Dynamic graph convolutional autoencoder with node-attribute-wise attention for kidney and tumor segmentation from CT volumes

Extraction and integration of semantic connections, spatial relations and dependencies are critical in volumetric image segmentation. This is a challenging issue, especially when there are long-distance objects with close semantic relations and neighboring objects with indistinct boundaries. We prop...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 236; p. 107360
Main Authors: Xuan, Ping, Cui, Hui, Zhang, Hongda, Zhang, Tiangang, Wang, Linlin, Nakaguchi, Toshiya, Duh, Henry B.L.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 25.01.2022
Elsevier Science Ltd
Subjects:
ISSN:0950-7051, 1872-7409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Extraction and integration of semantic connections, spatial relations and dependencies are critical in volumetric image segmentation. This is a challenging issue, especially when there are long-distance objects with close semantic relations and neighboring objects with indistinct boundaries. We propose a novel dynamic graph convolution (DGC) autoencoder with node-attribute-wise attention (NodeAttri-Attention) for relation inference and reasoning, with applications on kidney and tumor segmentation from computerized tomography (CT) volumes. We first introduce a new graph construction strategy for 3D volumetric image data, where graph node attributes and connections represent topological relations and high-level correlations. Then NodeAttri-Attention mechanism is proposed to obtain attention-enhanced node attributes by discriminating adaptive contributions of various features. Finally, the DGC strategy is designed to learn and integrate the complex and underlying correlations across image regions. Our DGC dynamically updates graph topology and node attributes as the graph convolutional layer gradually deepens. Experimental results and ablation studies demonstrated the effectiveness of each of our major innovations in NodeAttri-Attention DGC, especially when objects are with weak boundaries, irregular shapes, and various sizes. The improved segmentation results of embedding NodeAttri-Attention DGC to different segmentation backbones show the generality of DGC autoencoder.
AbstractList Extraction and integration of semantic connections, spatial relations and dependencies are critical in volumetric image segmentation. This is a challenging issue, especially when there are long-distance objects with close semantic relations and neighboring objects with indistinct boundaries. We propose a novel dynamic graph convolution (DGC) autoencoder with node-attribute-wise attention (NodeAttri-Attention) for relation inference and reasoning, with applications on kidney and tumor segmentation from computerized tomography (CT) volumes. We first introduce a new graph construction strategy for 3D volumetric image data, where graph node attributes and connections represent topological relations and high-level correlations. Then NodeAttri-Attention mechanism is proposed to obtain attention-enhanced node attributes by discriminating adaptive contributions of various features. Finally, the DGC strategy is designed to learn and integrate the complex and underlying correlations across image regions. Our DGC dynamically updates graph topology and node attributes as the graph convolutional layer gradually deepens. Experimental results and ablation studies demonstrated the effectiveness of each of our major innovations in NodeAttri-Attention DGC, especially when objects are with weak boundaries, irregular shapes, and various sizes. The improved segmentation results of embedding NodeAttri-Attention DGC to different segmentation backbones show the generality of DGC autoencoder.
ArticleNumber 107360
Author Cui, Hui
Xuan, Ping
Wang, Linlin
Nakaguchi, Toshiya
Zhang, Tiangang
Duh, Henry B.L.
Zhang, Hongda
Author_xml – sequence: 1
  givenname: Ping
  orcidid: 0000-0001-5328-691X
  surname: Xuan
  fullname: Xuan, Ping
  organization: School of Computer Science and Technology, Heilongjiang University, Harbin, China
– sequence: 2
  givenname: Hui
  surname: Cui
  fullname: Cui, Hui
  organization: Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
– sequence: 3
  givenname: Hongda
  surname: Zhang
  fullname: Zhang, Hongda
  email: hongda.zhang.hlju@gmail.com
  organization: School of Computer Science and Technology, Heilongjiang University, Harbin, China
– sequence: 4
  givenname: Tiangang
  surname: Zhang
  fullname: Zhang, Tiangang
  email: zhang@hlju.edu.cn
  organization: School of Mathematical Science, Heilongjiang University, Harbin, China
– sequence: 5
  givenname: Linlin
  surname: Wang
  fullname: Wang, Linlin
  organization: Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
– sequence: 6
  givenname: Toshiya
  surname: Nakaguchi
  fullname: Nakaguchi, Toshiya
  organization: Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
– sequence: 7
  givenname: Henry B.L.
  orcidid: 0000-0003-4808-6109
  surname: Duh
  fullname: Duh, Henry B.L.
  organization: Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
BookMark eNqFkE1PAyEQhonRxPrxDzyQeN4Ku9uF9WBi6mdi4kXPhIWhpXahAqtp4o-XZj150BPDzPvO5H2O0L7zDhA6o2RKCW0uVtM35-M2TktS0txiVUP20IRyVhasJu0-mpB2RgpGZvQQHcW4IoSUJeUT9HWzdbK3Ci-C3Cyx8u7Dr4dkvZNrLIfkwSmvIeBPm5bY5bKQKQXbDQmKTxsB5y-4nQEbH_Cb1Q62WDqN09DnRoRFn-dyVATf4_kL3t3oIZ6gAyPXEU5_3mP0enf7Mn8onp7vH-fXT4WqqjoVLaO05o2WHVUN6zgzEkA2XdcxU3PeUq21kdzMtKmMyvOWGkq44ZIorSpaHaPzce8m-PcBYhIrP4ScMIqyqWjDeN3UWVWPKhV8jAGM2ATby7AVlIgdZ7ESI2ex4yxGztl2-cum7Bg3BWnX_5mvRjPk-B8WgojKZuSgbQCVhPb27wXfWhWiQw
CitedBy_id crossref_primary_10_1016_j_knosys_2022_109438
crossref_primary_10_1088_1361_6560_ad294c
crossref_primary_10_1016_j_compbiomed_2024_108640
crossref_primary_10_1007_s10278_023_00900_2
crossref_primary_10_1016_j_neunet_2025_108042
crossref_primary_10_1109_ACCESS_2024_3410833
crossref_primary_10_1109_JBHI_2022_3214999
crossref_primary_10_1007_s00530_022_01020_7
crossref_primary_10_1109_ACCESS_2025_3577393
crossref_primary_10_1155_2023_8342104
crossref_primary_10_1016_j_bspc_2024_106049
crossref_primary_10_1109_TIP_2024_3451936
crossref_primary_10_1140_epjp_s13360_025_06686_2
crossref_primary_10_1016_j_asoc_2024_112069
crossref_primary_10_3390_cancers15123189
crossref_primary_10_3390_electronics13163226
crossref_primary_10_1007_s11063_022_11034_x
crossref_primary_10_1016_j_bspc_2023_105614
crossref_primary_10_1088_1361_6560_ac9e3f
crossref_primary_10_1007_s11042_023_15882_0
Cites_doi 10.1016/j.imu.2020.100357
10.1109/TPAMI.2017.2712691
10.1073/pnas.1715832114
10.1016/j.cmpb.2018.03.018
10.1007/978-3-030-01240-3_17
10.1109/CVPR.2018.00813
10.1109/ICCV.2017.89
10.1007/978-3-030-01228-1_25
10.1016/j.media.2017.07.005
10.1109/CVPR.2016.90
10.1109/ISBI.2014.6868101
10.1109/34.232073
10.1007/s13735-017-0141-z
10.1109/CVPR.2017.650
10.1109/CVPR42600.2020.00897
10.3390/cells8091012
10.5244/C.27.32
10.1016/S1076-6332(03)00671-8
10.1109/CVPR.2019.00052
10.1109/CVPR.2017.660
10.1109/CVPR.2018.00745
10.1109/CVPR.2019.00326
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Jan 25, 2022
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Jan 25, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.107360
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_107360
S0950705121006225
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-9711486dab1c67b87faeea6bbb7f48891dddfa8f5df3fcb8791f108f8a0cdc313
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788654600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:46:04 EST 2025
Sat Nov 29 07:11:40 EST 2025
Tue Nov 18 21:00:20 EST 2025
Fri Feb 23 02:41:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Node-attribute-wise attention
Kidney and tumor segmentation
Long-distance relationship between nodes
Graph node attributes
Dynamic graph convolutional autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-9711486dab1c67b87faeea6bbb7f48891dddfa8f5df3fcb8791f108f8a0cdc313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5328-691X
0000-0003-4808-6109
PQID 2631678464
PQPubID 2035257
ParticipantIDs proquest_journals_2631678464
crossref_primary_10_1016_j_knosys_2021_107360
crossref_citationtrail_10_1016_j_knosys_2021_107360
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107360
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References X. Wang, R. Girshick, A. Gupta, K. He, Non-local Neural Networks, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803.
Cui, Wang, Zhou, Gong, Eberl, Yin, Wang, Feng, Fulham (b34) 2018; 159
G. Csurka, D. Larlus, F. Perronnin, F. Meylan, What is a good evaluation measure for semantic segmentation?, in: BMVC, Vol. 27, p. 2013.
Xuan, Pan, Zhang, Liu, Sun (b28) 2019; 8
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (b1) 2017; 42
Jin, Cui, Sun, Meng, Su (b4) 2020
J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3146–3154.
Zou, Warfield, Bharatha, Tempany, Kaus, Haker, Wells III, Jolesz, Kikinis (b40) 2004; 11
J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 764–773.
Mo, Cai, Lin, Tong, Chen, Wang, Hu, Iwamoto, Han, Chen (b22) 2020
Cuingnet, Prevost, Lesage, Cohen, Mory, Ardon (b2) 2012
Zhao, Jiang, Peña Queralta, Westerlund (b8) 2020; 19
H. Zhao, Y. Zhang, S. Liu, J. Shi, C. Change Loy, D. Lin, J. Jia, Psanet: Point-wise spatial attention network for scene parsing, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 267–283.
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
Shuai, Zuo, Wang, Wang (b18) 2017; 40
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (b36) 2020
Yang, Li, Pan, Kong, Wu, Shu, Luo, Dillenseger, Coatrieux, Tang (b35) 2018
Fan, Chu, Latecki, Ling (b17) 2019
Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, J. Leskovec, Hierarchical graph representation learning with differentiable pooling, in: Advances in Neural Information Processing Systems, 2018, pp. 4800–4810.
Xuan, Gao, Sheng, Zhang, Nakaguchi (b29) 2020
Kipf, Welling (b26) 2016
H. Cui, X. Wang, J. Zhou, M. Fulham, S. Eberl, D. Feng, Topology constraint graph-based model for non-small-cell lung tumor segmentation from PET volumes, in: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, pp. 1243–1246.
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Wu, Pan, Chen, Long, Zhang, Philip (b27) 2020
Huttenlocher, Klanderman, Rucklidge (b42) 1993; 15
Chen, Dou, Jin, Chen, Qin, Heng (b38) 2019
H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890.
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (b43) 2016
Pelt, Sethian (b7) 2018; 115
G. Bertasius, L. Torresani, S.X. Yu, J. Shi, Convolutional random walk networks for semantic image segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 858–866.
X. Wang, A. Gupta, Videos as space-time region graphs, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 399–417.
X. Liang, Z. Hu, H. Zhang, L. Lin, E.P. Xing, Symbolic graph reasoning meets convolutions, in: Advances in Neural Information Processing Systems, 2018, pp. 1853–1863.
Guo, Liu, Georgiou, Lew (b6) 2018; 7
Kipf, Welling (b23) 2016
Y. Chen, M. Rohrbach, Z. Yan, Y. Shuicheng, J. Feng, Y. Kalantidis, Graph-based global reasoning networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 433–442.
Heller, Sathianathen, Kalapara, Walczak, Moore, Kaluzniak, Rosenberg, Blake, Rengel, Oestreich (b39) 2019
Y. Li, A. Gupta, Beyond grids: Learning graph representations for visual recognition, in: Advances in Neural Information Processing Systems, 2018, pp. 9225–9235.
Isensee, Petersen, Klein, Zimmerer, Jaeger, Kohl, Wasserthal, Koehler, Norajitra, Wirkert (b37) 2018
Heller, Isensee, Maier-Hein, Hou, Xie, Li, Nan, Mu, Lin, Han (b3) 2019; 67
Chen, Kalantidis, Li, Yan, Feng (b15) 2018
Cui, Xu, Li, Wang, Duh (b5) 2020
Li, Pan, Wu, Wen, Qin (b9) 2020
X. Li, Y. Yang, Q. Zhao, T. Shen, Z. Lin, H. Liu, Spatial Pyramid Based Graph Reasoning for Semantic Segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 8950–8959.
Çiçek (10.1016/j.knosys.2021.107360_b43) 2016
Xuan (10.1016/j.knosys.2021.107360_b29) 2020
Yang (10.1016/j.knosys.2021.107360_b35) 2018
10.1016/j.knosys.2021.107360_b21
10.1016/j.knosys.2021.107360_b20
10.1016/j.knosys.2021.107360_b41
Cui (10.1016/j.knosys.2021.107360_b5) 2020
Jin (10.1016/j.knosys.2021.107360_b4) 2020
10.1016/j.knosys.2021.107360_b25
10.1016/j.knosys.2021.107360_b24
10.1016/j.knosys.2021.107360_b44
Chen (10.1016/j.knosys.2021.107360_b38) 2019
10.1016/j.knosys.2021.107360_b16
Kipf (10.1016/j.knosys.2021.107360_b23) 2016
Cui (10.1016/j.knosys.2021.107360_b34) 2018; 159
10.1016/j.knosys.2021.107360_b19
Zou (10.1016/j.knosys.2021.107360_b40) 2004; 11
Isensee (10.1016/j.knosys.2021.107360_b37) 2018
Chen (10.1016/j.knosys.2021.107360_b15) 2018
Pelt (10.1016/j.knosys.2021.107360_b7) 2018; 115
Xuan (10.1016/j.knosys.2021.107360_b28) 2019; 8
Zhao (10.1016/j.knosys.2021.107360_b8) 2020; 19
Kipf (10.1016/j.knosys.2021.107360_b26) 2016
Huttenlocher (10.1016/j.knosys.2021.107360_b42) 1993; 15
10.1016/j.knosys.2021.107360_b10
10.1016/j.knosys.2021.107360_b32
Isensee (10.1016/j.knosys.2021.107360_b36) 2020
10.1016/j.knosys.2021.107360_b31
10.1016/j.knosys.2021.107360_b30
Litjens (10.1016/j.knosys.2021.107360_b1) 2017; 42
Heller (10.1016/j.knosys.2021.107360_b39) 2019
Guo (10.1016/j.knosys.2021.107360_b6) 2018; 7
10.1016/j.knosys.2021.107360_b14
Fan (10.1016/j.knosys.2021.107360_b17) 2019
10.1016/j.knosys.2021.107360_b13
10.1016/j.knosys.2021.107360_b12
10.1016/j.knosys.2021.107360_b11
10.1016/j.knosys.2021.107360_b33
Li (10.1016/j.knosys.2021.107360_b9) 2020
Mo (10.1016/j.knosys.2021.107360_b22) 2020
Heller (10.1016/j.knosys.2021.107360_b3) 2019; 67
Cuingnet (10.1016/j.knosys.2021.107360_b2) 2012
Wu (10.1016/j.knosys.2021.107360_b27) 2020
Shuai (10.1016/j.knosys.2021.107360_b18) 2017; 40
References_xml – reference: X. Li, Y. Yang, Q. Zhao, T. Shen, Z. Lin, H. Liu, Spatial Pyramid Based Graph Reasoning for Semantic Segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 8950–8959.
– start-page: 424
  year: 2016
  end-page: 432
  ident: b43
  article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2016
  ident: b23
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 67
  year: 2019
  ident: b3
  article-title: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced ct imaging: Results of the kits19 challenge
  publication-title: Med. Image Anal.
– reference: X. Wang, A. Gupta, Videos as space-time region graphs, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 399–417.
– start-page: 197
  year: 2020
  end-page: 206
  ident: b9
  article-title: Memory-efficient automatic kidney and tumor segmentation based on non-local context guided 3D U-Net
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2018
  ident: b15
  article-title: A
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– reference: X. Wang, R. Girshick, A. Gupta, K. He, Non-local Neural Networks, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803.
– reference: H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890.
– start-page: 3790
  year: 2018
  end-page: 3795
  ident: b35
  article-title: Automatic segmentation of kidney and renal tumor in ct images based on 3d fully convolutional neural network with pyramid pooling module
  publication-title: 2018 24th International Conference on Pattern Recognition (ICPR)
– start-page: 447
  year: 2019
  end-page: 456
  ident: b38
  article-title: Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 66
  year: 2012
  end-page: 74
  ident: b2
  article-title: Automatic detection and segmentation of kidneys in 3D CT images using random forests
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: H. Cui, X. Wang, J. Zhou, M. Fulham, S. Eberl, D. Feng, Topology constraint graph-based model for non-small-cell lung tumor segmentation from PET volumes, in: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, pp. 1243–1246.
– year: 2019
  ident: b39
  article-title: The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes
– volume: 159
  start-page: 211
  year: 2018
  end-page: 222
  ident: b34
  article-title: A topo-graph model for indistinct target boundary definition from anatomical images
  publication-title: Comput. Methods Programs Biomed.
– reference: Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, J. Leskovec, Hierarchical graph representation learning with differentiable pooling, in: Advances in Neural Information Processing Systems, 2018, pp. 4800–4810.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: b1
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– reference: G. Bertasius, L. Torresani, S.X. Yu, J. Shi, Convolutional random walk networks for semantic image segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 858–866.
– volume: 40
  start-page: 1480
  year: 2017
  end-page: 1493
  ident: b18
  article-title: Scene segmentation with dag-recurrent neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– year: 2020
  ident: b27
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 15
  start-page: 850
  year: 1993
  end-page: 863
  ident: b42
  article-title: Comparing images using the Hausdorff distance
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 115
  start-page: 254
  year: 2018
  end-page: 259
  ident: b7
  article-title: A mixed-scale dense convolutional neural network for image analysis
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 429
  year: 2020
  end-page: 438
  ident: b22
  article-title: Multimodal priors guided segmentation of liver lesions in MRI using mutual information based graph co-attention networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2020
  ident: b29
  article-title: Graph convolutional autoencoder and fully-connected autoencoder with attention mechanism based method for predicting drug-disease associations
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 212
  year: 2020
  end-page: 220
  ident: b5
  article-title: Collaborative learning of cross-channel clinical attention for radiotherapy-related esophageal fistula prediction from CT
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: H. Zhao, Y. Zhang, S. Liu, J. Shi, C. Change Loy, D. Lin, J. Jia, Psanet: Point-wise spatial attention network for scene parsing, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 267–283.
– reference: J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 764–773.
– start-page: 1
  year: 2020
  end-page: 9
  ident: b36
  article-title: NnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nature Methods
– reference: Y. Li, A. Gupta, Beyond grids: Learning graph representations for visual recognition, in: Advances in Neural Information Processing Systems, 2018, pp. 9225–9235.
– volume: 7
  start-page: 87
  year: 2018
  end-page: 93
  ident: b6
  article-title: A review of semantic segmentation using deep neural networks
  publication-title: Int. J. Multimed. Inf. Retr.
– year: 2016
  ident: b26
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 1816
  year: 2019
  end-page: 1825
  ident: b17
  article-title: Scene parsing via dense recurrent neural networks with attentional selection
  publication-title: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV)
– reference: X. Liang, Z. Hu, H. Zhang, L. Lin, E.P. Xing, Symbolic graph reasoning meets convolutions, in: Advances in Neural Information Processing Systems, 2018, pp. 1853–1863.
– volume: 8
  start-page: 1012
  year: 2019
  ident: b28
  article-title: Graph convolutional network and convolutional neural network based method for predicting lncRNA-disease associations
  publication-title: Cells
– reference: G. Csurka, D. Larlus, F. Perronnin, F. Meylan, What is a good evaluation measure for semantic segmentation?, in: BMVC, Vol. 27, p. 2013.
– reference: Y. Chen, M. Rohrbach, Z. Yan, Y. Shuicheng, J. Feng, Y. Kalantidis, Graph-based global reasoning networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 433–442.
– reference: J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3146–3154.
– year: 2020
  ident: b4
  article-title: Cascade knowledge diffusion network for skin lesion diagnosis and segmentation
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 178
  year: 2004
  end-page: 189
  ident: b40
  article-title: Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports
  publication-title: Academic Radiol.
– year: 2018
  ident: b37
  article-title: NnU-Net: Self-adapting framework for U-net-based medical image segmentation
– volume: 19
  year: 2020
  ident: b8
  article-title: MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net
  publication-title: Inform. Med. Unlocked
– volume: 19
  year: 2020
  ident: 10.1016/j.knosys.2021.107360_b8
  article-title: MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100357
– volume: 40
  start-page: 1480
  issue: 6
  year: 2017
  ident: 10.1016/j.knosys.2021.107360_b18
  article-title: Scene segmentation with dag-recurrent neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2712691
– volume: 67
  year: 2019
  ident: 10.1016/j.knosys.2021.107360_b3
  article-title: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced ct imaging: Results of the kits19 challenge
  publication-title: Med. Image Anal.
– volume: 115
  start-page: 254
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2021.107360_b7
  article-title: A mixed-scale dense convolutional neural network for image analysis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1715832114
– volume: 159
  start-page: 211
  year: 2018
  ident: 10.1016/j.knosys.2021.107360_b34
  article-title: A topo-graph model for indistinct target boundary definition from anatomical images
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.03.018
– ident: 10.1016/j.knosys.2021.107360_b11
  doi: 10.1007/978-3-030-01240-3_17
– ident: 10.1016/j.knosys.2021.107360_b14
  doi: 10.1109/CVPR.2018.00813
– start-page: 1816
  year: 2019
  ident: 10.1016/j.knosys.2021.107360_b17
  article-title: Scene parsing via dense recurrent neural networks with attentional selection
– ident: 10.1016/j.knosys.2021.107360_b12
  doi: 10.1109/ICCV.2017.89
– ident: 10.1016/j.knosys.2021.107360_b13
  doi: 10.1007/978-3-030-01228-1_25
– ident: 10.1016/j.knosys.2021.107360_b19
– start-page: 447
  year: 2019
  ident: 10.1016/j.knosys.2021.107360_b38
  article-title: Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.knosys.2021.107360_b1
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: 10.1016/j.knosys.2021.107360_b44
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.knosys.2021.107360_b33
  doi: 10.1109/ISBI.2014.6868101
– start-page: 212
  year: 2020
  ident: 10.1016/j.knosys.2021.107360_b5
  article-title: Collaborative learning of cross-channel clinical attention for radiotherapy-related esophageal fistula prediction from CT
– year: 2018
  ident: 10.1016/j.knosys.2021.107360_b37
– start-page: 424
  year: 2016
  ident: 10.1016/j.knosys.2021.107360_b43
  article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation
– volume: 15
  start-page: 850
  issue: 9
  year: 1993
  ident: 10.1016/j.knosys.2021.107360_b42
  article-title: Comparing images using the Hausdorff distance
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.232073
– volume: 7
  start-page: 87
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2021.107360_b6
  article-title: A review of semantic segmentation using deep neural networks
  publication-title: Int. J. Multimed. Inf. Retr.
  doi: 10.1007/s13735-017-0141-z
– year: 2018
  ident: 10.1016/j.knosys.2021.107360_b15
– start-page: 3790
  year: 2018
  ident: 10.1016/j.knosys.2021.107360_b35
  article-title: Automatic segmentation of kidney and renal tumor in ct images based on 3d fully convolutional neural network with pyramid pooling module
– ident: 10.1016/j.knosys.2021.107360_b31
  doi: 10.1109/CVPR.2017.650
– ident: 10.1016/j.knosys.2021.107360_b24
  doi: 10.1109/CVPR42600.2020.00897
– volume: 8
  start-page: 1012
  issue: 9
  year: 2019
  ident: 10.1016/j.knosys.2021.107360_b28
  article-title: Graph convolutional network and convolutional neural network based method for predicting lncRNA-disease associations
  publication-title: Cells
  doi: 10.3390/cells8091012
– year: 2016
  ident: 10.1016/j.knosys.2021.107360_b26
– ident: 10.1016/j.knosys.2021.107360_b30
– ident: 10.1016/j.knosys.2021.107360_b41
  doi: 10.5244/C.27.32
– year: 2020
  ident: 10.1016/j.knosys.2021.107360_b4
  article-title: Cascade knowledge diffusion network for skin lesion diagnosis and segmentation
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 178
  issue: 2
  year: 2004
  ident: 10.1016/j.knosys.2021.107360_b40
  article-title: Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports
  publication-title: Academic Radiol.
  doi: 10.1016/S1076-6332(03)00671-8
– ident: 10.1016/j.knosys.2021.107360_b21
  doi: 10.1109/CVPR.2019.00052
– start-page: 429
  year: 2020
  ident: 10.1016/j.knosys.2021.107360_b22
  article-title: Multimodal priors guided segmentation of liver lesions in MRI using mutual information based graph co-attention networks
– ident: 10.1016/j.knosys.2021.107360_b32
  doi: 10.1109/CVPR.2017.650
– start-page: 197
  year: 2020
  ident: 10.1016/j.knosys.2021.107360_b9
  article-title: Memory-efficient automatic kidney and tumor segmentation based on non-local context guided 3D U-Net
– ident: 10.1016/j.knosys.2021.107360_b10
  doi: 10.1109/CVPR.2017.660
– year: 2019
  ident: 10.1016/j.knosys.2021.107360_b39
– year: 2020
  ident: 10.1016/j.knosys.2021.107360_b27
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 66
  year: 2012
  ident: 10.1016/j.knosys.2021.107360_b2
  article-title: Automatic detection and segmentation of kidneys in 3D CT images using random forests
– ident: 10.1016/j.knosys.2021.107360_b25
  doi: 10.1109/CVPR.2018.00745
– ident: 10.1016/j.knosys.2021.107360_b16
  doi: 10.1109/CVPR.2019.00326
– ident: 10.1016/j.knosys.2021.107360_b20
– start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2021.107360_b36
  article-title: NnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nature Methods
– year: 2016
  ident: 10.1016/j.knosys.2021.107360_b23
– year: 2020
  ident: 10.1016/j.knosys.2021.107360_b29
  article-title: Graph convolutional autoencoder and fully-connected autoencoder with attention mechanism based method for predicting drug-disease associations
  publication-title: IEEE J. Biomed. Health Inform.
SSID ssj0002218
Score 2.456192
Snippet Extraction and integration of semantic connections, spatial relations and dependencies are critical in volumetric image segmentation. This is a challenging...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107360
SubjectTerms Ablation
Attention
Attributes
Boundaries
Computed tomography
Computerization
Dynamic graph convolutional autoencoder
Extraction
Graph node attributes
Image segmentation
Inference
Innovations
Kidney and tumor segmentation
Kidneys
Long-distance relationship between nodes
Medical imaging
Node-attribute-wise attention
Nodes
Segmentation
Semantic relations
Semantics
Tomography
Topology
Tumors
Title Dynamic graph convolutional autoencoder with node-attribute-wise attention for kidney and tumor segmentation from CT volumes
URI https://dx.doi.org/10.1016/j.knosys.2021.107360
https://www.proquest.com/docview/2631678464
Volume 236
WOSCitedRecordID wos000788654600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ohCQT4gLitXeThxcqyWrQpUSw-ptLcoD3u1fXiXbtL20J_Ej2T8yqa0UDhwiSJ742Qzn8fjycw3CH1QGWiiECHMtKImlFFPzbmSVCL1eCRKUfNCF5tgk0kynaaHg8EPlwtzccqkTK6u0uV_FTW0gbBV6uw_iLsbFBrgHIQORxA7HP9K8J9MjfmhpqLWUeX2dooVoG0WirlSEUhoD6yEU1I0puwVJ5fzFR8qxk3ZhSCezGvJDUlT055Bw4rPzmzCkjTZKaNsaJTcqm_qfnXeOqJWytpyRncm_LQ1rtdDt3bqOG1TQ7ud3_Jn7y_kbO086JozQPessCNY50WgokCISXQ2HjWXVeMU2TqUybgoPcI8S0jLjYJOGOwIqJf2NXgQ9nWwf-fKYJwUxzsncgH_dwcexodGFppqBjeJuCff8r2jg4M8G0-zj8vvRNUoU9_ybcGWB2gzYFEKOnRz9_N4-qVb-YNA-5O753apmjqe8PaNf2cK_WIUaEsne4oe2y0K3jXQeoYGXD5HT1z5D2xf4gt0bZGGNdLwDaThHtKwQhq-A2m4QxoGpGGDNAxIwxppuI80rJCGRxm2SHuJjvbG2Wif2GIepApD2pCUqZ13XBelX8WsTJgoOC_isiyZgEUk9eu6FkUiolqEooL-1Be-l4ik8Kq6Cv3wFdqQC8lfIwxbLKpJnKKwopSWMDQrvZQHgsYVjaMtFLr3mleW6V4VXDnNXUjjcW6kkStp5EYaW4h0Vy0N08s9v2dOZLm1Vo0VmgPk7rly20k4t4oD-mPFSQG7Afrmz91v0aP1TNpGG815y9-hh9VFM1-dv7eQ_AlW78eJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+graph+convolutional+autoencoder+with+node-attribute-wise+attention+for+kidney+and+tumor+segmentation+from+CT+volumes&rft.jtitle=Knowledge-based+systems&rft.au=Xuan%2C+Ping&rft.au=Cui%2C+Hui&rft.au=Zhang%2C+Hongda&rft.au=Zhang%2C+Tiangang&rft.date=2022-01-25&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=236&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2021.107360&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon