Dynamic Operation Optimization of Complex Industries Based on a Data-Driven Strategy
As industrial practices continue to evolve, complex process industries often exhibit characteristics such as multivariate correlation, dynamism, and nonlinearity, making traditional mechanism modeling inadequate in terms of addressing the intricacies of complex industrial problems. In recent years,...
Uloženo v:
| Vydáno v: | Processes Ročník 12; číslo 1; s. 189 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.01.2024
|
| Témata: | |
| ISSN: | 2227-9717, 2227-9717 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As industrial practices continue to evolve, complex process industries often exhibit characteristics such as multivariate correlation, dynamism, and nonlinearity, making traditional mechanism modeling inadequate in terms of addressing the intricacies of complex industrial problems. In recent years, with advancements in control theory and industrial practices, there has been a substantial increase in the volume of industrial data. Data-driven dynamic operation optimization techniques have emerged as effective solutions for handling complex industrial processes. By responding to dynamic environmental changes and utilizing advanced optimization algorithms, it is possible to achieve dynamic operational optimization in industrial processes, thereby reducing costs and emissions, improving efficiency, and increasing productivity. This correlates nicely with the goals set forth by conventional process operation optimization theories. Nowadays, this dynamic, data-driven strategy has shown significant potential in complex process industries characterized by multivariate correlations and nonlinear behavior. This paper approaches the subject from a data-driven perspective by establishing dynamic optimization models for complex industries and reviewing the state-of-the-art time series forecasting models to cope with changing objective functions over time. Meanwhile, aiming at the problem of concept drift in time series, this paper summarizes new concept drift detection methods and introduces model update methods to solve this challenge. In addressing the problem of solving dynamic multi-objective optimization problems, the paper reviews recent developments in dynamic change detection and response methods while summarizing commonly used as well as the latest performance measures for dynamic multi-objective optimization problems. In conclusion, a discussion of the research progress and challenges in the relevant domains is undertaken, followed by the proposal of potential directions for future research. This review will help to deeply understand the importance and application prospects of data-driven dynamic operation optimization in complex industrial fields. |
|---|---|
| AbstractList | As industrial practices continue to evolve, complex process industries often exhibit characteristics such as multivariate correlation, dynamism, and nonlinearity, making traditional mechanism modeling inadequate in terms of addressing the intricacies of complex industrial problems. In recent years, with advancements in control theory and industrial practices, there has been a substantial increase in the volume of industrial data. Data-driven dynamic operation optimization techniques have emerged as effective solutions for handling complex industrial processes. By responding to dynamic environmental changes and utilizing advanced optimization algorithms, it is possible to achieve dynamic operational optimization in industrial processes, thereby reducing costs and emissions, improving efficiency, and increasing productivity. This correlates nicely with the goals set forth by conventional process operation optimization theories. Nowadays, this dynamic, data-driven strategy has shown significant potential in complex process industries characterized by multivariate correlations and nonlinear behavior. This paper approaches the subject from a data-driven perspective by establishing dynamic optimization models for complex industries and reviewing the state-of-the-art time series forecasting models to cope with changing objective functions over time. Meanwhile, aiming at the problem of concept drift in time series, this paper summarizes new concept drift detection methods and introduces model update methods to solve this challenge. In addressing the problem of solving dynamic multi-objective optimization problems, the paper reviews recent developments in dynamic change detection and response methods while summarizing commonly used as well as the latest performance measures for dynamic multi-objective optimization problems. In conclusion, a discussion of the research progress and challenges in the relevant domains is undertaken, followed by the proposal of potential directions for future research. This review will help to deeply understand the importance and application prospects of data-driven dynamic operation optimization in complex industrial fields. |
| Audience | Academic |
| Author | Li, Kun Zhao, Chenning Tian, Huixin Xie, Jueping |
| Author_xml | – sequence: 1 givenname: Huixin orcidid: 0000-0002-0261-9371 surname: Tian fullname: Tian, Huixin – sequence: 2 givenname: Chenning surname: Zhao fullname: Zhao, Chenning – sequence: 3 givenname: Jueping surname: Xie fullname: Xie, Jueping – sequence: 4 givenname: Kun surname: Li fullname: Li, Kun |
| BookMark | eNptUMtKAzEUDVLBWrvxCwbcCVPzmEySZW19FApdWNdDJpOUlHmZpGL9eqMjKGLuIvdxzn2cczBqu1YDcIngjBABb3qHMEQQcXECxhhjlgqG2OiXfwam3u9hfAIRTvMx2C6PrWysSja9djLYro1esI19H4LOJIuu6Wv9lqza6uCDs9ont9LrKollmSxlkOnS2VfdJk8httC74wU4NbL2evr9T8Dz_d128ZiuNw-rxXydKkKykLISktwQJaHklaIlKqmBWEGqEakqoaTUHDGZM54zWuXUaAVhWQqaSQMFM2QCroa-veteDtqHYt8dXBtHFlggzgTlnEbUbEDtZK0L25ourqmiVToeHiU0NubnjEOBc5xlkXA9EJTrvHfaFL2zjXTHAsHiU-niR-kIhn_AyoYv7eIUW_9H-QDtG4H4 |
| CitedBy_id | crossref_primary_10_1016_j_procbio_2025_05_003 crossref_primary_10_3390_a18010022 crossref_primary_10_1007_s11301_025_00527_3 |
| Cites_doi | 10.1002/ecj.12288 10.1016/j.asoc.2021.107937 10.1115/1.4052492 10.1109/TIE.2019.2931255 10.1007/s12613-022-2547-8 10.1109/JAS.2016.7510247 10.1007/s10994-022-06188-7 10.1177/09544062211048175 10.3390/en16114489 10.1049/cit2.12249 10.1016/j.asoc.2007.07.005 10.1109/CEC.2016.7744267 10.1016/j.asoc.2020.106592 10.1007/s12652-020-01986-0 10.1016/j.eswa.2023.121177 10.1016/j.asoc.2019.105988 10.1016/j.chemolab.2023.104878 10.1109/TASE.2019.2935314 10.1109/TNNLS.2021.3059784 10.1016/j.cjche.2020.01.017 10.1007/s10472-020-09718-y 10.1007/s00500-018-3033-0 10.1016/j.ins.2021.08.027 10.1109/TEVC.2020.2968743 10.1016/j.patcog.2023.109341 10.1016/j.ces.2022.117459 10.1016/j.compchemeng.2022.107844 10.3390/pr11041257 10.1002/cjce.24790 10.1109/TCYB.2015.2510698 10.1109/TNNLS.2020.3041684 10.1007/s00500-015-1820-4 10.1016/j.energy.2022.125536 10.1016/j.asoc.2020.107027 10.1016/j.asoc.2022.108532 10.1016/j.iot.2022.100528 10.1007/s10845-017-1319-1 10.1109/TEVC.2017.2771451 10.1515/auto-2020-0038 10.15244/pjoes/135825 10.1145/3205455.3205521 10.3390/met12010001 10.3390/met12091519 10.1016/j.geoen.2023.211721 10.1007/s10586-022-03568-5 10.3390/pr11061629 10.1111/jfpp.14565 10.1109/TEVC.2019.2912204 10.1007/s12293-009-0026-7 10.1109/ACCESS.2022.3212053 10.1109/CVPR.2019.01155 10.1016/j.asoc.2017.08.004 10.1016/j.matdes.2020.109201 10.1109/TEVC.2017.2669638 10.1007/s40747-017-0053-9 10.1002/er.8663 10.1080/03019233.2019.1568000 10.2533/chimia.2021.948 10.1016/S2095-3119(20)63249-X 10.1016/j.neucom.2018.12.084 10.1016/j.fbp.2020.12.009 10.1016/j.swevo.2018.05.001 10.1177/0143624419843647 10.1109/ICTAS.2018.8368762 10.1109/TCYB.2013.2245892 10.2355/isijinternational.ISIJINT-2021-598 10.1016/j.petrol.2021.109920 10.1109/TEVC.2019.2925358 10.1016/j.neucom.2022.01.039 10.1515/htmp-2022-0050 10.1016/j.ins.2017.12.058 10.1109/CEC.2011.5949865 10.3390/sym15040951 10.1016/j.swevo.2019.03.015 10.3390/pr11082404 10.24963/ijcai.2022/277 10.1109/TEVC.2022.3220747 10.1109/TCYB.2020.3017049 10.1016/j.neucom.2020.01.006 10.3390/s22155858 10.1007/s00500-014-1433-3 10.1109/ACCESS.2023.3276628 10.1007/s10489-023-04818-8 10.1016/j.knosys.2019.105227 10.1109/JAS.2019.1911804 10.1016/j.neucom.2019.11.111 10.1109/TEVC.2020.2985323 10.1109/TCYB.2020.2989465 10.1016/j.jclepro.2022.133406 10.3390/met12020172 10.1109/TII.2018.2871084 10.1109/TIE.2014.2301773 10.1016/j.ejor.2021.01.028 10.1016/j.jenvman.2021.114020 10.1109/TEVC.2004.831456 10.1109/TCYB.2019.2896021 10.1080/03019233.2022.2152597 10.1109/TASE.2022.3162653 10.1016/j.jngse.2020.103512 10.1007/s11047-016-9596-8 10.1016/j.asoc.2020.107004 10.1007/s12649-018-0473-9 10.1016/S1876-3804(22)60385-9 10.1016/j.asoc.2017.05.008 10.1115/1.4051944 10.3390/jmse9020181 10.1016/j.ins.2020.07.009 10.1002/sim.7890 10.3390/s23114997 10.1016/j.jprocont.2022.09.007 10.1186/s13634-021-00815-6 10.1016/j.swevo.2020.100749 10.1109/CEC45853.2021.9504877 10.1016/j.ces.2022.118372 10.1016/j.compchemeng.2023.108296 10.1016/S1006-706X(14)60028-5 10.1016/j.compchemeng.2022.107914 10.3390/rs15143601 10.1109/ACCESS.2019.2932883 10.3390/met11050747 10.1002/jctb.6517 10.1145/3319619.3326867 10.3390/pr11020613 10.1109/ACCESS.2022.3185607 10.1109/TEVC.2016.2574621 10.1016/j.ins.2020.08.101 10.1109/TCYB.2016.2602561 10.1016/j.energy.2021.120582 10.1016/j.psep.2022.11.062 10.1007/s11665-020-05345-0 10.1007/s10462-020-09939-x 10.1109/ISECS.2009.42 10.1016/j.ibiod.2020.104966 10.1007/s11063-022-11015-0 10.1007/s10489-022-04293-7 10.1109/TEVC.2019.2958075 10.1109/TCYB.2018.2842158 10.1109/SSCI44817.2019.9002815 10.1007/s13202-021-01302-2 10.1016/j.ins.2019.01.066 10.1109/CEC.2011.5949964 10.1016/j.swevo.2021.100930 10.1016/j.ins.2020.04.011 10.3390/met13010002 10.3390/app13084795 10.1007/s12010-019-03137-4 10.1016/j.swevo.2018.03.010 10.1016/j.ins.2021.11.023 10.1109/SSCI.2016.7849963 10.1115/1.4049467 10.3390/math9121367 10.1016/j.swevo.2020.100695 10.2355/isijinternational.ISIJINT-2021-251 10.1109/TEVC.2018.2869001 10.1109/TCYB.2020.2986600 10.1016/j.jksus.2021.101453 10.1109/TCYB.2020.3017017 10.1016/j.cie.2021.107854 10.1021/acs.energyfuels.0c03301 10.1109/CEC48606.2020.9185522 10.3390/math10234459 10.1016/j.swevo.2022.101108 10.1145/3459637.3482054 10.1609/aaai.v35i12.17325 10.1016/j.knosys.2017.11.016 10.1109/TASE.2021.3083670 10.1145/3357384.3358144 10.1088/1742-6596/1650/3/032133 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.3390/pr12010189 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Biological Science Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | A780926244 10_3390_pr12010189 |
| GeographicLocations | New York |
| GeographicLocations_xml | – name: New York |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c334t-7b036f3ca0a8dc5b1b5f02c05e13dd9caae817a678675d65fec00bb954af097f3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001151447100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9717 |
| IngestDate | Fri Jul 25 12:12:01 EDT 2025 Tue Nov 04 18:40:13 EST 2025 Sat Nov 29 07:11:33 EST 2025 Tue Nov 18 21:51:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-7b036f3ca0a8dc5b1b5f02c05e13dd9caae817a678675d65fec00bb954af097f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0261-9371 |
| OpenAccessLink | https://www.proquest.com/docview/2918795885?pq-origsite=%requestingapplication% |
| PQID | 2918795885 |
| PQPubID | 2032344 |
| ParticipantIDs | proquest_journals_2918795885 gale_infotracacademiconefile_A780926244 crossref_primary_10_3390_pr12010189 crossref_citationtrail_10_3390_pr12010189 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_94 Fay (ref_119) 2018; 37 ref_93 ref_136 ref_92 Wu (ref_96) 2021; 34 Jiang (ref_163) 2018; 435 ref_90 Shen (ref_84) 2020; 396 ref_98 ref_97 Wang (ref_40) 2022; 20 ref_95 He (ref_12) 2014; 21 Chen (ref_58) 2020; 19 Liu (ref_61) 2022; 209 Xie (ref_27) 2021; 197 Li (ref_169) 2019; 28 Sun (ref_157) 2021; 579 Jiang (ref_117) 2016; 47 Yang (ref_76) 2023; 33 Jiang (ref_114) 2016; 21 ref_128 Li (ref_7) 2020; 41 Wang (ref_9) 2017; 3 Zou (ref_161) 2017; 61 Chen (ref_112) 2020; 1650 ref_120 Goh (ref_181) 2008; 13 ref_121 Zhu (ref_46) 2020; 28 Cao (ref_10) 2022; 236 Zhang (ref_137) 2020; 24 Orta (ref_32) 2020; 47 Jiang (ref_147) 2022; 55 Shu (ref_129) 2023; 10 Tariq (ref_65) 2021; 11 ref_70 ref_151 ref_79 ref_155 Yang (ref_78) 2021; 143 Xu (ref_31) 2023; 30 Huang (ref_130) 2021; 113 Song (ref_131) 2020; 24 Gee (ref_186) 2016; 47 Li (ref_91) 2020; 387 Liang (ref_134) 2020; 52 ref_88 Pampara (ref_193) 2021; 66 Zou (ref_148) 2020; 59 Sala (ref_14) 2022; 53 Yan (ref_3) 2023; 101 Mamudu (ref_75) 2022; 165 Gong (ref_139) 2019; 24 Heiskanen (ref_22) 2022; 10 Carneiro (ref_33) 2021; 30 Wang (ref_156) 2020; 96 Rong (ref_159) 2019; 24 Liu (ref_13) 2019; 17 Zhong (ref_49) 2023; 53 Cui (ref_124) 2022; 119 Zhu (ref_55) 2021; 230 Maheshwari (ref_102) 2023; 137 Guzman (ref_73) 2020; 35 Wang (ref_143) 2019; 7 Jiang (ref_170) 2020; 51 Li (ref_24) 2021; 33 Miyata (ref_103) 2021; 104 Ding (ref_107) 2023; 55 Furrer (ref_59) 2021; 75 Aljundi (ref_109) 2021; 44 Jiang (ref_191) 2019; 50 Zhong (ref_2) 2019; 7 Guo (ref_100) 2022; 585 ref_116 Gatlan (ref_53) 2020; 44 (ref_82) 2022; 90 Chiu (ref_106) 2020; 33 ref_118 Guo (ref_162) 2019; 48 Ye (ref_51) 2022; 369 Wenyuan (ref_74) 2023; 50 ref_113 Xin (ref_17) 2022; 62 Bai (ref_50) 2023; 169 Chai (ref_63) 2022; 144 Mahdi (ref_108) 2020; 191 Can (ref_99) 2021; 54 Wang (ref_11) 2012; 19 Huang (ref_42) 2022; 164 Shen (ref_89) 2022; 480 Chen (ref_145) 2019; 24 Yu (ref_110) 2020; 67 ref_104 Sarkar (ref_83) 2024; 235 Li (ref_111) 2018; 15 Farina (ref_177) 2004; 8 Zhang (ref_180) 2008; 8 Zhou (ref_189) 2013; 44 Wang (ref_38) 2022; 33 Jiang (ref_80) 2023; 226 Tan (ref_71) 2022; 46 Ahmad (ref_69) 2020; 11 Zou (ref_160) 2021; 546 Sarker (ref_4) 2022; 19 Li (ref_47) 2021; 96 ref_16 Chen (ref_149) 2018; 43 Kordestani (ref_192) 2019; 18 Ikegwu (ref_5) 2022; 25 Zeng (ref_52) 2021; 2021 ref_25 Wang (ref_150) 2020; 56 Li (ref_153) 2019; 23 Song (ref_15) 2022; 62 ref_20 ref_29 Han (ref_60) 2023; 267 Liu (ref_141) 2020; 87 Chen (ref_23) 2022; 50 Cerqueira (ref_105) 2022; 112 Bouaswaig (ref_48) 2020; 68 Strani (ref_54) 2021; 126 Peng (ref_146) 2015; 19 Ahmad (ref_68) 2020; 190 Rong (ref_152) 2018; 49 Azzouz (ref_142) 2017; 21 Chen (ref_123) 2017; 22 Liang (ref_154) 2019; 485 Ma (ref_158) 2021; 295 Yilmaz (ref_81) 2019; 26 He (ref_28) 2022; 10 Yang (ref_140) 2019; 30 Yin (ref_72) 2021; 30 Zhang (ref_132) 2021; 101 Gee (ref_115) 2016; 47 Zou (ref_144) 2019; 44 Wu (ref_135) 2020; 529 Esche (ref_45) 2022; 251 Ahrari (ref_126) 2021; 101 Zhang (ref_66) 2022; 144 ref_173 ref_57 ref_172 ref_56 ref_175 Jin (ref_6) 2018; 23 ref_176 Raab (ref_101) 2020; 416 Birashk (ref_122) 2018; 141 ref_179 Wen (ref_86) 2023; 11 ref_178 Ma (ref_125) 2021; 545 Wang (ref_87) 2023; 176 Zhou (ref_18) 2022; 163 Wang (ref_85) 2023; 240 Koo (ref_182) 2010; 2 ref_67 ref_166 ref_165 Feng (ref_164) 2020; 52 ref_168 ref_171 Liu (ref_37) 2022; 41 Liu (ref_62) 2023; 262 Wang (ref_19) 2022; 302 Wang (ref_34) 2022; 19 Mamudu (ref_64) 2020; 83 Han (ref_8) 2022; 119 ref_35 Liu (ref_133) 2022; 73 Ruan (ref_138) 2017; 58 ref_30 Zhao (ref_26) 2022; 30 ref_39 Feng (ref_36) 2020; 70 Chen (ref_184) 2009; Volume 1 Jiang (ref_174) 2020; 51 ref_183 ref_185 Wang (ref_21) 2016; 4 ref_43 ref_188 Subasi (ref_77) 2020; 13 ref_187 ref_41 Yin (ref_1) 2014; 61 Jiang (ref_167) 2017; 22 ref_190 Bi (ref_127) 2022; 27 Zhou (ref_44) 2021; 33 |
| References_xml | – volume: 104 start-page: 87 year: 2021 ident: ref_103 article-title: Concept drift detection on stream data for revising DBSCAN publication-title: Electron. Commun. Jpn. doi: 10.1002/ecj.12288 – volume: 113 start-page: 107937 year: 2021 ident: ref_130 article-title: Adaptive multi-objective particle swarm optimization with multi-strategy based on energy conversion and explosive mutation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107937 – volume: 144 start-page: 033006 year: 2022 ident: ref_63 article-title: Production Characteristics, Evaluation, and Prediction of CO2 Water-Alternating-Gas Flooding in Tight Oil Reservoir publication-title: J. Energy Resour. Technol. doi: 10.1115/1.4052492 – volume: 67 start-page: 5081 year: 2020 ident: ref_110 article-title: Broad Convolutional Neural Network Based Industrial Process Fault Diagnosis with Incremental Learning Capability publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2931255 – volume: 30 start-page: 156 year: 2023 ident: ref_31 article-title: Prediction of mechanical properties for deep drawing steel by deep learning publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-022-2547-8 – volume: 4 start-page: 770 year: 2016 ident: ref_21 article-title: Ladle furnace temperature prediction model based on large-scale data with random forest publication-title: IEEE-CAA J. Autom. Sin. doi: 10.1109/JAS.2016.7510247 – ident: ref_178 – ident: ref_88 – ident: ref_155 – volume: 112 start-page: 4351 year: 2022 ident: ref_105 article-title: STUDD: A student–teacher method for unsupervised concept drift detection publication-title: Mach. Learn. doi: 10.1007/s10994-022-06188-7 – volume: 236 start-page: 4253 year: 2022 ident: ref_10 article-title: Predicting flow stress of Ni steel based on machine learning algorithm publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1177/09544062211048175 – ident: ref_79 doi: 10.3390/en16114489 – ident: ref_120 doi: 10.1049/cit2.12249 – volume: 8 start-page: 959 year: 2008 ident: ref_180 article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.07.005 – ident: ref_151 doi: 10.1109/CEC.2016.7744267 – ident: ref_172 – volume: 96 start-page: 106592 year: 2020 ident: ref_156 article-title: An ensemble learning based prediction strategy for dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106592 – volume: 13 start-page: 3555 year: 2020 ident: ref_77 article-title: Permeability prediction of petroleum reservoirs using stochastic gradient boosting regression publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-020-01986-0 – volume: 235 start-page: 121177 year: 2024 ident: ref_83 article-title: GATE: A guided approach for time series ensemble forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121177 – volume: 87 start-page: 105988 year: 2020 ident: ref_141 article-title: Cooperative particle swarm optimization with reference-point-based prediction strategy for dynamic multiobjective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105988 – volume: 240 start-page: 104878 year: 2023 ident: ref_85 article-title: A novel bidirectional DiPLS based LSTM algorithm and its application in industrial process time series prediction publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2023.104878 – volume: 47 start-page: 461 year: 2016 ident: ref_186 article-title: A benchmark test suite for dynamic evolutionary multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 17 start-page: 550 year: 2019 ident: ref_13 article-title: A stacked autoencoder with sparse Bayesian regression for end-point prediction problems in steelmaking process publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2935314 – volume: 33 start-page: 2080 year: 2022 ident: ref_38 article-title: A multi-objective evolutionary nonlinear ensemble learning with evolutionary feature selection for silicon prediction in blast furnace publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3059784 – volume: 28 start-page: 1832 year: 2020 ident: ref_46 article-title: Application of machine learning to process simulation of n-pentane cracking to produce ethylene and propene publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2020.01.017 – volume: 90 start-page: 679 year: 2022 ident: ref_82 article-title: An integrated bi-objective U-shaped assembly line balancing and parts feeding problem: Optimization model and exact solution method publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-020-09718-y – volume: 23 start-page: 3723 year: 2019 ident: ref_153 article-title: A predictive strategy based on special points for evolutionary dynamic multi-objective optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3033-0 – ident: ref_121 – volume: 579 start-page: 751 year: 2021 ident: ref_157 article-title: A novel quantile-guided dual prediction strategies for dynamic multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.08.027 – volume: 24 start-page: 882 year: 2020 ident: ref_131 article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2968743 – volume: 137 start-page: 109341 year: 2023 ident: ref_102 article-title: DCSNE: Density-based Clustering using Graph Shared Neighbors and Entropy publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109341 – volume: 251 start-page: 117459 year: 2022 ident: ref_45 article-title: Semi-supervised learning for data-driven soft-sensing of biological and chemical processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.117459 – volume: 163 start-page: 107844 year: 2022 ident: ref_18 article-title: Long-term prediction enhancement based on multi-output Gaussian process regression integrated with production plans for oxygen supply network publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107844 – ident: ref_57 doi: 10.3390/pr11041257 – volume: 101 start-page: 4506 year: 2023 ident: ref_3 article-title: Data-driven modelling methods in sintering process: Current research status and perspectives publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.24790 – volume: 47 start-page: 198 year: 2016 ident: ref_117 article-title: Evolutionary dynamic multiobjective optimization: Benchmarks and algorithm comparisons publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2510698 – volume: 33 start-page: 1299 year: 2020 ident: ref_106 article-title: A diversity framework for dealing with multiple types of concept drift based on clustering in the model space publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3041684 – ident: ref_179 – ident: ref_95 – volume: 21 start-page: 885 year: 2017 ident: ref_142 article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy publication-title: Soft Comput. doi: 10.1007/s00500-015-1820-4 – volume: 262 start-page: 125536 year: 2023 ident: ref_62 article-title: Novel production prediction model of gasoline production processes for energy saving and economic increasing based on AM-GRU integrating the UMAP algorithm publication-title: Energy doi: 10.1016/j.energy.2022.125536 – volume: 101 start-page: 107027 year: 2021 ident: ref_126 article-title: A heredity-based adaptive variation operator for reinitialization in dynamic multi-objective problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107027 – volume: 119 start-page: 108532 year: 2022 ident: ref_124 article-title: A multi-objective particle swarm optimization algorithm based on two-archive mechanism publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108532 – volume: 19 start-page: 100528 year: 2022 ident: ref_4 article-title: Smart City Data Science: Towards data-driven smart cities with open research issues publication-title: Internet Things doi: 10.1016/j.iot.2022.100528 – volume: 30 start-page: 2701 year: 2019 ident: ref_140 article-title: Constrained dynamic multi-objective evolutionary optimization for operational indices of beneficiation process publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1319-1 – volume: 22 start-page: 501 year: 2017 ident: ref_167 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2771451 – volume: 68 start-page: 582 year: 2020 ident: ref_48 article-title: Application of a grey-box modelling approach for the online monitoring of batch production in the chemical industry publication-title: at-Automatisierungstechnik doi: 10.1515/auto-2020-0038 – volume: 30 start-page: 5333 year: 2021 ident: ref_72 article-title: Characterization and Analysis of the COD Chemical Composition in the Polymer-Containing Oil Production Wastewater publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/135825 – ident: ref_190 doi: 10.1145/3205455.3205521 – ident: ref_30 doi: 10.3390/met12010001 – ident: ref_35 doi: 10.3390/met12091519 – volume: 226 start-page: 211721 year: 2023 ident: ref_80 article-title: A new method for dynamic predicting porosity and permeability of low permeability and tight reservoir under effective overburden pressure based on BP neural network publication-title: Geoenergy Sci. Eng. doi: 10.1016/j.geoen.2023.211721 – volume: 25 start-page: 3343 year: 2022 ident: ref_5 article-title: Big data analytics for data-driven industry: A review of data sources, tools, challenges, solutions, and research directions publication-title: Clust. Comput. doi: 10.1007/s10586-022-03568-5 – ident: ref_16 doi: 10.3390/pr11061629 – volume: 44 start-page: e14565 year: 2020 ident: ref_53 article-title: Capitalization of sea buckthorn waste by fermentation: Optimization of industrial process of obtaining a novel refreshing drink publication-title: J. Food Process. Preserv. doi: 10.1111/jfpp.14565 – ident: ref_188 – volume: 24 start-page: 142 year: 2019 ident: ref_139 article-title: A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2912204 – volume: 70 start-page: 1 year: 2020 ident: ref_36 article-title: Multichannel diffusion graph convolutional network for the prediction of endpoint composition in the converter steelmaking process publication-title: IEEE Trans. Instrum. Meas. – volume: 2 start-page: 87 year: 2010 ident: ref_182 article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment publication-title: Memetic Comput. doi: 10.1007/s12293-009-0026-7 – volume: 10 start-page: 106534 year: 2022 ident: ref_28 article-title: Prediction of Mechanical Properties of Hot Rolled Strips with Generalized RBFNN and Composite Expectile Regression publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3212053 – ident: ref_173 doi: 10.1109/CVPR.2019.01155 – volume: 61 start-page: 806 year: 2017 ident: ref_161 article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.004 – volume: 197 start-page: 109201 year: 2021 ident: ref_27 article-title: Online prediction of mechanical properties of hot rolled steel plate using machine learning publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109201 – volume: 22 start-page: 157 year: 2017 ident: ref_123 article-title: Dynamic multiobjectives optimization with a changing number of objectives publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2669638 – volume: 3 start-page: 233 year: 2017 ident: ref_9 article-title: A mini-review on preference modeling and articulation in multi-objective optimization: Current status and challenges publication-title: Complex Intell. Syst. doi: 10.1007/s40747-017-0053-9 – volume: 46 start-page: 20928 year: 2022 ident: ref_71 article-title: Analysis of groundwater pollution in a petroleum refinery energy contributed in rock mechanics through ANFIS-AHP publication-title: Int. J. Energy Res. doi: 10.1002/er.8663 – volume: 47 start-page: 596 year: 2020 ident: ref_32 article-title: Prediction of mechanical properties of cold rolled and continuous annealed steel grades via analytical model integrated neural networks publication-title: Ironmak. Steelmak. doi: 10.1080/03019233.2019.1568000 – volume: 75 start-page: 948 year: 2021 ident: ref_59 article-title: New Scale-up Technologies for Hydrogenation Reactions in Multipurpose Pharmaceutical Production Plants publication-title: Chimia doi: 10.2533/chimia.2021.948 – volume: 19 start-page: 2340 year: 2020 ident: ref_58 article-title: An optimized industry processing technology of peanut tofu and the novel prediction model for suitable peanut varieties publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(20)63249-X – volume: 396 start-page: 302 year: 2020 ident: ref_84 article-title: A novel time series forecasting model with deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.084 – volume: 126 start-page: 113 year: 2021 ident: ref_54 article-title: Study of Galactooligosaccharides production from dairy waste by FTIR and chemometrics as Process Analytical Technology publication-title: Food Bioprod. Process. doi: 10.1016/j.fbp.2020.12.009 – volume: 43 start-page: 147 year: 2018 ident: ref_149 article-title: A hybrid fuzzy inference prediction strategy for dynamic multi-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.05.001 – volume: 41 start-page: 108 year: 2020 ident: ref_7 article-title: A state of the art review on the prediction of building energy consumption using data-driven technique and evolutionary algorithms publication-title: Build. Serv. Eng. Res. Technol. doi: 10.1177/0143624419843647 – ident: ref_136 doi: 10.1109/ICTAS.2018.8368762 – volume: 44 start-page: 40 year: 2013 ident: ref_189 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2245892 – volume: 33 start-page: 2789 year: 2021 ident: ref_44 article-title: Hybrid Modeling Method for Soft Sensing of Key Process Parameters in Chemical Industry publication-title: Sens. Mater. – volume: 62 start-page: 1639 year: 2022 ident: ref_15 article-title: Intelligent Case-based Hybrid Model for Process and Endpoint Prediction of Converter via Data Mining Technique publication-title: ISIJ Int. doi: 10.2355/isijinternational.ISIJINT-2021-598 – volume: 209 start-page: 109920 year: 2022 ident: ref_61 article-title: An echo state network with attention mechanism for production prediction in reservoirs publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109920 – volume: 24 start-page: 290 year: 2019 ident: ref_159 article-title: A multimodel prediction method for dynamic multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2925358 – volume: 480 start-page: 131 year: 2022 ident: ref_89 article-title: TCCT: Tightly-coupled convolutional transformer on time series forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.039 – volume: 41 start-page: 505 year: 2022 ident: ref_37 article-title: Prediction model of BOF end-point P and O contents based on PCA–GA–BP neural network publication-title: High Temp. Mater. Process. doi: 10.1515/htmp-2022-0050 – volume: 435 start-page: 203 year: 2018 ident: ref_163 article-title: Dynamic multi-objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.12.058 – ident: ref_185 doi: 10.1109/CEC.2011.5949865 – ident: ref_94 doi: 10.3390/sym15040951 – volume: 48 start-page: 156 year: 2019 ident: ref_162 article-title: Ensemble prediction-based dynamic robust multi-objective optimization methods publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.03.015 – ident: ref_20 doi: 10.3390/pr11082404 – ident: ref_98 doi: 10.24963/ijcai.2022/277 – volume: 27 start-page: 5 year: 2022 ident: ref_127 article-title: A survey on evolutionary computation for computer vision and image analysis: Past, present, and future trends publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3220747 – volume: 51 start-page: 4968 year: 2020 ident: ref_174 article-title: Individual-based transfer learning for dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3017049 – volume: 387 start-page: 63 year: 2020 ident: ref_91 article-title: Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.006 – ident: ref_93 doi: 10.3390/s22155858 – volume: 19 start-page: 2633 year: 2015 ident: ref_146 article-title: Novel prediction and memory strategies for dynamic multiobjective optimization publication-title: Soft Comput. doi: 10.1007/s00500-014-1433-3 – volume: 11 start-page: 48322 year: 2023 ident: ref_86 article-title: Time series prediction based on LSTM-attention-LSTM model publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3276628 – volume: 53 start-page: 25752 year: 2023 ident: ref_49 article-title: Data-driven width spread prediction model improvement and parameters optimization in hot strip rolling process publication-title: Appl. Intell. doi: 10.1007/s10489-023-04818-8 – volume: 191 start-page: 105227 year: 2020 ident: ref_108 article-title: Diversity measure as a new drift detection method in data streaming publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.105227 – volume: 7 start-page: 330 year: 2019 ident: ref_2 article-title: Data-driven based fault prognosis for industrial systems: A concise overview publication-title: IEEE-CAA J. Autom. Sin. doi: 10.1109/JAS.2019.1911804 – volume: 416 start-page: 340 year: 2020 ident: ref_101 article-title: Reactive soft prototype computing for concept drift streams publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.111 – volume: 24 start-page: 974 year: 2020 ident: ref_137 article-title: Multiobjective evolution strategy for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2985323 – volume: 51 start-page: 3417 year: 2020 ident: ref_170 article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2989465 – volume: 369 start-page: 133406 year: 2022 ident: ref_51 article-title: Using machine learning methods to predict VOC emissions in chemical production with hourly process parameters publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133406 – ident: ref_29 doi: 10.3390/met12020172 – volume: 15 start-page: 1341 year: 2018 ident: ref_111 article-title: An incremental deep convolutional computation model for feature learning on industrial big data publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2871084 – volume: 61 start-page: 6418 year: 2014 ident: ref_1 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2301773 – volume: 295 start-page: 965 year: 2021 ident: ref_158 article-title: Feature information prediction algorithm for dynamic multi-objective optimization problems publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2021.01.028 – volume: 302 start-page: 114020 year: 2022 ident: ref_19 article-title: Model construction and application for effluent prediction in wastewater treatment plant: Data processing method optimization and process parameters integration publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.114020 – volume: 8 start-page: 425 year: 2004 ident: ref_177 article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.831456 – volume: 50 start-page: 2814 year: 2019 ident: ref_191 article-title: A scalable test suite for continuous dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2896021 – volume: 19 start-page: 1 year: 2012 ident: ref_11 article-title: Final temperature prediction model of molten steel in RH-TOP refining process for IF steel production publication-title: J. Iron Steel Res. Int. – volume: 50 start-page: 671 year: 2022 ident: ref_23 article-title: Mechanical properties prediction of tire cord steel via multi-stage neural network with time-series data publication-title: Ironmak. Steelmak. doi: 10.1080/03019233.2022.2152597 – ident: ref_187 – volume: 20 start-page: 541 year: 2022 ident: ref_40 article-title: A dynamic scheduling framework for byproduct gas system combining expert knowledge and production plan publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3162653 – ident: ref_97 – volume: 83 start-page: 103512 year: 2020 ident: ref_64 article-title: A hybrid intelligent model for reservoir production and associated dynamic risks publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103512 – volume: 18 start-page: 705 year: 2019 ident: ref_192 article-title: New measures for comparing optimization algorithms on dynamic optimization problems publication-title: Nat. Comput. doi: 10.1007/s11047-016-9596-8 – volume: 101 start-page: 107004 year: 2021 ident: ref_132 article-title: Multi-objective evolution strategy for multimodal multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107004 – volume: 11 start-page: 861 year: 2020 ident: ref_69 article-title: Process evaluation for petroleum wastewater co-digestion with rye grass to enhance methane production publication-title: Waste Biomass Valorization doi: 10.1007/s12649-018-0473-9 – volume: 50 start-page: 255 year: 2023 ident: ref_74 article-title: Theoretical and technical progress in exploration practice of the deep-water large oil fields, Santos Basin, Brazil publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(22)60385-9 – volume: 58 start-page: 631 year: 2017 ident: ref_138 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.008 – volume: 144 start-page: 063005 year: 2022 ident: ref_66 article-title: Modeling and analysis of sustained annular pressure and gas accumulation caused by tubing integrity failure in the production process of deep natural gas wells publication-title: J. Energy Resour. Technol. doi: 10.1115/1.4051944 – ident: ref_67 doi: 10.3390/jmse9020181 – volume: 545 start-page: 1 year: 2021 ident: ref_125 article-title: Multiregional co-evolutionary algorithm for dynamic multiobjective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.07.009 – volume: 33 start-page: 100469 year: 2023 ident: ref_76 article-title: Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data publication-title: J. Ind. Inf. Integr. – volume: 37 start-page: 3991 year: 2018 ident: ref_119 article-title: Confidence intervals of the Mann-Whitney parameter that are compatible with the Wilcoxon-Mann-Whitney test publication-title: Stat. Med. doi: 10.1002/sim.7890 – ident: ref_56 doi: 10.3390/s23114997 – volume: 119 start-page: 44 year: 2022 ident: ref_8 article-title: Adaptive multi-task optimization strategy for wastewater treatment process publication-title: J. Process Control doi: 10.1016/j.jprocont.2022.09.007 – volume: 2021 start-page: 106 year: 2021 ident: ref_52 article-title: Noise prediction of chemical industry park based on multi-station Prophet and multivariate LSTM fitting model publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-021-00815-6 – volume: 10 start-page: 446 year: 2023 ident: ref_129 article-title: Multi-objective particle swarm optimization with dynamic population size publication-title: J. Comput. Des. Eng. – volume: 59 start-page: 100749 year: 2020 ident: ref_148 article-title: A new prediction strategy combining TS fuzzy nonlinear regression prediction and multi-step prediction for dynamic multi-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100749 – ident: ref_171 doi: 10.1109/CEC45853.2021.9504877 – volume: 267 start-page: 118372 year: 2023 ident: ref_60 article-title: Novel long short-term memory neural network considering virtual data generation for production prediction and energy structure optimization of ethylene production processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.118372 – volume: 176 start-page: 108296 year: 2023 ident: ref_87 article-title: Attention-mechanism based DiPLS-LSTM and its application in industrial process time series big data prediction publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108296 – volume: 21 start-page: 181 year: 2014 ident: ref_12 article-title: Hybrid model of molten steel temperature prediction based on ladle heat status and artificial neural network publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(14)60028-5 – volume: 165 start-page: 107914 year: 2022 ident: ref_75 article-title: Logic-based data-driven operational risk model for augmented downhole petroleum production systems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107914 – volume: 28 start-page: 2509 year: 2019 ident: ref_169 article-title: Dynamic Multi-objective Optimization Algorithm based on Transfer Learning for Environmental Protection publication-title: Ekoloji Derg. – ident: ref_43 doi: 10.3390/rs15143601 – volume: 7 start-page: 115997 year: 2019 ident: ref_143 article-title: Dynamic multiobjective squirrel search algorithm based on decomposition with evolutionary direction prediction and bidirectional memory populations publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932883 – ident: ref_165 – ident: ref_25 doi: 10.3390/met11050747 – volume: 96 start-page: 125 year: 2021 ident: ref_47 article-title: Application of mechanistic modelling and machine learning for cream cheese fermentation pH prediction publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.6517 – ident: ref_116 doi: 10.1145/3319619.3326867 – ident: ref_166 doi: 10.3390/pr11020613 – volume: 10 start-page: 68099 year: 2022 ident: ref_22 article-title: Explainable Steel Quality Prediction System Based on Gradient Boosting Decision Trees publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3185607 – volume: 30 start-page: 293 year: 2022 ident: ref_26 article-title: Prediction of mechanical properties of cold rolled strip based on improved extreme random tree publication-title: J. Iron Steel Res. Int. – volume: 21 start-page: 65 year: 2016 ident: ref_114 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2574621 – volume: 546 start-page: 815 year: 2021 ident: ref_160 article-title: A reinforcement learning approach for dynamic multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.101 – volume: 47 start-page: 4223 year: 2016 ident: ref_115 article-title: Solving multiobjective optimization problems in unknown dynamic environments: An inverse modeling approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2602561 – volume: 230 start-page: 120582 year: 2021 ident: ref_55 article-title: Evaluating and predicting energy efficiency using slow feature partial least squares method for large-scale chemical plants publication-title: Energy doi: 10.1016/j.energy.2021.120582 – volume: 169 start-page: 937 year: 2023 ident: ref_50 article-title: A novel transformer-based multi-variable multi-step prediction method for chemical process fault prognosis publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.11.062 – volume: 30 start-page: 434 year: 2021 ident: ref_33 article-title: Prediction of Mechanical Properties of Steel Tubes Using a Machine Learning Approach publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-020-05345-0 – volume: 54 start-page: 3725 year: 2021 ident: ref_99 article-title: Concept learning using one-class classifiers for implicit drift detection in evolving data streams publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09939-x – volume: Volume 1 start-page: 484 year: 2009 ident: ref_184 article-title: Using Diversity as an Additional-Objective in Dynamic Multi-Objective Optimization Algorithms publication-title: Proceedings of the 2009 Second International Symposium on Electronic Commerce and Security doi: 10.1109/ISECS.2009.42 – ident: ref_70 doi: 10.1016/j.ibiod.2020.104966 – ident: ref_118 – volume: 55 start-page: 2081 year: 2023 ident: ref_107 article-title: Concept Drift Adaptation for Time Series Anomaly Detection via Transformer publication-title: Neural Process. Lett. doi: 10.1007/s11063-022-11015-0 – volume: 53 start-page: 15163 year: 2022 ident: ref_14 article-title: Hybrid static-sensory data modeling for prediction tasks in basic oxygen furnace process publication-title: Appl. Intell. doi: 10.1007/s10489-022-04293-7 – volume: 24 start-page: 792 year: 2019 ident: ref_145 article-title: A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2958075 – volume: 49 start-page: 3362 year: 2018 ident: ref_152 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2842158 – ident: ref_176 doi: 10.1109/SSCI44817.2019.9002815 – volume: 11 start-page: 4339 year: 2021 ident: ref_65 article-title: A systematic review of data science and machine learning applications to the oil and gas industry publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-021-01302-2 – volume: 55 start-page: 1 year: 2022 ident: ref_147 article-title: Evolutionary dynamic multi-objective optimisation: A survey publication-title: ACM Comput. Surv. – volume: 485 start-page: 200 year: 2019 ident: ref_154 article-title: Hybrid of memory and prediction strategies for dynamic multiobjective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.01.066 – ident: ref_183 doi: 10.1109/CEC.2011.5949964 – volume: 66 start-page: 100930 year: 2021 ident: ref_193 article-title: Performance analysis of dynamic optimization algorithms using relative error distance publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100930 – volume: 529 start-page: 116 year: 2020 ident: ref_135 article-title: A new dynamic strategy for dynamic multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.04.011 – ident: ref_39 doi: 10.3390/met13010002 – ident: ref_175 doi: 10.3390/app13084795 – volume: 34 start-page: 22419 year: 2021 ident: ref_96 article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 190 start-page: 851 year: 2020 ident: ref_68 article-title: Bioprocess Evaluation of Petroleum Wastewater Treatment with Zinc Oxide Nanoparticle for the Production of Methane Gas: Process Assessment and Modelling publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-019-03137-4 – volume: 44 start-page: 247 year: 2019 ident: ref_144 article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.03.010 – volume: 585 start-page: 1 year: 2022 ident: ref_100 article-title: Concept drift type identification based on multi-sliding windows publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.11.023 – ident: ref_113 doi: 10.1109/SSCI.2016.7849963 – volume: 143 start-page: 54502 year: 2021 ident: ref_78 article-title: Physics-Based Rate of the Penetration Prediction Model for Fixed Cutter Drill Bits publication-title: J. Energy Resour. Technol. doi: 10.1115/1.4049467 – ident: ref_41 doi: 10.3390/math9121367 – volume: 56 start-page: 100695 year: 2020 ident: ref_150 article-title: A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100695 – volume: 13 start-page: 103 year: 2008 ident: ref_181 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 26 start-page: 625 year: 2019 ident: ref_81 article-title: Multi-Objective Scheduling Problem for Hybrid Manufacturing Systems with Walking Workers publication-title: Int. J. Ind. Eng. – volume: 62 start-page: 532 year: 2022 ident: ref_17 article-title: A hybrid modeling method based on expert control and deep neural network for temperature prediction of molten steel in LF publication-title: ISIJ Int. doi: 10.2355/isijinternational.ISIJINT-2021-251 – volume: 23 start-page: 442 year: 2018 ident: ref_6 article-title: Data-Driven Evolutionary Optimization: An Overview and Case Studies publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2869001 – volume: 52 start-page: 1602 year: 2020 ident: ref_134 article-title: A dynamic multiobjective evolutionary algorithm based on decision variable classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2986600 – volume: 33 start-page: 101453 year: 2021 ident: ref_24 article-title: Hybrid optimization assisted deep convolutional neural network for hardening prediction in steel publication-title: J. King Saud Univ. Sci. doi: 10.1016/j.jksus.2021.101453 – volume: 52 start-page: 2649 year: 2020 ident: ref_164 article-title: Solving dynamic multiobjective problem via autoencoding evolutionary search publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3017017 – volume: 164 start-page: 107854 year: 2022 ident: ref_42 article-title: Modeling and predicting inventory variation for multistage steel production processes based on a new spatio-temporal Markov model publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107854 – volume: 35 start-page: 408 year: 2020 ident: ref_73 article-title: Evaluation of asphaltene stability of a wide range of Mexican crude oils publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c03301 – ident: ref_168 doi: 10.1109/CEC48606.2020.9185522 – ident: ref_128 doi: 10.3390/math10234459 – volume: 73 start-page: 101108 year: 2022 ident: ref_133 article-title: A multiobjective evolutionary algorithm based on decision variable classification for many-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101108 – ident: ref_90 doi: 10.1145/3459637.3482054 – ident: ref_92 doi: 10.1609/aaai.v35i12.17325 – volume: 44 start-page: 3366 year: 2021 ident: ref_109 article-title: A continual learning survey: Defying forgetting in classification tasks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 141 start-page: 148 year: 2018 ident: ref_122 article-title: Cellular teaching-learning-based optimization approach for dynamic multi-objective problems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.11.016 – volume: 19 start-page: 2397 year: 2022 ident: ref_34 article-title: Strip hardness prediction in continuous annealing using multi-objective sparse nonlinear ensemble learning with evolutionary feature selection publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2021.3083670 – ident: ref_104 doi: 10.1145/3357384.3358144 – volume: 1650 start-page: 032133 year: 2020 ident: ref_112 article-title: Genetic algorithm to improve Back Propagation Neural Network ship track prediction publication-title: J. Phys. Conf. Ser. IOP Publ. doi: 10.1088/1742-6596/1650/3/032133 |
| SSID | ssj0000913856 |
| Score | 2.2764404 |
| SecondaryResourceType | review_article |
| Snippet | As industrial practices continue to evolve, complex process industries often exhibit characteristics such as multivariate correlation, dynamism, and... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 189 |
| SubjectTerms | Air quality management Algorithms Artificial intelligence Big Data Control theory Correlation Decision making Drift Efficiency Energy consumption Environmental changes Forecasts and trends Industrial equipment Industrial production Mathematical optimization Multiple objective analysis Multivariate analysis Nonlinear systems Nonlinearity Objectives Optimization Optimization models Research methodology State-of-the-art reviews Time series |
| Title | Dynamic Operation Optimization of Complex Industries Based on a Data-Driven Strategy |
| URI | https://www.proquest.com/docview/2918795885 |
| Volume | 12 |
| WOSCitedRecordID | wos001151447100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M7P dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSxtBGP9Q40EPrfGBsTYMVLAe1uxjJjt7KqZJsIhxKQp6WuYJgiYxWUt76d_eb3Yn6iH04mUZmGEY9nvONzO_H8CRjU1ENWZuklsZoCXyQGJoCDTPrElpFzNoWpFNpKMRv73Ncl9wm_trlQufWDlqPVGuRt6Js4oXm3P2bfoUONYod7rqKTRWoeFQEuLq6l7-UmNxmJecdWtU0gR3953pLHLHv5FjdX8Th5Z74yrEDD--d3Fb8MEnl-Ss1oYmrJjxNmy-gRzchqY35jn56hGnT3bgul_z0pOrqak1Alvl_aN_o0kmlji_8WB-kwXVB07QwwCoCXYL0helCPoz5zmJx7v9sws3w8H19_PA0y0EKkloGaQSo5lNlAgF14rJSDIbxipkJkq0zpQQhkepQHHiJkN3mTUqDKXMGBU2zFKb7MHaeDI2-0BUbGOdYDbFJKWSaolJI45UiWWKstS04GTx8wvlscgdJcZDgXsSJ6jiVVAt-PIydlojcCwddexkWDizxJmU8K8LcD0O4Ko4S3nooBEpbcHhQoaFt9d58SrAg_93f4KNGNOaughzCGvl7Nl8hnX1q7yfz9rQ6A1G-c82rF70TtuVMrrv3wH25D8u87t_oFnp1g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9swGH7FyqTBYQMGonwMS9u0cYhIYrtxDhNi6xAV0PXQSeyU-VOqBG1pw0b_1H7jXjcOcEC7cdgtki3LiZ887-uv5wF451KbMIOZmxJORfgnikhhaIiMyJ3NWAszaDY3m8i6XXFxkfcW4E99F8Yfq6w5cU7UZqT9GvlBms99sYXgh-PryLtG-d3V2kKjgsWpnf3GKdv0U6eN4_s-TY-_9r-cRMFVINKUsjLKFJK2o1rGUhjNVaK4i1Mdc5tQY3ItpRVJJrHXmEubFndWx7FSOWfSxXnmKLb7DBaZB3sDFnud896Pu1Udr7IpeKvSQaU0jw_Gk8RvOCfeR_5B5Huc_-dB7fjV__Y5VuBlSJ_JUYX3VViwwzVYfiCquAarga6m5GPQ1N5_Df32bCivBpp8G9sK8_hUDq7CLVQycsQz46W9JbWZCTbwGUO8IVgsSVuWMmpPfGwgQdF3tg7fn-RdN6AxHA3tJhCdutRQzBe5YkwxozAtxpqaOq4Zz2wT9uvBLnRQW_emH5cFzro8MIp7YDTh7V3dcaUx8mitDx4zhScebEnLcH8C--MlvIqjTMRe_JGxJuzUmCkCI02Le8Bs_bt4D16c9M_PirNO93QbllJM4qolpx1olJMbuwvP9a9yMJ28CeAn8POpAfYXoC5Eww |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKUKwAFpADRQYCRB0YcWeRzxeIFQwEVEhZFGkdmXmKUVqkzQxj_waX8edeNx2UbHrgp2lGY08njP3Hs_jHICXnrqMW2RuWnqd4EyUicbUkFhZeJfzPjJovjabyEcjeXRUjDfgT3sXJhyrbGPiOlDbmQlr5D1arH2xpRQ9H49FjMvBu_lZEhykwk5ra6fRQOTArX7h79vy7bDEsX5F6eDj4YdPSXQYSAxjvE5yjQHcM6NSJa0ROtPCp9SkwmXM2sIo5WSWK-wB8mrbF96ZNNW6EFz5tMg9w3ZvwCZSck47sDkefhkfn6_wBMVNKfqNJipjRdqbL7Kw-ZwFT_lLWfDqXLBOcIN7__OnuQ93I60m-8082IINN92GO5fEFrdhK4axJXkTtbb3HsBhuZqq04khX-eumQv4VE9O4-1UMvMkRMwT95u0JifYwHtM_ZZgsSKlqlVSLkLOIFHpd_UQvl1LXx9BZzqbuh0ghnpqGfJIoTnX3Gqky1jTMC8MF7nrwl478JWJKuzBDOSkwr-xAJLqAiRdeHFed95oj1xZ63XATxUCErZkVLxXge8TpL2q_VymQRSS8y7stvipYqRaVhfgefzv4udwC1FVfR6ODp7AbYrcrlmJ2oVOvfjhnsJN87OeLBfP4jwg8P268fUX_7VNgw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Operation+Optimization+of+Complex+Industries+Based+on+a+Data-Driven+Strategy&rft.jtitle=Processes&rft.au=Tian%2C+Huixin&rft.au=Zhao%2C+Chenning&rft.au=Xie%2C+Jueping&rft.au=Li%2C+Kun&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=12&rft.issue=1&rft.spage=189&rft_id=info:doi/10.3390%2Fpr12010189&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |