On the Convergence of Block Majorization-Minimization Algorithms on the Grassmann Manifold

The Majorization-Minimization (MM) framework is widely used to derive efficient algorithms for specific problems that require the optimization of a cost function (which can be convex or not). It is based on a sequential optimization of a surrogate function over closed convex sets. A natural extensio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 31; s. 1314 - 1318
Hlavní autoři: Lopez, Carlos Alejandro, Riba, Jaume
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Majorization-Minimization (MM) framework is widely used to derive efficient algorithms for specific problems that require the optimization of a cost function (which can be convex or not). It is based on a sequential optimization of a surrogate function over closed convex sets. A natural extension of this framework incorporates ideas of Block Coordinate Descent (BCD) algorithms into the MM framework, also known as block MM. The rationale behind the block extension is to partition the optimization variables into several independent blocks, to obtain a surrogate for each block, and to optimize the surrogate of each block cyclically. However, known convergence proofs of the block MM are only valid under the assumption that the constraint sets are closed and convex. Hence, the global convergence of the block MM is not ensured for non-convex sets by classical proofs, which is needed in iterative schemes that naturally emerge in a wide range of subspace-based signal processing applications. For this purpose, the aim of this letter is to review the convergence proof of the block MM and extend it for blocks constrained in the Grassmann manifold.
AbstractList The Majorization-Minimization (MM) framework is widely used to derive efficient algorithms for specific problems that require the optimization of a cost function (which can be convex or not). It is based on a sequential optimization of a surrogate function over closed convex sets. A natural extension of this framework incorporates ideas of Block Coordinate Descent (BCD) algorithms into the MM framework, also known as block MM. The rationale behind the block extension is to partition the optimization variables into several independent blocks, to obtain a surrogate for each block, and to optimize the surrogate of each block cyclically. However, known convergence proofs of the block MM are only valid under the assumption that the constraint sets are closed and convex. Hence, the global convergence of the block MM is not ensured for non-convex sets by classical proofs, which is needed in iterative schemes that naturally emerge in a wide range of subspace-based signal processing applications. For this purpose, the aim of this letter is to review the convergence proof of the block MM and extend it for blocks constrained in the Grassmann manifold.
Author Lopez, Carlos Alejandro
Riba, Jaume
Author_xml – sequence: 1
  givenname: Carlos Alejandro
  orcidid: 0000-0002-2216-2786
  surname: Lopez
  fullname: Lopez, Carlos Alejandro
  email: carlos.alejandro.lopez@upc.edu
  organization: Signal Processing and Communications Group, Department de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya, Barcelona, Spain
– sequence: 2
  givenname: Jaume
  orcidid: 0000-0002-5515-8169
  surname: Riba
  fullname: Riba, Jaume
  email: jaume.riba@upc.edu
  organization: Signal Processing and Communications Group, Department de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya, Barcelona, Spain
BookMark eNp9kLFOwzAQQC0EEm1hZ2CIxJxyjhPHHksFBalVkYCFJXIdu3VJ7WKnSPD1uKQDYmC6O929O93ro2PrrELoAsMQY-DX06fHYQZZPiSEU0rhCPVwUbA0IxQfxxxKSDkHdor6IawBgGFW9NDr3CbtSiVjZz-UXyorVeJ0ctM4-ZbMxNp58yVa42w6M9ZsDkUyapax0642IXHdgokXIWyEtZGyRrumPkMnWjRBnR_iAL3c3T6P79PpfPIwHk1TSUjeppzWmBe6VAww1mUGEvNSylpiqXOthFpoSoTOmSpqnVHNuATGGGVkIaGsGRmgq27v1rv3nQpttXY7b-PJikBR4JID0DgF3ZT0LgSvdLX1ZiP8Z4Wh2husosFqb7A6GIwI_YNI0_7833phmv_Ayw40SqlfdwrMonbyDcEcgLs
CODEN ISPLEM
CitedBy_id crossref_primary_10_1109_TSP_2024_3488554
crossref_primary_10_1109_TVT_2025_3550184
Cites_doi 10.1162/08997660360581958
10.1109/18.978730
10.1137/S0895479895290954
10.1109/CVPR.2017.466
10.1109/IJCNN.2008.4634046
10.1137/19m1243956
10.1109/ALLERTON.2010.5706976
10.1109/TSP.2016.2601299
10.1109/ICASSP39728.2021.9415032
10.1090/S0002-9947-1986-0857446-4
10.1007/s10444-023-10090-8
10.1109/TSP.2007.909335
10.1109/ICACCS54159.2022.9785082
10.1137/120891009
10.1073/pnas.60.1.75
10.1023/a:1017501703105
10.1109/TIP.2007.904387
10.1561/2400000003
10.1109/TSP.2015.2421485
10.1214/08-sts264
10.1109/TSP.2021.3058442
10.1137/18M122457X
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2024.3396660
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 1318
ExternalDocumentID 10_1109_LSP_2024_3396660
10518081
Genre orig-research
GrantInformation_xml – fundername: 2023 FI-3 00155 by Generalitat de Catalunya and the European Social Fund
– fundername: MAYTE (PID2022-136512OB-C21 financed by MCIN/AEI/10.13039/501100011033
– fundername: ERDF A way of making Europe
– fundername: RODIN (PID2019-105717RB-C22/AEI/10.13039/501100011033)
  grantid: 2021 SGR 01033
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-96d195f7e8011f720c197ccdc1cf4feaebf63af48e5df26f89c0888683bc07d83
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001224409900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Mon Jun 30 10:15:36 EDT 2025
Sat Nov 29 03:38:55 EST 2025
Tue Nov 18 20:42:39 EST 2025
Wed Aug 27 02:05:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-96d195f7e8011f720c197ccdc1cf4feaebf63af48e5df26f89c0888683bc07d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5515-8169
0000-0002-2216-2786
OpenAccessLink http://hdl.handle.net/2117/416725
PQID 3055179006
PQPubID 75747
PageCount 5
ParticipantIDs proquest_journals_3055179006
crossref_citationtrail_10_1109_LSP_2024_3396660
crossref_primary_10_1109_LSP_2024_3396660
ieee_primary_10518081
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Zhu (ref24) 2018; 31
Lau (ref26) 2020
ref12
ref15
ref14
ref30
ref33
ref10
ref32
ref2
ref1
Ahn (ref17) 2021
ref16
ref19
ref18
Yuan (ref22) 2013; 14
Zhou (ref5) 2012; 56
Zhang (ref31) 2018
Vishnoi (ref28) 2018
ref25
ref20
Liu (ref29) 2017; 30
ref27
ref8
ref7
ref9
Qu (ref23) 2019; 32
ref4
ref3
ref6
Landgraf (ref21) 2020; 180
Jolliffe (ref11) 1986
References_xml – ident: ref6
  doi: 10.1162/08997660360581958
– ident: ref18
  doi: 10.1109/18.978730
– volume: 30
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref29
  article-title: Accelerated first-order methods for geodesically convex optimization on riemannian manifolds
– volume: 14
  start-page: 899
  issue: 28
  volume-title: J. Mach. Learn. Res.
  year: 2013
  ident: ref22
  article-title: Truncated power method for sparse eigenvalue problems
– volume-title: Proc. 8th Int. Conf. Learn. Representations
  year: 2020
  ident: ref26
  article-title: Short-and-sparse deconvolution - a. geometric approach
– ident: ref10
  doi: 10.1137/S0895479895290954
– ident: ref25
  doi: 10.1109/CVPR.2017.466
– ident: ref16
  doi: 10.1109/IJCNN.2008.4634046
– ident: ref8
  doi: 10.1137/19m1243956
– volume: 32
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref23
  article-title: A nonconvex approach for exact and efficient multichannel sparse blind deconvolution
– ident: ref13
  doi: 10.1109/ALLERTON.2010.5706976
– volume: 56
  start-page: 3909
  issue: 12
  volume-title: Comput. Statist. Data Anal.
  year: 2012
  ident: ref5
  article-title: EM vs MM: A case study
– ident: ref3
  doi: 10.1109/TSP.2016.2601299
– ident: ref14
  doi: 10.1109/ICASSP39728.2021.9415032
– ident: ref20
  doi: 10.1090/S0002-9947-1986-0857446-4
– ident: ref30
  doi: 10.1007/s10444-023-10090-8
– year: 2018
  ident: ref31
  article-title: Grassmannian learning: Embedding geometry awareness in shallow and deep learning
– ident: ref15
  doi: 10.1109/TSP.2007.909335
– ident: ref1
  doi: 10.1109/ICACCS54159.2022.9785082
– ident: ref9
  doi: 10.1137/120891009
– year: 2021
  ident: ref17
  article-title: Riemannian perspective on matrix factorization
– volume: 31
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref24
  article-title: Dual principal component pursuit: Improved analysis and efficient algorithms
– ident: ref32
  doi: 10.1073/pnas.60.1.75
– start-page: 115
  year: 1986
  ident: ref11
  publication-title: Principal Compon. Anal. and Factor Anal.
– year: 2018
  ident: ref28
  article-title: Geodesic convex optimization: Differentiation on manifolds, geodesics, and convexity
– ident: ref33
  doi: 10.1023/a:1017501703105
– ident: ref2
  doi: 10.1109/TIP.2007.904387
– volume: 180
  volume-title: J. Multivariate Anal.
  year: 2020
  ident: ref21
  article-title: Dimensionality reduction for binary data through the projection of natural parameters
– ident: ref7
  doi: 10.1561/2400000003
– ident: ref12
  doi: 10.1109/TSP.2015.2421485
– ident: ref4
  doi: 10.1214/08-sts264
– ident: ref19
  doi: 10.1109/TSP.2021.3058442
– ident: ref27
  doi: 10.1137/18M122457X
SSID ssj0008185
Score 2.4198878
Snippet The Majorization-Minimization (MM) framework is widely used to derive efficient algorithms for specific problems that require the optimization of a cost...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1314
SubjectTerms Algorithms
Constraints
Convergence
Convexity
Cost function
geodesically convex optimization
Grassmann manifold
Independent variables
majorization-minimization
Manifolds
Manifolds (mathematics)
Minimization
Non-convex optimization
Optimization
Principal component analysis
Riemannian optimization
Signal processing
Signal processing algorithms
Title On the Convergence of Block Majorization-Minimization Algorithms on the Grassmann Manifold
URI https://ieeexplore.ieee.org/document/10518081
https://www.proquest.com/docview/3055179006
Volume 31
WOSCitedRecordID wos001224409900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1NT8IwtFHiQQ9-YkTR9ODFw2Cj3dYekYgeAEnUhHhZtq7VKXRmDH-_bVeQxGjibcv6uuW9vc--DwAuidLZgse-E3IdrWKBq1iKxo5IKU59yhERplB4EI5GZDKhY1usbmphOOcm-Yy39KU5y09zttChMsXhvqcnRWyCzTAMqmKtldjVmqdKMFSvoy5Znkm6tD14GCtPsINbCCnr3nSj_NZBZqjKD0ls1Et_758ftg92rR0JuxXhD8AGl4dgZ6274BF4vpdQmXewpxPLTY0lh7mA10p9vcNh_JYXtgbTGWYym9kb2J2-qCfl62wO82qD20JZ2LNYSgUlM5FP0zp46t889u4cO0rBYQjh0qFB6lFfhFwpJE-EHZd5NGQsZR4TWNGKJyJAscCE-6noBIJQpsQPCQhKmBumBB2DmswlPwGQxR0vxtjXxgZmzE90ECnBJFaOFKLca4D2ErkRs33G9biLaWT8DZdGihyRJkdkydEAVyuIj6rHxh9r6xr9a-sqzDdAc0nAyHLhPNLdzHQHMjc4_QXsDGzr3auYShPUymLBz8EW-yyzeXFhfrAvZKnNfA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1NT4Mw9MWvRD34bZxO7cGLBxRogfaoxqmRzSXOZPFCoLQ63cBs099vWzpdYjTxBqGPkvd4n30fAEdU6Wwp0sCJhI5W8dBVLMVSR-aM5AETmEpTKBxHrRbtdlnbFqubWhghhEk-Eyf60pzl5yV_16EyxeGBpydFzMK8Hp1ly7W-BK_WPVWKodqQuXRyKumy0_i-rXxBn5xgrOx704_yWwuZsSo_ZLFRMI3Vf37aGqxYSxKdVaRfhxlRbMDyVH_BTXi8K5Ay8NCFTi03VZYClRKdKwX2iprpSzm0VZhOs1f0BvYGnfWf1JPx82CEyuoFV0NlYw_SolBQRU-W_XwLHhqXnYtrxw5TcDjGZOywMPdYICOhVJInI9_lHos4z7nHJVHUEpkMcSoJFUEu_VBSxpUAoiHFGXejnOJtmCvKQuwA4qnvpYQE2twgnAeZDiNlhKbKlcJMeDU4nSA34bbTuB540U-Mx-GyRJEj0eRILDlqcPwF8VZ12fhj7ZZG_9S6CvM1qE8ImFg-HCW6n5nuQeaGu7-AHcLidacZJ_FN63YPlvROVYSlDnPj4bvYhwX-Me6NhgfmZ_sERC7QxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Convergence+of+Block+Majorization-Minimization+Algorithms+on+the+Grassmann+Manifold&rft.jtitle=IEEE+signal+processing+letters&rft.au=Lopez%2C+Carlos+Alejandro&rft.au=Riba%2C+Jaume&rft.date=2024&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=31&rft.spage=1314&rft.epage=1318&rft_id=info:doi/10.1109%2FLSP.2024.3396660&rft.externalDocID=10518081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon