ident: 10.1016/j.knosys.2020.106731_b58
  article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.07.008
– volume: 74
  start-page: 75
  year: 2015
  ident: 10.1016/j.knosys.2020.106731_b38
  article-title: An overview on fault diagnosis and nature-inspired optimal control of industrial process applications
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2015.03.001
– volume: 139
  start-page: 372
  year: 2018
  ident: 10.1016/j.knosys.2020.106731_b46
  article-title: Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.10.277
– volume: 334
  start-page: 161
  year: 2016
  ident: 10.1016/j.knosys.2020.106731_b49
  article-title: Multi-objective optimization based on an improved cross-entropy method. A case study of a micro-scale manufacturing process
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.11.040
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.knosys.2020.106731_b2
  article-title: FCM: The fuzzy C-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– ident: 10.1016/j.knosys.2020.106731_b23
  doi: 10.1145/2523616.2523633
– ident: 10.1016/j.knosys.2020.106731_b31
  doi: 10.1109/FUZZY.1995.409988
– volume: 522
  start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2020.106731_b57
  article-title: Enhancing MOEA/D with information feedback models for large-scale many-objective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.02.066
– volume: 29
  start-page: 399
  issue: 4
  year: 2020
  ident: 10.1016/j.knosys.2020.106731_b44
  article-title: Model-free control of finger dynamics in prosthetic hand myoelectric-based control systems
  publication-title: Stud. Inf. Control
  doi: 10.24846/v29i4y202002
– volume: 65
  start-page: 90
  issue: C
  year: 2016
  ident: 10.1016/j.knosys.2020.106731_b21
  article-title: Mapreduce-based fast fuzzy C-means algorithm for large-scale underwater image segmentation
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.03.004
– volume: 24
  start-page: 1650
  issue: 12
  year: 2002
  ident: 10.1016/j.knosys.2020.106731_b61
  article-title: Performance evaluation of some clustering algorithms and validity indices
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1114856
– year: 2013
  ident: 10.1016/j.knosys.2020.106731_b41
– start-page: 77
  year: 2012
  ident: 10.1016/j.knosys.2020.106731_b26
  article-title: A survey of text clustering algorithms
– volume: 20
  start-page: 1519
  issue: 11
  year: 2008
  ident: 10.1016/j.knosys.2020.106731_b63
  article-title: Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.88
– ident: 10.1016/j.knosys.2020.106731_b27
– volume: 5
  start-page: 1240
  issue: 7
  year: 2016
  ident: 10.1016/j.knosys.2020.106731_b18
  article-title: Implementing K-means clustering algorithm using MapReduce paradigm
  publication-title: Int. J. Sci. Res.
– volume: 5
  start-page: 3
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2020.106731_b42
  article-title: A robust fuzzy adaptive law for evolving control systems
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-013-9084-7
– volume: PAMI-8
  start-page: 248
  issue: 2
  year: 1986
  ident: 10.1016/j.knosys.2020.106731_b29
  article-title: Efficient implementation of the fuzzy C-means clustering algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767778
– volume: 2
  start-page: 1626
  issue: 2
  year: 2009
  ident: 10.1016/j.knosys.2020.106731_b16
  article-title: Hive: a warehousing solution over a map-reduce framework
  publication-title: Proc. VLDB Endowment
  doi: 10.14778/1687553.1687609
– volume: 120
  start-page: 186
  year: 2017
  ident: 10.1016/j.knosys.2020.106731_b50
  article-title: Markdown optimization for an apparel retailer under cross-price and initial inventory effects
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.01.003
– ident: 10.1016/j.knosys.2020.106731_b5
– volume: vol. 5931
  start-page: 674
  year: 2009
  ident: 10.1016/j.knosys.2020.106731_b14
  article-title: Parallel K-means clustering based on mapreduce
– volume: 28
  start-page: 2375
  issue: 10
  year: 2020
  ident: 10.1016/j.knosys.2020.106731_b47
  article-title: Fault detection for fuzzy semi-Markov jump systems based on interval type-2 fuzzy approach
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2936333
– volume: 15
  start-page: 4442
  issue: 8
  year: 2019
  ident: 10.1016/j.knosys.2020.106731_b51
  article-title: Modeling and planning under uncertainty using deep neural networks
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2917520
– volume: 232
  start-page: 58
  year: 2017
  ident: 10.1016/j.knosys.2020.106731_b52
  article-title: Interactive evolutionary optimization of fuzzy cognitive maps
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.068
– volume: 40
  start-page: 11
  issue: 4
  year: 2011
  ident: 10.1016/j.knosys.2020.106731_b24
  article-title: Parallel data processing with mapreduce: a survey
  publication-title: ACM SIGMOD Record
  doi: 10.1145/2094114.2094118
– volume: 20
  start-page: 2084
  issue: 7
  year: 2018
  ident: 10.1016/j.knosys.2020.106731_b36
  article-title: Hesitant fuzzy linguistic term set and its application in decision making: A state-of-the-art survey
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-017-0432-9
– volume: 2
  start-page: 267
  issue: 3
  year: 2014
  ident: 10.1016/j.knosys.2020.106731_b4
  article-title: A survey of clustering algorithms for big data: taxonomy and empirical analysis
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2014.2330519
– ident: 10.1016/j.knosys.2020.106731_b17
  doi: 10.1145/2020408.2020515
– year: 2017
  ident: 10.1016/j.knosys.2020.106731_b65
– volume: 6
  start-page: 923
  issue: 6
  year: 2015
  ident: 10.1016/j.knosys.2020.106731_b20
  article-title: Mapreduce-based fuzzy C-means clustering algorithm: implementation and scalability
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-015-0367-0
– year: 2008
  ident: 10.1016/j.knosys.2020.106731_b22
– ident: 10.1016/j.knosys.2020.106731_b10
  doi: 10.1109/SACI46893.2019.9111590
– volume: 47
  start-page: 1084
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2020.106731_b48
  article-title: Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2014.911422
– ident: 10.1016/j.knosys.2020.106731_b8
  doi: 10.1145/235968.233324
– volume: 30
  start-page: 2826
  issue: 14–15
  year: 2007
  ident: 10.1016/j.knosys.2020.106731_b25
  article-title: A survey on clustering algorithms for wireless sensor networks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2007.05.024
– volume: 71
  start-page: 277
  year: 2018
  ident: 10.1016/j.knosys.2020.106731_b53
  article-title: A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.06.047
– start-page: 226
  year: 1996
  ident: 10.1016/j.knosys.2020.106731_b12
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 17
  start-page: 3
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2020.106731_b59
  article-title: Centroid update approach to K-means clustering
  publication-title: Adv. Electr. Comput. Eng.
  doi: 10.4316/AECE.2017.04001
– ident: 10.1016/j.knosys.2020.106731_b64
  doi: 10.1109/SACI.2016.7507361
– volume: 131
  start-page: 1117
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2020.106731_b40
  article-title: Near magnetic field of a small turbojet engine
  publication-title: Acta Phys. Polon. A
  doi: 10.12693/APhysPolA.131.1117
– year: 2019
  ident: 10.1016/j.knosys.2020.106731_b54
– ident: 10.1016/j.knosys.2020.106731_b6
– volume: 24
  start-page: 881
  issue: 7
  year: 2002
  ident: 10.1016/j.knosys.2020.106731_b60
  article-title: An efficient K-means clustering algorithm: analysis and implementation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017616
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2020.106731_b56
  article-title: A hybrid swarm algorithm for collective construction of 3D structures
  publication-title: Int. J. Artif. Intell.
– ident: 10.1016/j.knosys.2020.106731_b13
– volume: PAMI-6
  start-page: 81
  issue: 1
  year: 1984
  ident: 10.1016/j.knosys.2020.106731_b62
  article-title: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1984.4767478
– volume: 44
  start-page: 1619
  issue: 9
  year: 2014
  ident: 10.1016/j.knosys.2020.106731_b34
  article-title: DEC: Dynamically evolving clustering and its application to structure identification of evolving fuzzy models
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2291234
– ident: 10.1016/j.knosys.2020.106731_b67
  doi: 10.12792/iciae2015.012
– ident: 10.1016/j.knosys.2020.106731_b33
  doi: 10.1109/EAIS.2013.6604098
– volume: vol. 8451
  start-page: 357
  year: 2014
  ident: 10.1016/j.knosys.2020.106731_b19
  article-title: An efficient K-means clustering algorithm on mapreduce
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.knosys.2020.106731_b3
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 82
  start-page: 24
  year: 2016
  ident: 10.1016/j.knosys.2020.106731_b43
  article-title: A novel potential field method for path planning of mobile robots by adapting animal motion attributes
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2016.04.007
– volume: 26
  start-page: 541
  issue: 3
  year: 2015
  ident: 10.1016/j.knosys.2020.106731_b45
  article-title: Stable fuzzy logic control of a general class of chaotic systems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1644-7
– start-page: 281
  year: 1967
  ident: 10.1016/j.knosys.2020.106731_b7
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 46
  start-page: 243
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2020.106731_b68
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.07.021
– ident: 10.1016/j.knosys.2020.106731_b11
  doi: 10.1145/996841.996844
– ident: 10.1016/j.knosys.2020.106731_b28
  doi: 10.1109/SACI.2018.8441018
– volume: 27
  start-page: 502
  issue: 3
  year: 2019
  ident: 10.1016/j.knosys.2020.106731_b39
  article-title: iPatch: A many-objective type-2 fuzzy logic system for field workforce optimization
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2862394
– volume: 49
  start-page: 55
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2020.106731_b55
  article-title: Grey wolf optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.07.089
– volume: 16
  start-page: 20
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2020.106731_b32
  article-title: Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation
  publication-title: Int. J. Artif. Intell.
– volume: 11
  start-page: 21
  issue: 2
  year: 2014
  ident: 10.1016/j.knosys.2020.106731_b37
  article-title: Applications of signatures to expert systems modeling
  publication-title: Acta Polytech. Hung.
– ident: 10.1016/j.knosys.2020.106731_b15
  doi: 10.1145/1376616.1376726
– year: 2020
  ident: 10.1016/j.knosys.2020.106731_b66
SSID ssj0002218
Score 2.6105204
Snippet This paper proposes as an element of novelty the Unified Form (UF) clustering algorithm, which treats Fuzzy C-Means (FCM) and K-Means (KM) algorithms as a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106731
SubjectTerms Algorithms
Clustering
Data processing
Datasets
Distributed platforms
Fuzzy C-means algorithm
Implementation
Indexes
K-means algorithm
Memory
Partitional Implementation
Performance indices
Unified form of Fuzzy C-Means algorithms and K-Means algorithms
Title A Unified Form of Fuzzy C-Means and K-Means algorithms and its Partitional Implementation
URI https://dx.doi.org/10.1016/j.knosys.2020.106731
https://www.proquest.com/docview/2501256334
Volume 214
WOSCitedRecordID wos000618605200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL34iNgXxA3Dw1zpdzLKgVo6VMqEPlFDmOPTbapMvaadr_w__Js2MnGV-DA5fIcuo0eu-X55-f_d5D6KWAWT8XkUeE0NuMQjLCZQirVh76mej7fmbSLn6axNMpm8-Tw17vm4uFuVjERcEuL5PVf1U19IGydejsP6i7eSh0QBuUDldQO1z_SvEDzSOVZpYj4KOaDI42V1fw5ZP3EuYls1swdu3FcVmdrL8sz5tNhEP9SOsgNKmDlzY6qejy2LFzxRE9DeY2IXTrci-rhTS09KDkBanj2BsrDEZ2Y8rifeT5hgyX7SmPdpwNvKk4eW3cLg2EZSVqn23nodZrQb1OFLhxpblwGmfB2jNMtW-yT-K-zUQra8vMYlgKBP2ka7qpF3SMr_fLKaH2Tpzufy1KkMU-vIzujGI7-VzLwD39kI6OJpN0NpzPXq3OiC5OpjfxbaWWW2ibxmECxnN7cDCcv2umfEqNI7l5bxejaQ4S_vzHv-NAP7ABQ3Fm99FduzbBgxpTD1BPFg_RPVf3A1shPkKfB9hCDGuI4VJhAzFsIYZBcXjs2g3ETDdADHcghq9D7DE6Gg1nb94SW6KDCN8P1iRhMguzfsyZoIwDfxa-l-eeT3PgPSxTXEYqgRVsFFMlZaZU7OWJiBTV7ksGxv8J2irKQj5FWChFWSg8PwxokDGfM1iZK-nBgFAo7u0g3wktFTZ_vS6jskjdQcXTtBZ1qkWd1qLeQaQZtarzt9zw-9jpI7UctOaWKeDphpF7Tn2pNQdwPwQCGEYgq90_336G7rSfyR7aWlcb-RzdFhfrk_PqhcXbdxresb8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Form+of+Fuzzy+C-Means+and+K-Means+algorithms+and+its+Partitional+Implementation&rft.jtitle=Knowledge-based+systems&rft.au=Borlea%2C+Ioan-Daniel&rft.au=Precup%2C+Radu-Emil&rft.au=Borlea%2C+Alexandra-Bianca&rft.au=Iercan%2C+Daniel&rft.date=2021-02-28&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=214&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2020.106731&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon