Dynamic Operation Optimization of Complex Industries Based on a Data-Driven Strategy

As industrial practices continue to evolve, complex process industries often exhibit characteristics such as multivariate correlation, dynamism, and nonlinearity, making traditional mechanism modeling inadequate in terms of addressing the intricacies of complex industrial problems. In recent years,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Processes Ročník 12; číslo 1; s. 189
Hlavní autoři: Tian, Huixin, Zhao, Chenning, Xie, Jueping, Li, Kun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2024
Témata:
ISSN:2227-9717, 2227-9717
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As industrial practices continue to evolve, complex process industries often exhibit characteristics such as multivariate correlation, dynamism, and nonlinearity, making traditional mechanism modeling inadequate in terms of addressing the intricacies of complex industrial problems. In recent years, with advancements in control theory and industrial practices, there has been a substantial increase in the volume of industrial data. Data-driven dynamic operation optimization techniques have emerged as effective solutions for handling complex industrial processes. By responding to dynamic environmental changes and utilizing advanced optimization algorithms, it is possible to achieve dynamic operational optimization in industrial processes, thereby reducing costs and emissions, improving efficiency, and increasing productivity. This correlates nicely with the goals set forth by conventional process operation optimization theories. Nowadays, this dynamic, data-driven strategy has shown significant potential in complex process industries characterized by multivariate correlations and nonlinear behavior. This paper approaches the subject from a data-driven perspective by establishing dynamic optimization models for complex industries and reviewing the state-of-the-art time series forecasting models to cope with changing objective functions over time. Meanwhile, aiming at the problem of concept drift in time series, this paper summarizes new concept drift detection methods and introduces model update methods to solve this challenge. In addressing the problem of solving dynamic multi-objective optimization problems, the paper reviews recent developments in dynamic change detection and response methods while summarizing commonly used as well as the latest performance measures for dynamic multi-objective optimization problems. In conclusion, a discussion of the research progress and challenges in the relevant domains is undertaken, followed by the proposal of potential directions for future research. This review will help to deeply understand the importance and application prospects of data-driven dynamic operation optimization in complex industrial fields.
AbstractList As industrial practices continue to evolve, complex process industries often exhibit characteristics such as multivariate correlation, dynamism, and nonlinearity, making traditional mechanism modeling inadequate in terms of addressing the intricacies of complex industrial problems. In recent years, with advancements in control theory and industrial practices, there has been a substantial increase in the volume of industrial data. Data-driven dynamic operation optimization techniques have emerged as effective solutions for handling complex industrial processes. By responding to dynamic environmental changes and utilizing advanced optimization algorithms, it is possible to achieve dynamic operational optimization in industrial processes, thereby reducing costs and emissions, improving efficiency, and increasing productivity. This correlates nicely with the goals set forth by conventional process operation optimization theories. Nowadays, this dynamic, data-driven strategy has shown significant potential in complex process industries characterized by multivariate correlations and nonlinear behavior. This paper approaches the subject from a data-driven perspective by establishing dynamic optimization models for complex industries and reviewing the state-of-the-art time series forecasting models to cope with changing objective functions over time. Meanwhile, aiming at the problem of concept drift in time series, this paper summarizes new concept drift detection methods and introduces model update methods to solve this challenge. In addressing the problem of solving dynamic multi-objective optimization problems, the paper reviews recent developments in dynamic change detection and response methods while summarizing commonly used as well as the latest performance measures for dynamic multi-objective optimization problems. In conclusion, a discussion of the research progress and challenges in the relevant domains is undertaken, followed by the proposal of potential directions for future research. This review will help to deeply understand the importance and application prospects of data-driven dynamic operation optimization in complex industrial fields.
Audience Academic
Author Li, Kun
Zhao, Chenning
Tian, Huixin
Xie, Jueping
Author_xml – sequence: 1
  givenname: Huixin
  orcidid: 0000-0002-0261-9371
  surname: Tian
  fullname: Tian, Huixin
– sequence: 2
  givenname: Chenning
  surname: Zhao
  fullname: Zhao, Chenning
– sequence: 3
  givenname: Jueping
  surname: Xie
  fullname: Xie, Jueping
– sequence: 4
  givenname: Kun
  surname: Li
  fullname: Li, Kun
BookMark eNptUMtKAzEUDVLBWrvxCwbcCVPzmEySZW19FApdWNdDJpOUlHmZpGL9eqMjKGLuIvdxzn2cczBqu1YDcIngjBABb3qHMEQQcXECxhhjlgqG2OiXfwam3u9hfAIRTvMx2C6PrWysSja9djLYro1esI19H4LOJIuu6Wv9lqza6uCDs9ont9LrKollmSxlkOnS2VfdJk8httC74wU4NbL2evr9T8Dz_d128ZiuNw-rxXydKkKykLISktwQJaHklaIlKqmBWEGqEakqoaTUHDGZM54zWuXUaAVhWQqaSQMFM2QCroa-veteDtqHYt8dXBtHFlggzgTlnEbUbEDtZK0L25ourqmiVToeHiU0NubnjEOBc5xlkXA9EJTrvHfaFL2zjXTHAsHiU-niR-kIhn_AyoYv7eIUW_9H-QDtG4H4
CitedBy_id crossref_primary_10_1016_j_procbio_2025_05_003
crossref_primary_10_3390_a18010022
crossref_primary_10_1007_s11301_025_00527_3
Cites_doi 10.1002/ecj.12288
10.1016/j.asoc.2021.107937
10.1115/1.4052492
10.1109/TIE.2019.2931255
10.1007/s12613-022-2547-8
10.1109/JAS.2016.7510247
10.1007/s10994-022-06188-7
10.1177/09544062211048175
10.3390/en16114489
10.1049/cit2.12249
10.1016/j.asoc.2007.07.005
10.1109/CEC.2016.7744267
10.1016/j.asoc.2020.106592
10.1007/s12652-020-01986-0
10.1016/j.eswa.2023.121177
10.1016/j.asoc.2019.105988
10.1016/j.chemolab.2023.104878
10.1109/TASE.2019.2935314
10.1109/TNNLS.2021.3059784
10.1016/j.cjche.2020.01.017
10.1007/s10472-020-09718-y
10.1007/s00500-018-3033-0
10.1016/j.ins.2021.08.027
10.1109/TEVC.2020.2968743
10.1016/j.patcog.2023.109341
10.1016/j.ces.2022.117459
10.1016/j.compchemeng.2022.107844
10.3390/pr11041257
10.1002/cjce.24790
10.1109/TCYB.2015.2510698
10.1109/TNNLS.2020.3041684
10.1007/s00500-015-1820-4
10.1016/j.energy.2022.125536
10.1016/j.asoc.2020.107027
10.1016/j.asoc.2022.108532
10.1016/j.iot.2022.100528
10.1007/s10845-017-1319-1
10.1109/TEVC.2017.2771451
10.1515/auto-2020-0038
10.15244/pjoes/135825
10.1145/3205455.3205521
10.3390/met12010001
10.3390/met12091519
10.1016/j.geoen.2023.211721
10.1007/s10586-022-03568-5
10.3390/pr11061629
10.1111/jfpp.14565
10.1109/TEVC.2019.2912204
10.1007/s12293-009-0026-7
10.1109/ACCESS.2022.3212053
10.1109/CVPR.2019.01155
10.1016/j.asoc.2017.08.004
10.1016/j.matdes.2020.109201
10.1109/TEVC.2017.2669638
10.1007/s40747-017-0053-9
10.1002/er.8663
10.1080/03019233.2019.1568000
10.2533/chimia.2021.948
10.1016/S2095-3119(20)63249-X
10.1016/j.neucom.2018.12.084
10.1016/j.fbp.2020.12.009
10.1016/j.swevo.2018.05.001
10.1177/0143624419843647
10.1109/ICTAS.2018.8368762
10.1109/TCYB.2013.2245892
10.2355/isijinternational.ISIJINT-2021-598
10.1016/j.petrol.2021.109920
10.1109/TEVC.2019.2925358
10.1016/j.neucom.2022.01.039
10.1515/htmp-2022-0050
10.1016/j.ins.2017.12.058
10.1109/CEC.2011.5949865
10.3390/sym15040951
10.1016/j.swevo.2019.03.015
10.3390/pr11082404
10.24963/ijcai.2022/277
10.1109/TEVC.2022.3220747
10.1109/TCYB.2020.3017049
10.1016/j.neucom.2020.01.006
10.3390/s22155858
10.1007/s00500-014-1433-3
10.1109/ACCESS.2023.3276628
10.1007/s10489-023-04818-8
10.1016/j.knosys.2019.105227
10.1109/JAS.2019.1911804
10.1016/j.neucom.2019.11.111
10.1109/TEVC.2020.2985323
10.1109/TCYB.2020.2989465
10.1016/j.jclepro.2022.133406
10.3390/met12020172
10.1109/TII.2018.2871084
10.1109/TIE.2014.2301773
10.1016/j.ejor.2021.01.028
10.1016/j.jenvman.2021.114020
10.1109/TEVC.2004.831456
10.1109/TCYB.2019.2896021
10.1080/03019233.2022.2152597
10.1109/TASE.2022.3162653
10.1016/j.jngse.2020.103512
10.1007/s11047-016-9596-8
10.1016/j.asoc.2020.107004
10.1007/s12649-018-0473-9
10.1016/S1876-3804(22)60385-9
10.1016/j.asoc.2017.05.008
10.1115/1.4051944
10.3390/jmse9020181
10.1016/j.ins.2020.07.009
10.1002/sim.7890
10.3390/s23114997
10.1016/j.jprocont.2022.09.007
10.1186/s13634-021-00815-6
10.1016/j.swevo.2020.100749
10.1109/CEC45853.2021.9504877
10.1016/j.ces.2022.118372
10.1016/j.compchemeng.2023.108296
10.1016/S1006-706X(14)60028-5
10.1016/j.compchemeng.2022.107914
10.3390/rs15143601
10.1109/ACCESS.2019.2932883
10.3390/met11050747
10.1002/jctb.6517
10.1145/3319619.3326867
10.3390/pr11020613
10.1109/ACCESS.2022.3185607
10.1109/TEVC.2016.2574621
10.1016/j.ins.2020.08.101
10.1109/TCYB.2016.2602561
10.1016/j.energy.2021.120582
10.1016/j.psep.2022.11.062
10.1007/s11665-020-05345-0
10.1007/s10462-020-09939-x
10.1109/ISECS.2009.42
10.1016/j.ibiod.2020.104966
10.1007/s11063-022-11015-0
10.1007/s10489-022-04293-7
10.1109/TEVC.2019.2958075
10.1109/TCYB.2018.2842158
10.1109/SSCI44817.2019.9002815
10.1007/s13202-021-01302-2
10.1016/j.ins.2019.01.066
10.1109/CEC.2011.5949964
10.1016/j.swevo.2021.100930
10.1016/j.ins.2020.04.011
10.3390/met13010002
10.3390/app13084795
10.1007/s12010-019-03137-4
10.1016/j.swevo.2018.03.010
10.1016/j.ins.2021.11.023
10.1109/SSCI.2016.7849963
10.1115/1.4049467
10.3390/math9121367
10.1016/j.swevo.2020.100695
10.2355/isijinternational.ISIJINT-2021-251
10.1109/TEVC.2018.2869001
10.1109/TCYB.2020.2986600
10.1016/j.jksus.2021.101453
10.1109/TCYB.2020.3017017
10.1016/j.cie.2021.107854
10.1021/acs.energyfuels.0c03301
10.1109/CEC48606.2020.9185522
10.3390/math10234459
10.1016/j.swevo.2022.101108
10.1145/3459637.3482054
10.1609/aaai.v35i12.17325
10.1016/j.knosys.2017.11.016
10.1109/TASE.2021.3083670
10.1145/3357384.3358144
10.1088/1742-6596/1650/3/032133
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/pr12010189
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Biological Science Collection
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID A780926244
10_3390_pr12010189
GeographicLocations New York
GeographicLocations_xml – name: New York
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c334t-7b036f3ca0a8dc5b1b5f02c05e13dd9caae817a678675d65fec00bb954af097f3
IEDL.DBID M7P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001151447100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Fri Jul 25 12:12:01 EDT 2025
Tue Nov 04 18:40:13 EST 2025
Sat Nov 29 07:11:33 EST 2025
Tue Nov 18 21:51:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-7b036f3ca0a8dc5b1b5f02c05e13dd9caae817a678675d65fec00bb954af097f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0261-9371
OpenAccessLink https://www.proquest.com/docview/2918795885?pq-origsite=%requestingapplication%
PQID 2918795885
PQPubID 2032344
ParticipantIDs proquest_journals_2918795885
gale_infotracacademiconefile_A780926244
crossref_primary_10_3390_pr12010189
crossref_citationtrail_10_3390_pr12010189
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
Fay (ref_119) 2018; 37
ref_93
ref_136
ref_92
Wu (ref_96) 2021; 34
Jiang (ref_163) 2018; 435
ref_90
Shen (ref_84) 2020; 396
ref_98
ref_97
Wang (ref_40) 2022; 20
ref_95
He (ref_12) 2014; 21
Chen (ref_58) 2020; 19
Liu (ref_61) 2022; 209
Xie (ref_27) 2021; 197
Li (ref_169) 2019; 28
Sun (ref_157) 2021; 579
Jiang (ref_117) 2016; 47
Yang (ref_76) 2023; 33
Jiang (ref_114) 2016; 21
ref_128
Li (ref_7) 2020; 41
Wang (ref_9) 2017; 3
Zou (ref_161) 2017; 61
Chen (ref_112) 2020; 1650
ref_120
Goh (ref_181) 2008; 13
ref_121
Zhu (ref_46) 2020; 28
Cao (ref_10) 2022; 236
Zhang (ref_137) 2020; 24
Orta (ref_32) 2020; 47
Jiang (ref_147) 2022; 55
Shu (ref_129) 2023; 10
Tariq (ref_65) 2021; 11
ref_70
ref_151
ref_79
ref_155
Yang (ref_78) 2021; 143
Xu (ref_31) 2023; 30
Huang (ref_130) 2021; 113
Song (ref_131) 2020; 24
Gee (ref_186) 2016; 47
Li (ref_91) 2020; 387
Liang (ref_134) 2020; 52
ref_88
Pampara (ref_193) 2021; 66
Zou (ref_148) 2020; 59
Sala (ref_14) 2022; 53
Yan (ref_3) 2023; 101
Mamudu (ref_75) 2022; 165
Gong (ref_139) 2019; 24
Heiskanen (ref_22) 2022; 10
Carneiro (ref_33) 2021; 30
Wang (ref_156) 2020; 96
Rong (ref_159) 2019; 24
Liu (ref_13) 2019; 17
Zhong (ref_49) 2023; 53
Cui (ref_124) 2022; 119
Zhu (ref_55) 2021; 230
Maheshwari (ref_102) 2023; 137
Guzman (ref_73) 2020; 35
Wang (ref_143) 2019; 7
Jiang (ref_170) 2020; 51
Li (ref_24) 2021; 33
Miyata (ref_103) 2021; 104
Ding (ref_107) 2023; 55
Furrer (ref_59) 2021; 75
Aljundi (ref_109) 2021; 44
Jiang (ref_191) 2019; 50
Zhong (ref_2) 2019; 7
Guo (ref_100) 2022; 585
ref_116
Gatlan (ref_53) 2020; 44
(ref_82) 2022; 90
Chiu (ref_106) 2020; 33
ref_118
Guo (ref_162) 2019; 48
Ye (ref_51) 2022; 369
Wenyuan (ref_74) 2023; 50
ref_113
Xin (ref_17) 2022; 62
Bai (ref_50) 2023; 169
Chai (ref_63) 2022; 144
Mahdi (ref_108) 2020; 191
Can (ref_99) 2021; 54
Wang (ref_11) 2012; 19
Huang (ref_42) 2022; 164
Shen (ref_89) 2022; 480
Chen (ref_145) 2019; 24
Yu (ref_110) 2020; 67
ref_104
Sarkar (ref_83) 2024; 235
Li (ref_111) 2018; 15
Farina (ref_177) 2004; 8
Zhang (ref_180) 2008; 8
Zhou (ref_189) 2013; 44
Wang (ref_38) 2022; 33
Jiang (ref_80) 2023; 226
Tan (ref_71) 2022; 46
Ahmad (ref_69) 2020; 11
Zou (ref_160) 2021; 546
Sarker (ref_4) 2022; 19
Li (ref_47) 2021; 96
ref_16
Chen (ref_149) 2018; 43
Kordestani (ref_192) 2019; 18
Ikegwu (ref_5) 2022; 25
Zeng (ref_52) 2021; 2021
ref_25
Wang (ref_150) 2020; 56
Li (ref_153) 2019; 23
Song (ref_15) 2022; 62
ref_20
ref_29
Han (ref_60) 2023; 267
Liu (ref_141) 2020; 87
Chen (ref_23) 2022; 50
Cerqueira (ref_105) 2022; 112
Bouaswaig (ref_48) 2020; 68
Strani (ref_54) 2021; 126
Peng (ref_146) 2015; 19
Ahmad (ref_68) 2020; 190
Rong (ref_152) 2018; 49
Azzouz (ref_142) 2017; 21
Chen (ref_123) 2017; 22
Liang (ref_154) 2019; 485
Ma (ref_158) 2021; 295
Yilmaz (ref_81) 2019; 26
He (ref_28) 2022; 10
Yang (ref_140) 2019; 30
Yin (ref_72) 2021; 30
Zhang (ref_132) 2021; 101
Gee (ref_115) 2016; 47
Zou (ref_144) 2019; 44
Wu (ref_135) 2020; 529
Esche (ref_45) 2022; 251
Ahrari (ref_126) 2021; 101
Zhang (ref_66) 2022; 144
ref_173
ref_57
ref_172
ref_56
ref_175
Jin (ref_6) 2018; 23
ref_176
Raab (ref_101) 2020; 416
Birashk (ref_122) 2018; 141
ref_179
Wen (ref_86) 2023; 11
ref_178
Ma (ref_125) 2021; 545
Wang (ref_87) 2023; 176
Zhou (ref_18) 2022; 163
Wang (ref_85) 2023; 240
Koo (ref_182) 2010; 2
ref_67
ref_166
ref_165
Feng (ref_164) 2020; 52
ref_168
ref_171
Liu (ref_37) 2022; 41
Liu (ref_62) 2023; 262
Wang (ref_19) 2022; 302
Wang (ref_34) 2022; 19
Mamudu (ref_64) 2020; 83
Han (ref_8) 2022; 119
ref_35
Liu (ref_133) 2022; 73
Ruan (ref_138) 2017; 58
ref_30
Zhao (ref_26) 2022; 30
ref_39
Feng (ref_36) 2020; 70
Chen (ref_184) 2009; Volume 1
Jiang (ref_174) 2020; 51
ref_183
ref_185
Wang (ref_21) 2016; 4
ref_43
ref_188
Subasi (ref_77) 2020; 13
ref_187
ref_41
Yin (ref_1) 2014; 61
Jiang (ref_167) 2017; 22
ref_190
Bi (ref_127) 2022; 27
Zhou (ref_44) 2021; 33
References_xml – volume: 104
  start-page: 87
  year: 2021
  ident: ref_103
  article-title: Concept drift detection on stream data for revising DBSCAN
  publication-title: Electron. Commun. Jpn.
  doi: 10.1002/ecj.12288
– volume: 113
  start-page: 107937
  year: 2021
  ident: ref_130
  article-title: Adaptive multi-objective particle swarm optimization with multi-strategy based on energy conversion and explosive mutation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107937
– volume: 144
  start-page: 033006
  year: 2022
  ident: ref_63
  article-title: Production Characteristics, Evaluation, and Prediction of CO2 Water-Alternating-Gas Flooding in Tight Oil Reservoir
  publication-title: J. Energy Resour. Technol.
  doi: 10.1115/1.4052492
– volume: 67
  start-page: 5081
  year: 2020
  ident: ref_110
  article-title: Broad Convolutional Neural Network Based Industrial Process Fault Diagnosis with Incremental Learning Capability
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2931255
– volume: 30
  start-page: 156
  year: 2023
  ident: ref_31
  article-title: Prediction of mechanical properties for deep drawing steel by deep learning
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-022-2547-8
– volume: 4
  start-page: 770
  year: 2016
  ident: ref_21
  article-title: Ladle furnace temperature prediction model based on large-scale data with random forest
  publication-title: IEEE-CAA J. Autom. Sin.
  doi: 10.1109/JAS.2016.7510247
– ident: ref_178
– ident: ref_88
– ident: ref_155
– volume: 112
  start-page: 4351
  year: 2022
  ident: ref_105
  article-title: STUDD: A student–teacher method for unsupervised concept drift detection
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-022-06188-7
– volume: 236
  start-page: 4253
  year: 2022
  ident: ref_10
  article-title: Predicting flow stress of Ni steel based on machine learning algorithm
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
  doi: 10.1177/09544062211048175
– ident: ref_79
  doi: 10.3390/en16114489
– ident: ref_120
  doi: 10.1049/cit2.12249
– volume: 8
  start-page: 959
  year: 2008
  ident: ref_180
  article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.07.005
– ident: ref_151
  doi: 10.1109/CEC.2016.7744267
– ident: ref_172
– volume: 96
  start-page: 106592
  year: 2020
  ident: ref_156
  article-title: An ensemble learning based prediction strategy for dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106592
– volume: 13
  start-page: 3555
  year: 2020
  ident: ref_77
  article-title: Permeability prediction of petroleum reservoirs using stochastic gradient boosting regression
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01986-0
– volume: 235
  start-page: 121177
  year: 2024
  ident: ref_83
  article-title: GATE: A guided approach for time series ensemble forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121177
– volume: 87
  start-page: 105988
  year: 2020
  ident: ref_141
  article-title: Cooperative particle swarm optimization with reference-point-based prediction strategy for dynamic multiobjective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105988
– volume: 240
  start-page: 104878
  year: 2023
  ident: ref_85
  article-title: A novel bidirectional DiPLS based LSTM algorithm and its application in industrial process time series prediction
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2023.104878
– volume: 47
  start-page: 461
  year: 2016
  ident: ref_186
  article-title: A benchmark test suite for dynamic evolutionary multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 17
  start-page: 550
  year: 2019
  ident: ref_13
  article-title: A stacked autoencoder with sparse Bayesian regression for end-point prediction problems in steelmaking process
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2935314
– volume: 33
  start-page: 2080
  year: 2022
  ident: ref_38
  article-title: A multi-objective evolutionary nonlinear ensemble learning with evolutionary feature selection for silicon prediction in blast furnace
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3059784
– volume: 28
  start-page: 1832
  year: 2020
  ident: ref_46
  article-title: Application of machine learning to process simulation of n-pentane cracking to produce ethylene and propene
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2020.01.017
– volume: 90
  start-page: 679
  year: 2022
  ident: ref_82
  article-title: An integrated bi-objective U-shaped assembly line balancing and parts feeding problem: Optimization model and exact solution method
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-020-09718-y
– volume: 23
  start-page: 3723
  year: 2019
  ident: ref_153
  article-title: A predictive strategy based on special points for evolutionary dynamic multi-objective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3033-0
– ident: ref_121
– volume: 579
  start-page: 751
  year: 2021
  ident: ref_157
  article-title: A novel quantile-guided dual prediction strategies for dynamic multi-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.08.027
– volume: 24
  start-page: 882
  year: 2020
  ident: ref_131
  article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2968743
– volume: 137
  start-page: 109341
  year: 2023
  ident: ref_102
  article-title: DCSNE: Density-based Clustering using Graph Shared Neighbors and Entropy
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109341
– volume: 251
  start-page: 117459
  year: 2022
  ident: ref_45
  article-title: Semi-supervised learning for data-driven soft-sensing of biological and chemical processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117459
– volume: 163
  start-page: 107844
  year: 2022
  ident: ref_18
  article-title: Long-term prediction enhancement based on multi-output Gaussian process regression integrated with production plans for oxygen supply network
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107844
– ident: ref_57
  doi: 10.3390/pr11041257
– volume: 101
  start-page: 4506
  year: 2023
  ident: ref_3
  article-title: Data-driven modelling methods in sintering process: Current research status and perspectives
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.24790
– volume: 47
  start-page: 198
  year: 2016
  ident: ref_117
  article-title: Evolutionary dynamic multiobjective optimization: Benchmarks and algorithm comparisons
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2510698
– volume: 33
  start-page: 1299
  year: 2020
  ident: ref_106
  article-title: A diversity framework for dealing with multiple types of concept drift based on clustering in the model space
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3041684
– ident: ref_179
– ident: ref_95
– volume: 21
  start-page: 885
  year: 2017
  ident: ref_142
  article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1820-4
– volume: 262
  start-page: 125536
  year: 2023
  ident: ref_62
  article-title: Novel production prediction model of gasoline production processes for energy saving and economic increasing based on AM-GRU integrating the UMAP algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125536
– volume: 101
  start-page: 107027
  year: 2021
  ident: ref_126
  article-title: A heredity-based adaptive variation operator for reinitialization in dynamic multi-objective problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107027
– volume: 119
  start-page: 108532
  year: 2022
  ident: ref_124
  article-title: A multi-objective particle swarm optimization algorithm based on two-archive mechanism
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108532
– volume: 19
  start-page: 100528
  year: 2022
  ident: ref_4
  article-title: Smart City Data Science: Towards data-driven smart cities with open research issues
  publication-title: Internet Things
  doi: 10.1016/j.iot.2022.100528
– volume: 30
  start-page: 2701
  year: 2019
  ident: ref_140
  article-title: Constrained dynamic multi-objective evolutionary optimization for operational indices of beneficiation process
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1319-1
– volume: 22
  start-page: 501
  year: 2017
  ident: ref_167
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2771451
– volume: 68
  start-page: 582
  year: 2020
  ident: ref_48
  article-title: Application of a grey-box modelling approach for the online monitoring of batch production in the chemical industry
  publication-title: at-Automatisierungstechnik
  doi: 10.1515/auto-2020-0038
– volume: 30
  start-page: 5333
  year: 2021
  ident: ref_72
  article-title: Characterization and Analysis of the COD Chemical Composition in the Polymer-Containing Oil Production Wastewater
  publication-title: Pol. J. Environ. Stud.
  doi: 10.15244/pjoes/135825
– ident: ref_190
  doi: 10.1145/3205455.3205521
– ident: ref_30
  doi: 10.3390/met12010001
– ident: ref_35
  doi: 10.3390/met12091519
– volume: 226
  start-page: 211721
  year: 2023
  ident: ref_80
  article-title: A new method for dynamic predicting porosity and permeability of low permeability and tight reservoir under effective overburden pressure based on BP neural network
  publication-title: Geoenergy Sci. Eng.
  doi: 10.1016/j.geoen.2023.211721
– volume: 25
  start-page: 3343
  year: 2022
  ident: ref_5
  article-title: Big data analytics for data-driven industry: A review of data sources, tools, challenges, solutions, and research directions
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-022-03568-5
– ident: ref_16
  doi: 10.3390/pr11061629
– volume: 44
  start-page: e14565
  year: 2020
  ident: ref_53
  article-title: Capitalization of sea buckthorn waste by fermentation: Optimization of industrial process of obtaining a novel refreshing drink
  publication-title: J. Food Process. Preserv.
  doi: 10.1111/jfpp.14565
– ident: ref_188
– volume: 24
  start-page: 142
  year: 2019
  ident: ref_139
  article-title: A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2912204
– volume: 70
  start-page: 1
  year: 2020
  ident: ref_36
  article-title: Multichannel diffusion graph convolutional network for the prediction of endpoint composition in the converter steelmaking process
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 2
  start-page: 87
  year: 2010
  ident: ref_182
  article-title: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-009-0026-7
– volume: 10
  start-page: 106534
  year: 2022
  ident: ref_28
  article-title: Prediction of Mechanical Properties of Hot Rolled Strips with Generalized RBFNN and Composite Expectile Regression
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3212053
– ident: ref_173
  doi: 10.1109/CVPR.2019.01155
– volume: 61
  start-page: 806
  year: 2017
  ident: ref_161
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.004
– volume: 197
  start-page: 109201
  year: 2021
  ident: ref_27
  article-title: Online prediction of mechanical properties of hot rolled steel plate using machine learning
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109201
– volume: 22
  start-page: 157
  year: 2017
  ident: ref_123
  article-title: Dynamic multiobjectives optimization with a changing number of objectives
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2669638
– volume: 3
  start-page: 233
  year: 2017
  ident: ref_9
  article-title: A mini-review on preference modeling and articulation in multi-objective optimization: Current status and challenges
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-017-0053-9
– volume: 46
  start-page: 20928
  year: 2022
  ident: ref_71
  article-title: Analysis of groundwater pollution in a petroleum refinery energy contributed in rock mechanics through ANFIS-AHP
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.8663
– volume: 47
  start-page: 596
  year: 2020
  ident: ref_32
  article-title: Prediction of mechanical properties of cold rolled and continuous annealed steel grades via analytical model integrated neural networks
  publication-title: Ironmak. Steelmak.
  doi: 10.1080/03019233.2019.1568000
– volume: 75
  start-page: 948
  year: 2021
  ident: ref_59
  article-title: New Scale-up Technologies for Hydrogenation Reactions in Multipurpose Pharmaceutical Production Plants
  publication-title: Chimia
  doi: 10.2533/chimia.2021.948
– volume: 19
  start-page: 2340
  year: 2020
  ident: ref_58
  article-title: An optimized industry processing technology of peanut tofu and the novel prediction model for suitable peanut varieties
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(20)63249-X
– volume: 396
  start-page: 302
  year: 2020
  ident: ref_84
  article-title: A novel time series forecasting model with deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.084
– volume: 126
  start-page: 113
  year: 2021
  ident: ref_54
  article-title: Study of Galactooligosaccharides production from dairy waste by FTIR and chemometrics as Process Analytical Technology
  publication-title: Food Bioprod. Process.
  doi: 10.1016/j.fbp.2020.12.009
– volume: 43
  start-page: 147
  year: 2018
  ident: ref_149
  article-title: A hybrid fuzzy inference prediction strategy for dynamic multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.05.001
– volume: 41
  start-page: 108
  year: 2020
  ident: ref_7
  article-title: A state of the art review on the prediction of building energy consumption using data-driven technique and evolutionary algorithms
  publication-title: Build. Serv. Eng. Res. Technol.
  doi: 10.1177/0143624419843647
– ident: ref_136
  doi: 10.1109/ICTAS.2018.8368762
– volume: 44
  start-page: 40
  year: 2013
  ident: ref_189
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245892
– volume: 33
  start-page: 2789
  year: 2021
  ident: ref_44
  article-title: Hybrid Modeling Method for Soft Sensing of Key Process Parameters in Chemical Industry
  publication-title: Sens. Mater.
– volume: 62
  start-page: 1639
  year: 2022
  ident: ref_15
  article-title: Intelligent Case-based Hybrid Model for Process and Endpoint Prediction of Converter via Data Mining Technique
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2021-598
– volume: 209
  start-page: 109920
  year: 2022
  ident: ref_61
  article-title: An echo state network with attention mechanism for production prediction in reservoirs
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109920
– volume: 24
  start-page: 290
  year: 2019
  ident: ref_159
  article-title: A multimodel prediction method for dynamic multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2925358
– volume: 480
  start-page: 131
  year: 2022
  ident: ref_89
  article-title: TCCT: Tightly-coupled convolutional transformer on time series forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.039
– volume: 41
  start-page: 505
  year: 2022
  ident: ref_37
  article-title: Prediction model of BOF end-point P and O contents based on PCA–GA–BP neural network
  publication-title: High Temp. Mater. Process.
  doi: 10.1515/htmp-2022-0050
– volume: 435
  start-page: 203
  year: 2018
  ident: ref_163
  article-title: Dynamic multi-objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.12.058
– ident: ref_185
  doi: 10.1109/CEC.2011.5949865
– ident: ref_94
  doi: 10.3390/sym15040951
– volume: 48
  start-page: 156
  year: 2019
  ident: ref_162
  article-title: Ensemble prediction-based dynamic robust multi-objective optimization methods
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.03.015
– ident: ref_20
  doi: 10.3390/pr11082404
– ident: ref_98
  doi: 10.24963/ijcai.2022/277
– volume: 27
  start-page: 5
  year: 2022
  ident: ref_127
  article-title: A survey on evolutionary computation for computer vision and image analysis: Past, present, and future trends
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3220747
– volume: 51
  start-page: 4968
  year: 2020
  ident: ref_174
  article-title: Individual-based transfer learning for dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3017049
– volume: 387
  start-page: 63
  year: 2020
  ident: ref_91
  article-title: Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.006
– ident: ref_93
  doi: 10.3390/s22155858
– volume: 19
  start-page: 2633
  year: 2015
  ident: ref_146
  article-title: Novel prediction and memory strategies for dynamic multiobjective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1433-3
– volume: 11
  start-page: 48322
  year: 2023
  ident: ref_86
  article-title: Time series prediction based on LSTM-attention-LSTM model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3276628
– volume: 53
  start-page: 25752
  year: 2023
  ident: ref_49
  article-title: Data-driven width spread prediction model improvement and parameters optimization in hot strip rolling process
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04818-8
– volume: 191
  start-page: 105227
  year: 2020
  ident: ref_108
  article-title: Diversity measure as a new drift detection method in data streaming
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.105227
– volume: 7
  start-page: 330
  year: 2019
  ident: ref_2
  article-title: Data-driven based fault prognosis for industrial systems: A concise overview
  publication-title: IEEE-CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911804
– volume: 416
  start-page: 340
  year: 2020
  ident: ref_101
  article-title: Reactive soft prototype computing for concept drift streams
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.111
– volume: 24
  start-page: 974
  year: 2020
  ident: ref_137
  article-title: Multiobjective evolution strategy for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2985323
– volume: 51
  start-page: 3417
  year: 2020
  ident: ref_170
  article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2989465
– volume: 369
  start-page: 133406
  year: 2022
  ident: ref_51
  article-title: Using machine learning methods to predict VOC emissions in chemical production with hourly process parameters
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133406
– ident: ref_29
  doi: 10.3390/met12020172
– volume: 15
  start-page: 1341
  year: 2018
  ident: ref_111
  article-title: An incremental deep convolutional computation model for feature learning on industrial big data
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2871084
– volume: 61
  start-page: 6418
  year: 2014
  ident: ref_1
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2301773
– volume: 295
  start-page: 965
  year: 2021
  ident: ref_158
  article-title: Feature information prediction algorithm for dynamic multi-objective optimization problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2021.01.028
– volume: 302
  start-page: 114020
  year: 2022
  ident: ref_19
  article-title: Model construction and application for effluent prediction in wastewater treatment plant: Data processing method optimization and process parameters integration
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.114020
– volume: 8
  start-page: 425
  year: 2004
  ident: ref_177
  article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831456
– volume: 50
  start-page: 2814
  year: 2019
  ident: ref_191
  article-title: A scalable test suite for continuous dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2896021
– volume: 19
  start-page: 1
  year: 2012
  ident: ref_11
  article-title: Final temperature prediction model of molten steel in RH-TOP refining process for IF steel production
  publication-title: J. Iron Steel Res. Int.
– volume: 50
  start-page: 671
  year: 2022
  ident: ref_23
  article-title: Mechanical properties prediction of tire cord steel via multi-stage neural network with time-series data
  publication-title: Ironmak. Steelmak.
  doi: 10.1080/03019233.2022.2152597
– ident: ref_187
– volume: 20
  start-page: 541
  year: 2022
  ident: ref_40
  article-title: A dynamic scheduling framework for byproduct gas system combining expert knowledge and production plan
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2022.3162653
– ident: ref_97
– volume: 83
  start-page: 103512
  year: 2020
  ident: ref_64
  article-title: A hybrid intelligent model for reservoir production and associated dynamic risks
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103512
– volume: 18
  start-page: 705
  year: 2019
  ident: ref_192
  article-title: New measures for comparing optimization algorithms on dynamic optimization problems
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-016-9596-8
– volume: 101
  start-page: 107004
  year: 2021
  ident: ref_132
  article-title: Multi-objective evolution strategy for multimodal multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107004
– volume: 11
  start-page: 861
  year: 2020
  ident: ref_69
  article-title: Process evaluation for petroleum wastewater co-digestion with rye grass to enhance methane production
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-018-0473-9
– volume: 50
  start-page: 255
  year: 2023
  ident: ref_74
  article-title: Theoretical and technical progress in exploration practice of the deep-water large oil fields, Santos Basin, Brazil
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(22)60385-9
– volume: 58
  start-page: 631
  year: 2017
  ident: ref_138
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.008
– volume: 144
  start-page: 063005
  year: 2022
  ident: ref_66
  article-title: Modeling and analysis of sustained annular pressure and gas accumulation caused by tubing integrity failure in the production process of deep natural gas wells
  publication-title: J. Energy Resour. Technol.
  doi: 10.1115/1.4051944
– ident: ref_67
  doi: 10.3390/jmse9020181
– volume: 545
  start-page: 1
  year: 2021
  ident: ref_125
  article-title: Multiregional co-evolutionary algorithm for dynamic multiobjective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.07.009
– volume: 33
  start-page: 100469
  year: 2023
  ident: ref_76
  article-title: Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data
  publication-title: J. Ind. Inf. Integr.
– volume: 37
  start-page: 3991
  year: 2018
  ident: ref_119
  article-title: Confidence intervals of the Mann-Whitney parameter that are compatible with the Wilcoxon-Mann-Whitney test
  publication-title: Stat. Med.
  doi: 10.1002/sim.7890
– ident: ref_56
  doi: 10.3390/s23114997
– volume: 119
  start-page: 44
  year: 2022
  ident: ref_8
  article-title: Adaptive multi-task optimization strategy for wastewater treatment process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2022.09.007
– volume: 2021
  start-page: 106
  year: 2021
  ident: ref_52
  article-title: Noise prediction of chemical industry park based on multi-station Prophet and multivariate LSTM fitting model
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-021-00815-6
– volume: 10
  start-page: 446
  year: 2023
  ident: ref_129
  article-title: Multi-objective particle swarm optimization with dynamic population size
  publication-title: J. Comput. Des. Eng.
– volume: 59
  start-page: 100749
  year: 2020
  ident: ref_148
  article-title: A new prediction strategy combining TS fuzzy nonlinear regression prediction and multi-step prediction for dynamic multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100749
– ident: ref_171
  doi: 10.1109/CEC45853.2021.9504877
– volume: 267
  start-page: 118372
  year: 2023
  ident: ref_60
  article-title: Novel long short-term memory neural network considering virtual data generation for production prediction and energy structure optimization of ethylene production processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.118372
– volume: 176
  start-page: 108296
  year: 2023
  ident: ref_87
  article-title: Attention-mechanism based DiPLS-LSTM and its application in industrial process time series big data prediction
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108296
– volume: 21
  start-page: 181
  year: 2014
  ident: ref_12
  article-title: Hybrid model of molten steel temperature prediction based on ladle heat status and artificial neural network
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(14)60028-5
– volume: 165
  start-page: 107914
  year: 2022
  ident: ref_75
  article-title: Logic-based data-driven operational risk model for augmented downhole petroleum production systems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107914
– volume: 28
  start-page: 2509
  year: 2019
  ident: ref_169
  article-title: Dynamic Multi-objective Optimization Algorithm based on Transfer Learning for Environmental Protection
  publication-title: Ekoloji Derg.
– ident: ref_43
  doi: 10.3390/rs15143601
– volume: 7
  start-page: 115997
  year: 2019
  ident: ref_143
  article-title: Dynamic multiobjective squirrel search algorithm based on decomposition with evolutionary direction prediction and bidirectional memory populations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932883
– ident: ref_165
– ident: ref_25
  doi: 10.3390/met11050747
– volume: 96
  start-page: 125
  year: 2021
  ident: ref_47
  article-title: Application of mechanistic modelling and machine learning for cream cheese fermentation pH prediction
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.6517
– ident: ref_116
  doi: 10.1145/3319619.3326867
– ident: ref_166
  doi: 10.3390/pr11020613
– volume: 10
  start-page: 68099
  year: 2022
  ident: ref_22
  article-title: Explainable Steel Quality Prediction System Based on Gradient Boosting Decision Trees
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3185607
– volume: 30
  start-page: 293
  year: 2022
  ident: ref_26
  article-title: Prediction of mechanical properties of cold rolled strip based on improved extreme random tree
  publication-title: J. Iron Steel Res. Int.
– volume: 21
  start-page: 65
  year: 2016
  ident: ref_114
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2574621
– volume: 546
  start-page: 815
  year: 2021
  ident: ref_160
  article-title: A reinforcement learning approach for dynamic multi-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.08.101
– volume: 47
  start-page: 4223
  year: 2016
  ident: ref_115
  article-title: Solving multiobjective optimization problems in unknown dynamic environments: An inverse modeling approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2602561
– volume: 230
  start-page: 120582
  year: 2021
  ident: ref_55
  article-title: Evaluating and predicting energy efficiency using slow feature partial least squares method for large-scale chemical plants
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120582
– volume: 169
  start-page: 937
  year: 2023
  ident: ref_50
  article-title: A novel transformer-based multi-variable multi-step prediction method for chemical process fault prognosis
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.11.062
– volume: 30
  start-page: 434
  year: 2021
  ident: ref_33
  article-title: Prediction of Mechanical Properties of Steel Tubes Using a Machine Learning Approach
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-020-05345-0
– volume: 54
  start-page: 3725
  year: 2021
  ident: ref_99
  article-title: Concept learning using one-class classifiers for implicit drift detection in evolving data streams
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09939-x
– volume: Volume 1
  start-page: 484
  year: 2009
  ident: ref_184
  article-title: Using Diversity as an Additional-Objective in Dynamic Multi-Objective Optimization Algorithms
  publication-title: Proceedings of the 2009 Second International Symposium on Electronic Commerce and Security
  doi: 10.1109/ISECS.2009.42
– ident: ref_70
  doi: 10.1016/j.ibiod.2020.104966
– ident: ref_118
– volume: 55
  start-page: 2081
  year: 2023
  ident: ref_107
  article-title: Concept Drift Adaptation for Time Series Anomaly Detection via Transformer
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-022-11015-0
– volume: 53
  start-page: 15163
  year: 2022
  ident: ref_14
  article-title: Hybrid static-sensory data modeling for prediction tasks in basic oxygen furnace process
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04293-7
– volume: 24
  start-page: 792
  year: 2019
  ident: ref_145
  article-title: A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2958075
– volume: 49
  start-page: 3362
  year: 2018
  ident: ref_152
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2842158
– ident: ref_176
  doi: 10.1109/SSCI44817.2019.9002815
– volume: 11
  start-page: 4339
  year: 2021
  ident: ref_65
  article-title: A systematic review of data science and machine learning applications to the oil and gas industry
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-021-01302-2
– volume: 55
  start-page: 1
  year: 2022
  ident: ref_147
  article-title: Evolutionary dynamic multi-objective optimisation: A survey
  publication-title: ACM Comput. Surv.
– volume: 485
  start-page: 200
  year: 2019
  ident: ref_154
  article-title: Hybrid of memory and prediction strategies for dynamic multiobjective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.01.066
– ident: ref_183
  doi: 10.1109/CEC.2011.5949964
– volume: 66
  start-page: 100930
  year: 2021
  ident: ref_193
  article-title: Performance analysis of dynamic optimization algorithms using relative error distance
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100930
– volume: 529
  start-page: 116
  year: 2020
  ident: ref_135
  article-title: A new dynamic strategy for dynamic multi-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.04.011
– ident: ref_39
  doi: 10.3390/met13010002
– ident: ref_175
  doi: 10.3390/app13084795
– volume: 34
  start-page: 22419
  year: 2021
  ident: ref_96
  article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 190
  start-page: 851
  year: 2020
  ident: ref_68
  article-title: Bioprocess Evaluation of Petroleum Wastewater Treatment with Zinc Oxide Nanoparticle for the Production of Methane Gas: Process Assessment and Modelling
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-019-03137-4
– volume: 44
  start-page: 247
  year: 2019
  ident: ref_144
  article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.03.010
– volume: 585
  start-page: 1
  year: 2022
  ident: ref_100
  article-title: Concept drift type identification based on multi-sliding windows
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.023
– ident: ref_113
  doi: 10.1109/SSCI.2016.7849963
– volume: 143
  start-page: 54502
  year: 2021
  ident: ref_78
  article-title: Physics-Based Rate of the Penetration Prediction Model for Fixed Cutter Drill Bits
  publication-title: J. Energy Resour. Technol.
  doi: 10.1115/1.4049467
– ident: ref_41
  doi: 10.3390/math9121367
– volume: 56
  start-page: 100695
  year: 2020
  ident: ref_150
  article-title: A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100695
– volume: 13
  start-page: 103
  year: 2008
  ident: ref_181
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 625
  year: 2019
  ident: ref_81
  article-title: Multi-Objective Scheduling Problem for Hybrid Manufacturing Systems with Walking Workers
  publication-title: Int. J. Ind. Eng.
– volume: 62
  start-page: 532
  year: 2022
  ident: ref_17
  article-title: A hybrid modeling method based on expert control and deep neural network for temperature prediction of molten steel in LF
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2021-251
– volume: 23
  start-page: 442
  year: 2018
  ident: ref_6
  article-title: Data-Driven Evolutionary Optimization: An Overview and Case Studies
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869001
– volume: 52
  start-page: 1602
  year: 2020
  ident: ref_134
  article-title: A dynamic multiobjective evolutionary algorithm based on decision variable classification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2986600
– volume: 33
  start-page: 101453
  year: 2021
  ident: ref_24
  article-title: Hybrid optimization assisted deep convolutional neural network for hardening prediction in steel
  publication-title: J. King Saud Univ. Sci.
  doi: 10.1016/j.jksus.2021.101453
– volume: 52
  start-page: 2649
  year: 2020
  ident: ref_164
  article-title: Solving dynamic multiobjective problem via autoencoding evolutionary search
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3017017
– volume: 164
  start-page: 107854
  year: 2022
  ident: ref_42
  article-title: Modeling and predicting inventory variation for multistage steel production processes based on a new spatio-temporal Markov model
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107854
– volume: 35
  start-page: 408
  year: 2020
  ident: ref_73
  article-title: Evaluation of asphaltene stability of a wide range of Mexican crude oils
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c03301
– ident: ref_168
  doi: 10.1109/CEC48606.2020.9185522
– ident: ref_128
  doi: 10.3390/math10234459
– volume: 73
  start-page: 101108
  year: 2022
  ident: ref_133
  article-title: A multiobjective evolutionary algorithm based on decision variable classification for many-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101108
– ident: ref_90
  doi: 10.1145/3459637.3482054
– ident: ref_92
  doi: 10.1609/aaai.v35i12.17325
– volume: 44
  start-page: 3366
  year: 2021
  ident: ref_109
  article-title: A continual learning survey: Defying forgetting in classification tasks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 141
  start-page: 148
  year: 2018
  ident: ref_122
  article-title: Cellular teaching-learning-based optimization approach for dynamic multi-objective problems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.11.016
– volume: 19
  start-page: 2397
  year: 2022
  ident: ref_34
  article-title: Strip hardness prediction in continuous annealing using multi-objective sparse nonlinear ensemble learning with evolutionary feature selection
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2021.3083670
– ident: ref_104
  doi: 10.1145/3357384.3358144
– volume: 1650
  start-page: 032133
  year: 2020
  ident: ref_112
  article-title: Genetic algorithm to improve Back Propagation Neural Network ship track prediction
  publication-title: J. Phys. Conf. Ser. IOP Publ.
  doi: 10.1088/1742-6596/1650/3/032133
SSID ssj0000913856
Score 2.2764404
SecondaryResourceType review_article
Snippet As industrial practices continue to evolve, complex process industries often exhibit characteristics such as multivariate correlation, dynamism, and...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 189
SubjectTerms Air quality management
Algorithms
Artificial intelligence
Big Data
Control theory
Correlation
Decision making
Drift
Efficiency
Energy consumption
Environmental changes
Forecasts and trends
Industrial equipment
Industrial production
Mathematical optimization
Multiple objective analysis
Multivariate analysis
Nonlinear systems
Nonlinearity
Objectives
Optimization
Optimization models
Research methodology
State-of-the-art reviews
Time series
Title Dynamic Operation Optimization of Complex Industries Based on a Data-Driven Strategy
URI https://www.proquest.com/docview/2918795885
Volume 12
WOSCitedRecordID wos001151447100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSxtBGP9Q40EPrfGBsTYMVLAe1uxjJjt7KqZJsIhxKQp6WuYJgiYxWUt76d_eb3Yn6iH04mUZmGEY9nvONzO_H8CRjU1ENWZuklsZoCXyQGJoCDTPrElpFzNoWpFNpKMRv73Ncl9wm_trlQufWDlqPVGuRt6Js4oXm3P2bfoUONYod7rqKTRWoeFQEuLq6l7-UmNxmJecdWtU0gR3953pLHLHv5FjdX8Th5Z74yrEDD--d3Fb8MEnl-Ss1oYmrJjxNmy-gRzchqY35jn56hGnT3bgul_z0pOrqak1Alvl_aN_o0kmlji_8WB-kwXVB07QwwCoCXYL0helCPoz5zmJx7v9sws3w8H19_PA0y0EKkloGaQSo5lNlAgF14rJSDIbxipkJkq0zpQQhkepQHHiJkN3mTUqDKXMGBU2zFKb7MHaeDI2-0BUbGOdYDbFJKWSaolJI45UiWWKstS04GTx8wvlscgdJcZDgXsSJ6jiVVAt-PIydlojcCwddexkWDizxJmU8K8LcD0O4Ko4S3nooBEpbcHhQoaFt9d58SrAg_93f4KNGNOaughzCGvl7Nl8hnX1q7yfz9rQ6A1G-c82rF70TtuVMrrv3wH25D8u87t_oFnp1g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9swGH7FyqTBYQMGonwMS9u0cYhIYrtxDhNi6xAV0PXQSeyU-VOqBG1pw0b_1H7jXjcOcEC7cdgtki3LiZ887-uv5wF451KbMIOZmxJORfgnikhhaIiMyJ3NWAszaDY3m8i6XXFxkfcW4E99F8Yfq6w5cU7UZqT9GvlBms99sYXgh-PryLtG-d3V2kKjgsWpnf3GKdv0U6eN4_s-TY-_9r-cRMFVINKUsjLKFJK2o1rGUhjNVaK4i1Mdc5tQY3ItpRVJJrHXmEubFndWx7FSOWfSxXnmKLb7DBaZB3sDFnud896Pu1Udr7IpeKvSQaU0jw_Gk8RvOCfeR_5B5Huc_-dB7fjV__Y5VuBlSJ_JUYX3VViwwzVYfiCquAarga6m5GPQ1N5_Df32bCivBpp8G9sK8_hUDq7CLVQycsQz46W9JbWZCTbwGUO8IVgsSVuWMmpPfGwgQdF3tg7fn-RdN6AxHA3tJhCdutRQzBe5YkwxozAtxpqaOq4Zz2wT9uvBLnRQW_emH5cFzro8MIp7YDTh7V3dcaUx8mitDx4zhScebEnLcH8C--MlvIqjTMRe_JGxJuzUmCkCI02Le8Bs_bt4D16c9M_PirNO93QbllJM4qolpx1olJMbuwvP9a9yMJ28CeAn8POpAfYXoC5Eww
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKUKwAFpADRQYCRB0YcWeRzxeIFQwEVEhZFGkdmXmKUVqkzQxj_waX8edeNx2UbHrgp2lGY08njP3Hs_jHICXnrqMW2RuWnqd4EyUicbUkFhZeJfzPjJovjabyEcjeXRUjDfgT3sXJhyrbGPiOlDbmQlr5D1arH2xpRQ9H49FjMvBu_lZEhykwk5ra6fRQOTArX7h79vy7bDEsX5F6eDj4YdPSXQYSAxjvE5yjQHcM6NSJa0ROtPCp9SkwmXM2sIo5WSWK-wB8mrbF96ZNNW6EFz5tMg9w3ZvwCZSck47sDkefhkfn6_wBMVNKfqNJipjRdqbL7Kw-ZwFT_lLWfDqXLBOcIN7__OnuQ93I60m-8082IINN92GO5fEFrdhK4axJXkTtbb3HsBhuZqq04khX-eumQv4VE9O4-1UMvMkRMwT95u0JifYwHtM_ZZgsSKlqlVSLkLOIFHpd_UQvl1LXx9BZzqbuh0ghnpqGfJIoTnX3Gqky1jTMC8MF7nrwl478JWJKuzBDOSkwr-xAJLqAiRdeHFed95oj1xZ63XATxUCErZkVLxXge8TpL2q_VymQRSS8y7stvipYqRaVhfgefzv4udwC1FVfR6ODp7AbYrcrlmJ2oVOvfjhnsJN87OeLBfP4jwg8P268fUX_7VNgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Operation+Optimization+of+Complex+Industries+Based+on+a+Data-Driven+Strategy&rft.jtitle=Processes&rft.au=Tian%2C+Huixin&rft.au=Zhao%2C+Chenning&rft.au=Xie%2C+Jueping&rft.au=Li%2C+Kun&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=12&rft.issue=1&rft.spage=189&rft_id=info:doi/10.3390%2Fpr12010189&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon