Fourier-Hermite Dynamic Programming for Optimal Control
In this paper, we propose a novel computational method for solving non-linear optimal control problems. The method is based on the use of Fourier-Hermite series for approximating the action-value function arising in dynamic programming instead of the conventional Taylor-series expansion used in diff...
Uloženo v:
| Vydáno v: | IEEE transactions on automatic control Ročník 68; číslo 10; s. 1 - 8 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a novel computational method for solving non-linear optimal control problems. The method is based on the use of Fourier-Hermite series for approximating the action-value function arising in dynamic programming instead of the conventional Taylor-series expansion used in differential dynamic programming (DDP). The coefficients of the Fourier-Hermite series can be numerically computed by using sigma-point methods, which leads to a novel class of sigma-point based dynamic programming methods. We also prove the quadratic convergence of the method and experimentally test its performance against other methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2023.3234236 |