SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications
Chimp Optimization Algorithm (ChoA) is a recently developed meta-heuristic approach which is inspired by the individual intelligence and sexual motivation of chimps. It is designed for trapping the local optima to alleviate the slow convergence speed. In this paper, a hybrid algorithm is developed w...
Uložené v:
| Vydané v: | Knowledge-based systems Ročník 222; s. 106926 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
21.06.2021
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Chimp Optimization Algorithm (ChoA) is a recently developed meta-heuristic approach which is inspired by the individual intelligence and sexual motivation of chimps. It is designed for trapping the local optima to alleviate the slow convergence speed. In this paper, a hybrid algorithm is developed which is based on the sine–cosine functions and attacking strategy of Spotted Hyena Optimizer (SHO). This hybrid algorithm is termed as Sine–cosine and Spotted Hyena-based Chimp Optimization Algorithm (SSC). This algorithm is used to find the best optimal solutions of real-life complex problems. The sine–cosine and attacking strategy of SHO algorithm is responsible for better exploration and exploitation. These strategies are applied to update the equations of chimps during the searching process to overcome the drawbacks of the ChoA algorithm such as slow convergence and local minima. Experimental results based on IEEE CEC’17 and six real-life engineering problems such as welded beam design, tension/compression spring design, pressure vessel design, multiple disk clutch brake design, gear train design, and car side crashworthiness, demonstrate the robustness, effectiveness, efficiency, and convergence analysis of the proposed SSC algorithm in comparison with other competitor approaches. Note that the source codes are available at http://www.dhimangaurav.com. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0950-7051 1872-7409 |
| DOI: | 10.1016/j.knosys.2021.106926 |