System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection
•A novel ASGA–SVR method has been proposed and applied for reliability prediction.•This method combines an analytic selection (AS) and GA search for SVR parameters.•The combination uses the prior knowledge by AS for guiding GA to avoid local optima.•ASGA is superior to GA in accuracy, convergence sp...
Saved in:
| Published in: | Applied soft computing Vol. 30; pp. 792 - 802 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.05.2015
Elsevier |
| Subjects: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A novel ASGA–SVR method has been proposed and applied for reliability prediction.•This method combines an analytic selection (AS) and GA search for SVR parameters.•The combination uses the prior knowledge by AS for guiding GA to avoid local optima.•ASGA is superior to GA in accuracy, convergence speed and robustness in experiments.
We address the problem of system reliability prediction, based on an available series of failure time data. We consider support vector regression (SVR) as solution approach, for its known performance on time series forecasting. However, SVR parameters selection is very critical for obtaining satisfactory forecasting. Currently, two different ways are followed to set the values of SVR parameters. One way is that of choosing parameters based on prior knowledge or experts experience on the problem at hand: this is a simple and quick, practical way but often not optimal in complex situations and for non-expert users. Another way is that of searching the values of the parameters via some intelligent methods of optimization of the SVR regression performance: for doing this efficiently, one must avoid problems like divergence, slow convergence, local optima, etc.
In this paper, we propose the combination of an analytic selection (AS) method of prior selection followed by a genetic algorithm (GA) for intelligent optimization. The combination of these two methods allows utilizing the available prior knowledge by AS for guiding the GA optimization process so as to avoid divergence and local optima, and accelerate convergence. To show the effectiveness of the method, some simulation experiments are designed, based on artificial or real reliability datasets. The results show the superiority of our proposed ASGA method to the traditional GA method, in terms of prediction accuracy, convergence speed and robustness. |
|---|---|
| AbstractList | •A novel ASGA–SVR method has been proposed and applied for reliability prediction.•This method combines an analytic selection (AS) and GA search for SVR parameters.•The combination uses the prior knowledge by AS for guiding GA to avoid local optima.•ASGA is superior to GA in accuracy, convergence speed and robustness in experiments.
We address the problem of system reliability prediction, based on an available series of failure time data. We consider support vector regression (SVR) as solution approach, for its known performance on time series forecasting. However, SVR parameters selection is very critical for obtaining satisfactory forecasting. Currently, two different ways are followed to set the values of SVR parameters. One way is that of choosing parameters based on prior knowledge or experts experience on the problem at hand: this is a simple and quick, practical way but often not optimal in complex situations and for non-expert users. Another way is that of searching the values of the parameters via some intelligent methods of optimization of the SVR regression performance: for doing this efficiently, one must avoid problems like divergence, slow convergence, local optima, etc.
In this paper, we propose the combination of an analytic selection (AS) method of prior selection followed by a genetic algorithm (GA) for intelligent optimization. The combination of these two methods allows utilizing the available prior knowledge by AS for guiding the GA optimization process so as to avoid divergence and local optima, and accelerate convergence. To show the effectiveness of the method, some simulation experiments are designed, based on artificial or real reliability datasets. The results show the superiority of our proposed ASGA method to the traditional GA method, in terms of prediction accuracy, convergence speed and robustness. |
| Author | Zhao, Wei Tao, Tao Zio, Enrico |
| Author_xml | – sequence: 1 givenname: Wei surname: Zhao fullname: Zhao, Wei email: zhaowei203@buaa.edu.cn organization: Group 203, School of Electronic and Information Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Tao surname: Tao fullname: Tao, Tao organization: Group 203, School of Electronic and Information Engineering, Beihang University, Beijing 100191, China – sequence: 3 givenname: Enrico surname: Zio fullname: Zio, Enrico organization: Chair on Systems Science and the Energetic Challenge, European Foundation for New Energy-Electricité de France, Ecole Centrale Paris and Supelec, Paris, France |
| BackLink | https://hal.science/hal-01340578$$DView record in HAL |
| BookMark | eNp9kctKAzEUhoMoeH0BV9m6mJqkyVzAjYg3KLhQ1-EkPVNTppMhiZVZ-O5mqCK4EA4knHzfSfhzTPZ73yMh55zNOOPl5XoG0duZYFzNmMhV7pEjXleiaMqa7-e9KutCNrI8JMcxrlmWGlEfkc_nMSbc0ICdA-M6l0Y6BFw6m5zvqRlpfB8GHxLdok0-ZHAVMMbp8MOlNwo9dGNylkbscCdBv6Qr7HHqQrfyIXMbOkCADSYM8Rc9JQctdBHPvtcT8np3-3LzUCye7h9vrheFnc9lKqqKyVJyAQYq5A0rFVOttMI2jTWVkFyibEEsjWpMVRtpK6sYU3WrwLRWmfkJudjNfYNOD8FtIIzag9MP1ws99RifS6aqesszW-9YG3yMAVttXYLptSmA6zRneopcr_UUuZ4i10zkKrMq_qg_d_0rXe0kzAFsHQYdrcPe5j8IOSW99O4__Qufl6Bd |
| CitedBy_id | crossref_primary_10_1007_s00521_017_3112_7 crossref_primary_10_1016_j_mtcomm_2024_110560 crossref_primary_10_1016_j_apenergy_2022_118937 crossref_primary_10_1016_j_asoc_2020_106952 crossref_primary_10_1016_j_jhydrol_2021_126046 crossref_primary_10_1109_TR_2019_2923761 crossref_primary_10_1016_j_ress_2025_111476 crossref_primary_10_3233_IDA_230653 crossref_primary_10_3390_rs11192221 crossref_primary_10_1016_j_eswa_2017_08_038 crossref_primary_10_1016_j_asoc_2020_106738 crossref_primary_10_1016_j_eswa_2021_114952 crossref_primary_10_1016_j_asoc_2022_109690 crossref_primary_10_1007_s00500_020_05553_9 crossref_primary_10_1016_j_ress_2023_109126 crossref_primary_10_1155_2017_2503153 crossref_primary_10_1016_j_jii_2019_03_001 crossref_primary_10_1371_journal_pone_0298431 crossref_primary_10_1016_j_enbuild_2017_08_077 crossref_primary_10_1177_16878132231215187 crossref_primary_10_1016_j_asoc_2017_07_017 crossref_primary_10_1016_j_ress_2019_03_044 crossref_primary_10_1109_TR_2017_2669400 crossref_primary_10_1007_s10489_020_01916_9 crossref_primary_10_1016_j_ymssp_2020_107547 crossref_primary_10_1080_13588265_2024_2407157 crossref_primary_10_1007_s00366_018_0681_8 crossref_primary_10_1016_j_compstruc_2017_09_002 crossref_primary_10_1080_23080477_2017_1407985 crossref_primary_10_1016_j_ress_2024_110291 crossref_primary_10_1016_j_jss_2018_08_026 crossref_primary_10_1108_IJPPM_01_2021_0010 crossref_primary_10_1016_j_ymssp_2016_10_034 crossref_primary_10_1007_s11668_025_02225_4 crossref_primary_10_1016_j_ress_2017_03_012 crossref_primary_10_1007_s00521_016_2396_3 crossref_primary_10_1016_j_ymssp_2018_02_016 crossref_primary_10_1016_j_agrformet_2024_110038 crossref_primary_10_1093_jcde_qwad032 crossref_primary_10_1080_01430750_2022_2056917 |
| Cites_doi | 10.1016/j.eswa.2011.09.040 10.1007/s00122-011-1648-y 10.1007/BF02579273 10.1109/7.705889 10.1016/S1568-4946(02)00059-5 10.1016/S0360-8352(02)00036-0 10.1016/j.eswa.2009.03.022 10.1023/B:STCO.0000035301.49549.88 10.1016/j.asoc.2010.06.003 10.1016/j.ress.2013.05.021 10.1007/s00170-004-2340-z 10.1109/52.143107 10.1016/j.ress.2005.12.014 10.1016/j.ress.2011.06.006 10.1002/qre.1221 10.1016/S0893-6080(03)00169-2 10.1016/j.eswa.2012.12.033 10.1007/s13198-012-0123-8 10.1111/j.2517-6161.1992.tb01869.x 10.1109/59.744545 10.1023/A:1009715923555 10.1016/j.jss.2005.02.025 10.1007/BF00175354 10.1109/TR.2012.2194190 10.1016/j.eswa.2007.08.088 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.asoc.2015.02.026 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 802 |
| ExternalDocumentID | oai:HAL:hal-01340578v1 10_1016_j_asoc_2015_02_026 S1568494615001271 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC |
| ID | FETCH-LOGICAL-c334t-77046412aba7e1906505f4c2c99cb72414e4fa2db59b78b4c7c50058f5abfc5b3 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351296200068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Oct 14 20:33:37 EDT 2025 Sat Nov 29 03:05:25 EST 2025 Tue Nov 18 22:18:59 EST 2025 Fri Feb 23 02:23:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Time series forecasting Reliability prediction Support vector regression Parameter selection Analytic selection Genetic algorithms |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-77046412aba7e1906505f4c2c99cb72414e4fa2db59b78b4c7c50058f5abfc5b3 |
| ORCID | 0000-0002-7108-637X |
| PageCount | 11 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01340578v1 crossref_citationtrail_10_1016_j_asoc_2015_02_026 crossref_primary_10_1016_j_asoc_2015_02_026 elsevier_sciencedirect_doi_10_1016_j_asoc_2015_02_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-01 |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Burges (bib0255) 1998; 2 Melin, Olivas, Castillo (bib0370) 2013; 40 Cherkassky, Ma (bib0320) 2004; 17 Kwok (bib0395) 2001 Ho, Xie, Goh (bib0235) 2002; 42 Lin, Ying, Chen (bib0360) 2008; 35 Karunanithi, Whitley, Malaiya (bib0240) 1992; 9 Hong, Pai (bib0280) 2006; 28 Hong, Pai, Chen (bib0285) 2005 Van Looy, Verplancke, Benoit (bib0270) 2007 Xu, Xie, Tang (bib0405) 2003; 2 Ito, Nakano (bib0385) 2003 Valdez, Melin, Castillo (bib0410) 2009 Mattera, Haykin (bib0390) 1999 Vapnik (bib0250) 1995 Box, Jenkins, Reinsel (bib0300) 2013 Pai, Hong (bib0345) 2006; 79 Fei, Zhang (bib0245) 2009; 36 Spall (bib0340) 1998; 34 Whitley (bib0380) 1994; 4 Lins, Moura, Zio (bib0365) 2012; 28 Chen (bib0350) 2007; 92 Deb, Agrawal (bib0400) 1994 Singpurwalla, Soyer (bib0220) 1992 Boser, Guyon, Vapnik (bib0375) 1992 Elsayed (bib0215) 2012; 61 Grötschel, Lovász, Schrijver (bib0335) 1981; 1 Kumar, Singh (bib0225) 2012; 3 Melin, Soto, Castillo (bib0310) 2012; 39 Hong, Dong, Chen (bib0355) 2011; 11 Moura, Zio, Didier Lins (bib0290) 2011; 96 Acar (bib0275) 2013; 227 Hsu, Chang, Lin (bib0325) 2003 Yang, Zhang (bib0295) 2005 Welch, Bishop (bib0305) 1995 Wei, Tao, ZhuoShu (bib0210) 2013; 119 Amjady, Ehsan (bib0230) 1999; 14 Long, Gianola, Rosa (bib0265) 2011; 123 Pulido, Melin, Castillo (bib0315) 2013 Guely, Siarry (bib0330) 1993 Smola, Schölkopf (bib0260) 2004; 14 Lin (10.1016/j.asoc.2015.02.026_bib0360) 2008; 35 Guely (10.1016/j.asoc.2015.02.026_bib0330) 1993 Melin (10.1016/j.asoc.2015.02.026_bib0310) 2012; 39 Kumar (10.1016/j.asoc.2015.02.026_bib0225) 2012; 3 Yang (10.1016/j.asoc.2015.02.026_bib0295) 2005 Boser (10.1016/j.asoc.2015.02.026_bib0375) 1992 Cherkassky (10.1016/j.asoc.2015.02.026_bib0320) 2004; 17 Lins (10.1016/j.asoc.2015.02.026_bib0365) 2012; 28 Pulido (10.1016/j.asoc.2015.02.026_bib0315) 2013 Elsayed (10.1016/j.asoc.2015.02.026_bib0215) 2012; 61 Amjady (10.1016/j.asoc.2015.02.026_bib0230) 1999; 14 Fei (10.1016/j.asoc.2015.02.026_bib0245) 2009; 36 Chen (10.1016/j.asoc.2015.02.026_bib0350) 2007; 92 Kwok (10.1016/j.asoc.2015.02.026_bib0395) 2001 Hsu (10.1016/j.asoc.2015.02.026_bib0325) 2003 Melin (10.1016/j.asoc.2015.02.026_bib0370) 2013; 40 Moura (10.1016/j.asoc.2015.02.026_bib0290) 2011; 96 Ito (10.1016/j.asoc.2015.02.026_bib0385) 2003 Mattera (10.1016/j.asoc.2015.02.026_bib0390) 1999 Whitley (10.1016/j.asoc.2015.02.026_bib0380) 1994; 4 Box (10.1016/j.asoc.2015.02.026_bib0300) 2013 Karunanithi (10.1016/j.asoc.2015.02.026_bib0240) 1992; 9 Welch (10.1016/j.asoc.2015.02.026_bib0305) 1995 Pai (10.1016/j.asoc.2015.02.026_bib0345) 2006; 79 Acar (10.1016/j.asoc.2015.02.026_bib0275) 2013; 227 Valdez (10.1016/j.asoc.2015.02.026_bib0410) 2009 Burges (10.1016/j.asoc.2015.02.026_bib0255) 1998; 2 Vapnik (10.1016/j.asoc.2015.02.026_bib0250) 1995 Spall (10.1016/j.asoc.2015.02.026_bib0340) 1998; 34 Smola (10.1016/j.asoc.2015.02.026_bib0260) 2004; 14 Hong (10.1016/j.asoc.2015.02.026_bib0355) 2011; 11 Long (10.1016/j.asoc.2015.02.026_bib0265) 2011; 123 Grötschel (10.1016/j.asoc.2015.02.026_bib0335) 1981; 1 Wei (10.1016/j.asoc.2015.02.026_bib0210) 2013; 119 Xu (10.1016/j.asoc.2015.02.026_bib0405) 2003; 2 Deb (10.1016/j.asoc.2015.02.026_bib0400) 1994 Ho (10.1016/j.asoc.2015.02.026_bib0235) 2002; 42 Hong (10.1016/j.asoc.2015.02.026_bib0285) 2005 Van Looy (10.1016/j.asoc.2015.02.026_bib0270) 2007 Hong (10.1016/j.asoc.2015.02.026_bib0280) 2006; 28 Singpurwalla (10.1016/j.asoc.2015.02.026_bib0220) 1992 |
| References_xml | – volume: 9 start-page: 53 year: 1992 end-page: 59 ident: bib0240 article-title: Using neural networks in reliability prediction publication-title: IEEE Softw. – start-page: 16 year: 2013 end-page: 21 ident: bib0315 article-title: Optimization of ensemble neural networks with type-2 fuzzy response integration for predicting the Mackey–Glass time series publication-title: 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC) – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: bib0260 article-title: A tutorial on support vector regression publication-title: Statist. Comput. – volume: 61 start-page: 282 year: 2012 end-page: 291 ident: bib0215 article-title: Overview of reliability testing publication-title: IEEE Trans. Reliab. – start-page: 971 year: 2005 end-page: 2005 ident: bib0295 article-title: Application research of support vector machines in condition trend prediction of mechanical equipment publication-title: Adv. Neural Netw. – ISNN – volume: 39 start-page: 3494 year: 2012 end-page: 3506 ident: bib0310 article-title: A new approach for time series prediction using ensembles of ANFIS models publication-title: Expert Syst. Appl. – start-page: 1241 year: 1993 end-page: 1246 ident: bib0330 article-title: Gradient descent method for optimizing various fuzzy rule bases publication-title: Second IEEE International Conference on Fuzzy Systems, vol. 2 – volume: 3 start-page: 194 year: 2012 end-page: 208 ident: bib0225 article-title: An empirical study of software reliability prediction using machine learning techniques publication-title: Int. J. Syst. Assur. Eng. Manage. – volume: 35 start-page: 1817 year: 2008 end-page: 1824 ident: bib0360 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Syst. Appl. – volume: 123 start-page: 1065 year: 2011 end-page: 1074 ident: bib0265 article-title: Application of support vector regression to genome-assisted prediction of quantitative traits publication-title: Theor. Appl. Genet. – start-page: 211 year: 1999 end-page: 241 ident: bib0390 article-title: Support Vector Machines for Dynamic Reconstruction of a Chaotic System. Advances in Kernel Methods – volume: 119 start-page: 109 year: 2013 end-page: 116 ident: bib0210 article-title: A dynamic particle filter-support vector regression method for reliability prediction publication-title: Reliab. Eng. Syst. Saf. – volume: 14 start-page: 287 year: 1999 end-page: 292 ident: bib0230 article-title: Evaluation of power systems reliability by an artificial neural network publication-title: IEEE Trans. Power Syst. – year: 2013 ident: bib0300 article-title: Time Series Analysis: Forecasting and Control – year: 1995 ident: bib0305 article-title: An Introduction to the Kalman Filter – start-page: 2114 year: 2009 end-page: 2119 ident: bib0410 article-title: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making publication-title: FUZZ-IEEE 2009 IEEE International Conference on Fuzzy Systems – start-page: 405 year: 2001 end-page: 410 ident: bib0395 article-title: Linear dependency between publication-title: Artificial Neural Networks – ICANN 2001 – volume: 227 start-page: 2780 year: 2013 end-page: 2794 ident: bib0275 article-title: Reliability prediction through guided tail modeling using support vector machines Proceedings of the Institution of Mechanical Engineers publication-title: Part C: Journal of Mechanical Engineering – volume: 2 start-page: 255 year: 2003 end-page: 268 ident: bib0405 article-title: Application of neural networks in forecasting engine systems reliability publication-title: Appl. Soft Comput. – volume: 96 start-page: 1527 year: 2011 end-page: 1534 ident: bib0290 article-title: Failure and reliability prediction by support vector machines regression of time series data publication-title: Reliab. Eng. Syst. Saf. – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: bib0255 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. – start-page: 2077 year: 2003 end-page: 2082 ident: bib0385 article-title: Optimizing support vector regression hyperparameters based on cross-validation publication-title: Proceedings of the International Joint Conference on Neural Networks, vol. 3 – volume: 28 start-page: 154 year: 2006 end-page: 161 ident: bib0280 article-title: Predicting engine reliability by support vector machines publication-title: Int. J. Adv. Manuf. Technol. – volume: 92 start-page: 423 year: 2007 end-page: 432 ident: bib0350 article-title: Forecasting systems reliability based on support vector regression with genetic algorithms publication-title: Reliab. Eng. Syst. Saf. – volume: 34 start-page: 817 year: 1998 end-page: 823 ident: bib0340 article-title: Implementation of the simultaneous perturbation algorithm for stochastic optimization publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 42 start-page: 371 year: 2002 end-page: 375 ident: bib0235 article-title: A comparative study of neural network and Box–Jenkins ARIMA modeling in time series prediction publication-title: Comp. Ind. Eng. – start-page: 145 year: 1992 end-page: 156 ident: bib0220 article-title: Non-homogeneous autoregressive processes for tracking (software) reliability growth, and their Bayesian analysis publication-title: J. R. Stat. Soc. Ser. B (Methodol.) – volume: 1 start-page: 169 year: 1981 end-page: 197 ident: bib0335 article-title: The ellipsoid method and its consequences in combinatorial optimization publication-title: Combinatorica – volume: 36 start-page: 11352 year: 2009 end-page: 11357 ident: bib0245 article-title: Fault diagnosis of power transformer based on support vector machine with genetic algorithm publication-title: Expert Syst. Appl. – start-page: 407 year: 2005 ident: bib0285 article-title: Recurrent support vector machines in reliability prediction publication-title: Advances in Natural Computation – volume: 17 start-page: 113 year: 2004 end-page: 126 ident: bib0320 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw. – volume: 28 start-page: 141 year: 2012 end-page: 158 ident: bib0365 article-title: A particle swarm-optimized support vector machine for reliability prediction publication-title: Qual. Reliab. Eng. Int. – year: 1994 ident: bib0400 article-title: Simulated Binary Crossover for Continuous Search Space – start-page: 144 year: 1992 end-page: 152 ident: bib0375 article-title: A training algorithm for optimal margin classifiers publication-title: Proceedings of the Fifth Annual Workshop on Computational Learning Theory – volume: 4 start-page: 65 year: 1994 end-page: 85 ident: bib0380 article-title: A genetic algorithm tutorial publication-title: Stat. Comput. – volume: 79 start-page: 747 year: 2006 end-page: 755 ident: bib0345 article-title: Software reliability forecasting by support vector machines with simulated annealing algorithms publication-title: J. Syst. Softw. – start-page: 11 year: 2007 ident: bib0270 article-title: A novel approach for prediction of tacrolimus blood concentration in liver transplantation patients in the intensive care unit through support vector regression publication-title: Crit. Care – year: 2003 ident: bib0325 article-title: A Practical Guide to Support Vector Classification – volume: 40 start-page: 3196 year: 2013 end-page: 3206 ident: bib0370 article-title: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic publication-title: Expert Syst. Appl. – year: 1995 ident: bib0250 article-title: The Nature of Statistical Learning Theory – volume: 11 start-page: 1881 year: 2011 end-page: 1890 ident: bib0355 article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting publication-title: Appl. Soft Comput. – volume: 39 start-page: 3494 year: 2012 ident: 10.1016/j.asoc.2015.02.026_bib0310 article-title: A new approach for time series prediction using ensembles of ANFIS models publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.040 – start-page: 2077 year: 2003 ident: 10.1016/j.asoc.2015.02.026_bib0385 article-title: Optimizing support vector regression hyperparameters based on cross-validation – year: 2013 ident: 10.1016/j.asoc.2015.02.026_bib0300 – volume: 123 start-page: 1065 year: 2011 ident: 10.1016/j.asoc.2015.02.026_bib0265 article-title: Application of support vector regression to genome-assisted prediction of quantitative traits publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-011-1648-y – volume: 1 start-page: 169 year: 1981 ident: 10.1016/j.asoc.2015.02.026_bib0335 article-title: The ellipsoid method and its consequences in combinatorial optimization publication-title: Combinatorica doi: 10.1007/BF02579273 – volume: 34 start-page: 817 year: 1998 ident: 10.1016/j.asoc.2015.02.026_bib0340 article-title: Implementation of the simultaneous perturbation algorithm for stochastic optimization publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.705889 – volume: 2 start-page: 255 year: 2003 ident: 10.1016/j.asoc.2015.02.026_bib0405 article-title: Application of neural networks in forecasting engine systems reliability publication-title: Appl. Soft Comput. doi: 10.1016/S1568-4946(02)00059-5 – volume: 42 start-page: 371 year: 2002 ident: 10.1016/j.asoc.2015.02.026_bib0235 article-title: A comparative study of neural network and Box–Jenkins ARIMA modeling in time series prediction publication-title: Comp. Ind. Eng. doi: 10.1016/S0360-8352(02)00036-0 – volume: 36 start-page: 11352 year: 2009 ident: 10.1016/j.asoc.2015.02.026_bib0245 article-title: Fault diagnosis of power transformer based on support vector machine with genetic algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.03.022 – volume: 14 start-page: 199 year: 2004 ident: 10.1016/j.asoc.2015.02.026_bib0260 article-title: A tutorial on support vector regression publication-title: Statist. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – start-page: 407 year: 2005 ident: 10.1016/j.asoc.2015.02.026_bib0285 article-title: Recurrent support vector machines in reliability prediction – start-page: 971 year: 2005 ident: 10.1016/j.asoc.2015.02.026_bib0295 article-title: Application research of support vector machines in condition trend prediction of mechanical equipment publication-title: Adv. Neural Netw. – ISNN – volume: 11 start-page: 1881 year: 2011 ident: 10.1016/j.asoc.2015.02.026_bib0355 article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.06.003 – start-page: 144 year: 1992 ident: 10.1016/j.asoc.2015.02.026_bib0375 article-title: A training algorithm for optimal margin classifiers – start-page: 11 year: 2007 ident: 10.1016/j.asoc.2015.02.026_bib0270 article-title: A novel approach for prediction of tacrolimus blood concentration in liver transplantation patients in the intensive care unit through support vector regression publication-title: Crit. Care – volume: 119 start-page: 109 year: 2013 ident: 10.1016/j.asoc.2015.02.026_bib0210 article-title: A dynamic particle filter-support vector regression method for reliability prediction publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2013.05.021 – volume: 28 start-page: 154 year: 2006 ident: 10.1016/j.asoc.2015.02.026_bib0280 article-title: Predicting engine reliability by support vector machines publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-004-2340-z – start-page: 211 year: 1999 ident: 10.1016/j.asoc.2015.02.026_bib0390 – start-page: 405 year: 2001 ident: 10.1016/j.asoc.2015.02.026_bib0395 article-title: Linear dependency between ɛ and the input noise in ɛ-support vector regression – volume: 9 start-page: 53 year: 1992 ident: 10.1016/j.asoc.2015.02.026_bib0240 article-title: Using neural networks in reliability prediction publication-title: IEEE Softw. doi: 10.1109/52.143107 – volume: 92 start-page: 423 year: 2007 ident: 10.1016/j.asoc.2015.02.026_bib0350 article-title: Forecasting systems reliability based on support vector regression with genetic algorithms publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2005.12.014 – year: 2003 ident: 10.1016/j.asoc.2015.02.026_bib0325 – year: 1995 ident: 10.1016/j.asoc.2015.02.026_bib0250 – year: 1994 ident: 10.1016/j.asoc.2015.02.026_bib0400 – volume: 96 start-page: 1527 year: 2011 ident: 10.1016/j.asoc.2015.02.026_bib0290 article-title: Failure and reliability prediction by support vector machines regression of time series data publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2011.06.006 – year: 1995 ident: 10.1016/j.asoc.2015.02.026_bib0305 – start-page: 2114 year: 2009 ident: 10.1016/j.asoc.2015.02.026_bib0410 article-title: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making – start-page: 16 year: 2013 ident: 10.1016/j.asoc.2015.02.026_bib0315 article-title: Optimization of ensemble neural networks with type-2 fuzzy response integration for predicting the Mackey–Glass time series – volume: 28 start-page: 141 year: 2012 ident: 10.1016/j.asoc.2015.02.026_bib0365 article-title: A particle swarm-optimized support vector machine for reliability prediction publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.1221 – volume: 17 start-page: 113 year: 2004 ident: 10.1016/j.asoc.2015.02.026_bib0320 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw. doi: 10.1016/S0893-6080(03)00169-2 – volume: 40 start-page: 3196 year: 2013 ident: 10.1016/j.asoc.2015.02.026_bib0370 article-title: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.12.033 – volume: 3 start-page: 194 year: 2012 ident: 10.1016/j.asoc.2015.02.026_bib0225 article-title: An empirical study of software reliability prediction using machine learning techniques publication-title: Int. J. Syst. Assur. Eng. Manage. doi: 10.1007/s13198-012-0123-8 – start-page: 145 year: 1992 ident: 10.1016/j.asoc.2015.02.026_bib0220 article-title: Non-homogeneous autoregressive processes for tracking (software) reliability growth, and their Bayesian analysis publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1992.tb01869.x – start-page: 1241 year: 1993 ident: 10.1016/j.asoc.2015.02.026_bib0330 article-title: Gradient descent method for optimizing various fuzzy rule bases – volume: 14 start-page: 287 year: 1999 ident: 10.1016/j.asoc.2015.02.026_bib0230 article-title: Evaluation of power systems reliability by an artificial neural network publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.744545 – volume: 2 start-page: 121 year: 1998 ident: 10.1016/j.asoc.2015.02.026_bib0255 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 79 start-page: 747 year: 2006 ident: 10.1016/j.asoc.2015.02.026_bib0345 article-title: Software reliability forecasting by support vector machines with simulated annealing algorithms publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2005.02.025 – volume: 227 start-page: 2780 year: 2013 ident: 10.1016/j.asoc.2015.02.026_bib0275 article-title: Reliability prediction through guided tail modeling using support vector machines Proceedings of the Institution of Mechanical Engineers publication-title: Part C: Journal of Mechanical Engineering – volume: 4 start-page: 65 year: 1994 ident: 10.1016/j.asoc.2015.02.026_bib0380 article-title: A genetic algorithm tutorial publication-title: Stat. Comput. doi: 10.1007/BF00175354 – volume: 61 start-page: 282 year: 2012 ident: 10.1016/j.asoc.2015.02.026_bib0215 article-title: Overview of reliability testing publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2012.2194190 – volume: 35 start-page: 1817 year: 2008 ident: 10.1016/j.asoc.2015.02.026_bib0360 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.08.088 |
| SSID | ssj0016928 |
| Score | 2.351861 |
| Snippet | •A novel ASGA–SVR method has been proposed and applied for reliability prediction.•This method combines an analytic selection (AS) and GA search for SVR... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 792 |
| SubjectTerms | Analytic selection Artificial Intelligence Computer Science Genetic algorithms Parameter selection Reliability prediction Support vector regression Time series forecasting |
| Title | System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection |
| URI | https://dx.doi.org/10.1016/j.asoc.2015.02.026 https://hal.science/hal-01340578 |
| Volume | 30 |
| WOSCitedRecordID | wos000351296200068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF4cp4de-i5JXyylN6NiSbt6HE1xSUsJPaTUN7G7WqUKjmws28SH0r_emX1IJm1CcygY2Qyjlez5PDszmgch71ipq1BmcZBqxcBBUSKQHLwUHA84TrUWVSTNsIn09DSbzfKvg8EvXwuznadNk11d5cv_KmqggbCxdPYO4u4WBQJ8BqHDEcQOx38SvO1BjkUqte3BvcNGAGVtZ4KDtdlulmh0j7YmYA-M5zYXtvGFbmK-wzaurRmR49OV4XraNHedny9WwHc5wq7hl5hN0_as-7auN3Bb0PQmdX2z9vukjVSbKO13XffRA0OBt46pNpRpA9p6sR-gCHmfDuh1apIFLHeRRqd03cMYqzVTOw7Pb8CmBPtP3W7DDBfvBcAWc_K4abYa_aWR9rUNrks79BltFwWuUeAaxTiCV3JADiPwnMZDcjj5NJ197h5EJbkZz9t9B1d3ZVMEr9_JTbbNwQ8fpTdWy9kj8sC5G3RiYfKYDHTzhDz0ozyo0-xPyU-LGrqHGtqjhsoddaihFjW0Rw1F1FCPGtpBAUgldaihHWpoj5qe9Rn59nF69uEkcJM5AhXHbA0uGT4RDyMhRarBpAQzn1dMRSrPlUzBKGSaVSIqJc9lmkmmUsVxgGXFhawUl_FzMmwWjT4iNAKDNRkLLhPBmc5KgQVLMq4EbDwyCeUxCf1vWijXth6np8yLm6V5TEbdOUvbtOVWbu5FVTiz05qTBSDv1vPegly7C2Cf9pPJlwJp4FehI5Rtwxd3upWX5H7_D3pFhuvVRr8m99R2XberNw6bvwFKSbZ2 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+reliability+prediction+by+support+vector+regression+with+analytic+selection+and+genetic+algorithm+parameters+selection&rft.jtitle=Applied+soft+computing&rft.au=Zhao%2C+Wei&rft.au=Tao%2C+Tao&rft.au=Zio%2C+Enrico&rft.date=2015-05-01&rft.issn=1568-4946&rft.volume=30&rft.spage=792&rft.epage=802&rft_id=info:doi/10.1016%2Fj.asoc.2015.02.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2015_02_026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |