System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection

•A novel ASGA–SVR method has been proposed and applied for reliability prediction.•This method combines an analytic selection (AS) and GA search for SVR parameters.•The combination uses the prior knowledge by AS for guiding GA to avoid local optima.•ASGA is superior to GA in accuracy, convergence sp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 30; s. 792 - 802
Hlavní autoři: Zhao, Wei, Tao, Tao, Zio, Enrico
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.05.2015
Elsevier
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A novel ASGA–SVR method has been proposed and applied for reliability prediction.•This method combines an analytic selection (AS) and GA search for SVR parameters.•The combination uses the prior knowledge by AS for guiding GA to avoid local optima.•ASGA is superior to GA in accuracy, convergence speed and robustness in experiments. We address the problem of system reliability prediction, based on an available series of failure time data. We consider support vector regression (SVR) as solution approach, for its known performance on time series forecasting. However, SVR parameters selection is very critical for obtaining satisfactory forecasting. Currently, two different ways are followed to set the values of SVR parameters. One way is that of choosing parameters based on prior knowledge or experts experience on the problem at hand: this is a simple and quick, practical way but often not optimal in complex situations and for non-expert users. Another way is that of searching the values of the parameters via some intelligent methods of optimization of the SVR regression performance: for doing this efficiently, one must avoid problems like divergence, slow convergence, local optima, etc. In this paper, we propose the combination of an analytic selection (AS) method of prior selection followed by a genetic algorithm (GA) for intelligent optimization. The combination of these two methods allows utilizing the available prior knowledge by AS for guiding the GA optimization process so as to avoid divergence and local optima, and accelerate convergence. To show the effectiveness of the method, some simulation experiments are designed, based on artificial or real reliability datasets. The results show the superiority of our proposed ASGA method to the traditional GA method, in terms of prediction accuracy, convergence speed and robustness.
AbstractList •A novel ASGA–SVR method has been proposed and applied for reliability prediction.•This method combines an analytic selection (AS) and GA search for SVR parameters.•The combination uses the prior knowledge by AS for guiding GA to avoid local optima.•ASGA is superior to GA in accuracy, convergence speed and robustness in experiments. We address the problem of system reliability prediction, based on an available series of failure time data. We consider support vector regression (SVR) as solution approach, for its known performance on time series forecasting. However, SVR parameters selection is very critical for obtaining satisfactory forecasting. Currently, two different ways are followed to set the values of SVR parameters. One way is that of choosing parameters based on prior knowledge or experts experience on the problem at hand: this is a simple and quick, practical way but often not optimal in complex situations and for non-expert users. Another way is that of searching the values of the parameters via some intelligent methods of optimization of the SVR regression performance: for doing this efficiently, one must avoid problems like divergence, slow convergence, local optima, etc. In this paper, we propose the combination of an analytic selection (AS) method of prior selection followed by a genetic algorithm (GA) for intelligent optimization. The combination of these two methods allows utilizing the available prior knowledge by AS for guiding the GA optimization process so as to avoid divergence and local optima, and accelerate convergence. To show the effectiveness of the method, some simulation experiments are designed, based on artificial or real reliability datasets. The results show the superiority of our proposed ASGA method to the traditional GA method, in terms of prediction accuracy, convergence speed and robustness.
Author Zhao, Wei
Tao, Tao
Zio, Enrico
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  email: zhaowei203@buaa.edu.cn
  organization: Group 203, School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Tao
  surname: Tao
  fullname: Tao, Tao
  organization: Group 203, School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Enrico
  surname: Zio
  fullname: Zio, Enrico
  organization: Chair on Systems Science and the Energetic Challenge, European Foundation for New Energy-Electricité de France, Ecole Centrale Paris and Supelec, Paris, France
BackLink https://hal.science/hal-01340578$$DView record in HAL
BookMark eNp9kctKAzEUhoMoeH0BV9m6mJqkyVzAjYg3KLhQ1-EkPVNTppMhiZVZ-O5mqCK4EA4knHzfSfhzTPZ73yMh55zNOOPl5XoG0duZYFzNmMhV7pEjXleiaMqa7-e9KutCNrI8JMcxrlmWGlEfkc_nMSbc0ICdA-M6l0Y6BFw6m5zvqRlpfB8GHxLdok0-ZHAVMMbp8MOlNwo9dGNylkbscCdBv6Qr7HHqQrfyIXMbOkCADSYM8Rc9JQctdBHPvtcT8np3-3LzUCye7h9vrheFnc9lKqqKyVJyAQYq5A0rFVOttMI2jTWVkFyibEEsjWpMVRtpK6sYU3WrwLRWmfkJudjNfYNOD8FtIIzag9MP1ws99RifS6aqesszW-9YG3yMAVttXYLptSmA6zRneopcr_UUuZ4i10zkKrMq_qg_d_0rXe0kzAFsHQYdrcPe5j8IOSW99O4__Qufl6Bd
CitedBy_id crossref_primary_10_1007_s00521_017_3112_7
crossref_primary_10_1016_j_mtcomm_2024_110560
crossref_primary_10_1016_j_apenergy_2022_118937
crossref_primary_10_1016_j_asoc_2020_106952
crossref_primary_10_1016_j_jhydrol_2021_126046
crossref_primary_10_1109_TR_2019_2923761
crossref_primary_10_1016_j_ress_2025_111476
crossref_primary_10_3233_IDA_230653
crossref_primary_10_3390_rs11192221
crossref_primary_10_1016_j_eswa_2017_08_038
crossref_primary_10_1016_j_asoc_2020_106738
crossref_primary_10_1016_j_eswa_2021_114952
crossref_primary_10_1016_j_asoc_2022_109690
crossref_primary_10_1007_s00500_020_05553_9
crossref_primary_10_1016_j_ress_2023_109126
crossref_primary_10_1155_2017_2503153
crossref_primary_10_1016_j_jii_2019_03_001
crossref_primary_10_1371_journal_pone_0298431
crossref_primary_10_1016_j_enbuild_2017_08_077
crossref_primary_10_1177_16878132231215187
crossref_primary_10_1016_j_asoc_2017_07_017
crossref_primary_10_1016_j_ress_2019_03_044
crossref_primary_10_1109_TR_2017_2669400
crossref_primary_10_1007_s10489_020_01916_9
crossref_primary_10_1016_j_ymssp_2020_107547
crossref_primary_10_1080_13588265_2024_2407157
crossref_primary_10_1007_s00366_018_0681_8
crossref_primary_10_1016_j_compstruc_2017_09_002
crossref_primary_10_1080_23080477_2017_1407985
crossref_primary_10_1016_j_ress_2024_110291
crossref_primary_10_1016_j_jss_2018_08_026
crossref_primary_10_1108_IJPPM_01_2021_0010
crossref_primary_10_1016_j_ymssp_2016_10_034
crossref_primary_10_1007_s11668_025_02225_4
crossref_primary_10_1016_j_ress_2017_03_012
crossref_primary_10_1007_s00521_016_2396_3
crossref_primary_10_1016_j_ymssp_2018_02_016
crossref_primary_10_1016_j_agrformet_2024_110038
crossref_primary_10_1093_jcde_qwad032
crossref_primary_10_1080_01430750_2022_2056917
Cites_doi 10.1016/j.eswa.2011.09.040
10.1007/s00122-011-1648-y
10.1007/BF02579273
10.1109/7.705889
10.1016/S1568-4946(02)00059-5
10.1016/S0360-8352(02)00036-0
10.1016/j.eswa.2009.03.022
10.1023/B:STCO.0000035301.49549.88
10.1016/j.asoc.2010.06.003
10.1016/j.ress.2013.05.021
10.1007/s00170-004-2340-z
10.1109/52.143107
10.1016/j.ress.2005.12.014
10.1016/j.ress.2011.06.006
10.1002/qre.1221
10.1016/S0893-6080(03)00169-2
10.1016/j.eswa.2012.12.033
10.1007/s13198-012-0123-8
10.1111/j.2517-6161.1992.tb01869.x
10.1109/59.744545
10.1023/A:1009715923555
10.1016/j.jss.2005.02.025
10.1007/BF00175354
10.1109/TR.2012.2194190
10.1016/j.eswa.2007.08.088
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.asoc.2015.02.026
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 802
ExternalDocumentID oai:HAL:hal-01340578v1
10_1016_j_asoc_2015_02_026
S1568494615001271
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
ID FETCH-LOGICAL-c334t-77046412aba7e1906505f4c2c99cb72414e4fa2db59b78b4c7c50058f5abfc5b3
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351296200068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Oct 14 20:33:37 EDT 2025
Sat Nov 29 03:05:25 EST 2025
Tue Nov 18 22:18:59 EST 2025
Fri Feb 23 02:23:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time series forecasting
Reliability prediction
Support vector regression
Parameter selection
Analytic selection
Genetic algorithms
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-77046412aba7e1906505f4c2c99cb72414e4fa2db59b78b4c7c50058f5abfc5b3
ORCID 0000-0002-7108-637X
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_01340578v1
crossref_citationtrail_10_1016_j_asoc_2015_02_026
crossref_primary_10_1016_j_asoc_2015_02_026
elsevier_sciencedirect_doi_10_1016_j_asoc_2015_02_026
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2015
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Burges (bib0255) 1998; 2
Melin, Olivas, Castillo (bib0370) 2013; 40
Cherkassky, Ma (bib0320) 2004; 17
Kwok (bib0395) 2001
Ho, Xie, Goh (bib0235) 2002; 42
Lin, Ying, Chen (bib0360) 2008; 35
Karunanithi, Whitley, Malaiya (bib0240) 1992; 9
Hong, Pai (bib0280) 2006; 28
Hong, Pai, Chen (bib0285) 2005
Van Looy, Verplancke, Benoit (bib0270) 2007
Xu, Xie, Tang (bib0405) 2003; 2
Ito, Nakano (bib0385) 2003
Valdez, Melin, Castillo (bib0410) 2009
Mattera, Haykin (bib0390) 1999
Vapnik (bib0250) 1995
Box, Jenkins, Reinsel (bib0300) 2013
Pai, Hong (bib0345) 2006; 79
Fei, Zhang (bib0245) 2009; 36
Spall (bib0340) 1998; 34
Whitley (bib0380) 1994; 4
Lins, Moura, Zio (bib0365) 2012; 28
Chen (bib0350) 2007; 92
Deb, Agrawal (bib0400) 1994
Singpurwalla, Soyer (bib0220) 1992
Boser, Guyon, Vapnik (bib0375) 1992
Elsayed (bib0215) 2012; 61
Grötschel, Lovász, Schrijver (bib0335) 1981; 1
Kumar, Singh (bib0225) 2012; 3
Melin, Soto, Castillo (bib0310) 2012; 39
Hong, Dong, Chen (bib0355) 2011; 11
Moura, Zio, Didier Lins (bib0290) 2011; 96
Acar (bib0275) 2013; 227
Hsu, Chang, Lin (bib0325) 2003
Yang, Zhang (bib0295) 2005
Welch, Bishop (bib0305) 1995
Wei, Tao, ZhuoShu (bib0210) 2013; 119
Amjady, Ehsan (bib0230) 1999; 14
Long, Gianola, Rosa (bib0265) 2011; 123
Pulido, Melin, Castillo (bib0315) 2013
Guely, Siarry (bib0330) 1993
Smola, Schölkopf (bib0260) 2004; 14
Lin (10.1016/j.asoc.2015.02.026_bib0360) 2008; 35
Guely (10.1016/j.asoc.2015.02.026_bib0330) 1993
Melin (10.1016/j.asoc.2015.02.026_bib0310) 2012; 39
Kumar (10.1016/j.asoc.2015.02.026_bib0225) 2012; 3
Yang (10.1016/j.asoc.2015.02.026_bib0295) 2005
Boser (10.1016/j.asoc.2015.02.026_bib0375) 1992
Cherkassky (10.1016/j.asoc.2015.02.026_bib0320) 2004; 17
Lins (10.1016/j.asoc.2015.02.026_bib0365) 2012; 28
Pulido (10.1016/j.asoc.2015.02.026_bib0315) 2013
Elsayed (10.1016/j.asoc.2015.02.026_bib0215) 2012; 61
Amjady (10.1016/j.asoc.2015.02.026_bib0230) 1999; 14
Fei (10.1016/j.asoc.2015.02.026_bib0245) 2009; 36
Chen (10.1016/j.asoc.2015.02.026_bib0350) 2007; 92
Kwok (10.1016/j.asoc.2015.02.026_bib0395) 2001
Hsu (10.1016/j.asoc.2015.02.026_bib0325) 2003
Melin (10.1016/j.asoc.2015.02.026_bib0370) 2013; 40
Moura (10.1016/j.asoc.2015.02.026_bib0290) 2011; 96
Ito (10.1016/j.asoc.2015.02.026_bib0385) 2003
Mattera (10.1016/j.asoc.2015.02.026_bib0390) 1999
Whitley (10.1016/j.asoc.2015.02.026_bib0380) 1994; 4
Box (10.1016/j.asoc.2015.02.026_bib0300) 2013
Karunanithi (10.1016/j.asoc.2015.02.026_bib0240) 1992; 9
Welch (10.1016/j.asoc.2015.02.026_bib0305) 1995
Pai (10.1016/j.asoc.2015.02.026_bib0345) 2006; 79
Acar (10.1016/j.asoc.2015.02.026_bib0275) 2013; 227
Valdez (10.1016/j.asoc.2015.02.026_bib0410) 2009
Burges (10.1016/j.asoc.2015.02.026_bib0255) 1998; 2
Vapnik (10.1016/j.asoc.2015.02.026_bib0250) 1995
Spall (10.1016/j.asoc.2015.02.026_bib0340) 1998; 34
Smola (10.1016/j.asoc.2015.02.026_bib0260) 2004; 14
Hong (10.1016/j.asoc.2015.02.026_bib0355) 2011; 11
Long (10.1016/j.asoc.2015.02.026_bib0265) 2011; 123
Grötschel (10.1016/j.asoc.2015.02.026_bib0335) 1981; 1
Wei (10.1016/j.asoc.2015.02.026_bib0210) 2013; 119
Xu (10.1016/j.asoc.2015.02.026_bib0405) 2003; 2
Deb (10.1016/j.asoc.2015.02.026_bib0400) 1994
Ho (10.1016/j.asoc.2015.02.026_bib0235) 2002; 42
Hong (10.1016/j.asoc.2015.02.026_bib0285) 2005
Van Looy (10.1016/j.asoc.2015.02.026_bib0270) 2007
Hong (10.1016/j.asoc.2015.02.026_bib0280) 2006; 28
Singpurwalla (10.1016/j.asoc.2015.02.026_bib0220) 1992
References_xml – volume: 9
  start-page: 53
  year: 1992
  end-page: 59
  ident: bib0240
  article-title: Using neural networks in reliability prediction
  publication-title: IEEE Softw.
– start-page: 16
  year: 2013
  end-page: 21
  ident: bib0315
  article-title: Optimization of ensemble neural networks with type-2 fuzzy response integration for predicting the Mackey–Glass time series
  publication-title: 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC)
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: bib0260
  article-title: A tutorial on support vector regression
  publication-title: Statist. Comput.
– volume: 61
  start-page: 282
  year: 2012
  end-page: 291
  ident: bib0215
  article-title: Overview of reliability testing
  publication-title: IEEE Trans. Reliab.
– start-page: 971
  year: 2005
  end-page: 2005
  ident: bib0295
  article-title: Application research of support vector machines in condition trend prediction of mechanical equipment
  publication-title: Adv. Neural Netw. – ISNN
– volume: 39
  start-page: 3494
  year: 2012
  end-page: 3506
  ident: bib0310
  article-title: A new approach for time series prediction using ensembles of ANFIS models
  publication-title: Expert Syst. Appl.
– start-page: 1241
  year: 1993
  end-page: 1246
  ident: bib0330
  article-title: Gradient descent method for optimizing various fuzzy rule bases
  publication-title: Second IEEE International Conference on Fuzzy Systems, vol. 2
– volume: 3
  start-page: 194
  year: 2012
  end-page: 208
  ident: bib0225
  article-title: An empirical study of software reliability prediction using machine learning techniques
  publication-title: Int. J. Syst. Assur. Eng. Manage.
– volume: 35
  start-page: 1817
  year: 2008
  end-page: 1824
  ident: bib0360
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Syst. Appl.
– volume: 123
  start-page: 1065
  year: 2011
  end-page: 1074
  ident: bib0265
  article-title: Application of support vector regression to genome-assisted prediction of quantitative traits
  publication-title: Theor. Appl. Genet.
– start-page: 211
  year: 1999
  end-page: 241
  ident: bib0390
  article-title: Support Vector Machines for Dynamic Reconstruction of a Chaotic System. Advances in Kernel Methods
– volume: 119
  start-page: 109
  year: 2013
  end-page: 116
  ident: bib0210
  article-title: A dynamic particle filter-support vector regression method for reliability prediction
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 14
  start-page: 287
  year: 1999
  end-page: 292
  ident: bib0230
  article-title: Evaluation of power systems reliability by an artificial neural network
  publication-title: IEEE Trans. Power Syst.
– year: 2013
  ident: bib0300
  article-title: Time Series Analysis: Forecasting and Control
– year: 1995
  ident: bib0305
  article-title: An Introduction to the Kalman Filter
– start-page: 2114
  year: 2009
  end-page: 2119
  ident: bib0410
  article-title: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making
  publication-title: FUZZ-IEEE 2009 IEEE International Conference on Fuzzy Systems
– start-page: 405
  year: 2001
  end-page: 410
  ident: bib0395
  article-title: Linear dependency between
  publication-title: Artificial Neural Networks – ICANN 2001
– volume: 227
  start-page: 2780
  year: 2013
  end-page: 2794
  ident: bib0275
  article-title: Reliability prediction through guided tail modeling using support vector machines Proceedings of the Institution of Mechanical Engineers
  publication-title: Part C: Journal of Mechanical Engineering
– volume: 2
  start-page: 255
  year: 2003
  end-page: 268
  ident: bib0405
  article-title: Application of neural networks in forecasting engine systems reliability
  publication-title: Appl. Soft Comput.
– volume: 96
  start-page: 1527
  year: 2011
  end-page: 1534
  ident: bib0290
  article-title: Failure and reliability prediction by support vector machines regression of time series data
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: bib0255
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
– start-page: 2077
  year: 2003
  end-page: 2082
  ident: bib0385
  article-title: Optimizing support vector regression hyperparameters based on cross-validation
  publication-title: Proceedings of the International Joint Conference on Neural Networks, vol. 3
– volume: 28
  start-page: 154
  year: 2006
  end-page: 161
  ident: bib0280
  article-title: Predicting engine reliability by support vector machines
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 92
  start-page: 423
  year: 2007
  end-page: 432
  ident: bib0350
  article-title: Forecasting systems reliability based on support vector regression with genetic algorithms
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 34
  start-page: 817
  year: 1998
  end-page: 823
  ident: bib0340
  article-title: Implementation of the simultaneous perturbation algorithm for stochastic optimization
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 42
  start-page: 371
  year: 2002
  end-page: 375
  ident: bib0235
  article-title: A comparative study of neural network and Box–Jenkins ARIMA modeling in time series prediction
  publication-title: Comp. Ind. Eng.
– start-page: 145
  year: 1992
  end-page: 156
  ident: bib0220
  article-title: Non-homogeneous autoregressive processes for tracking (software) reliability growth, and their Bayesian analysis
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– volume: 1
  start-page: 169
  year: 1981
  end-page: 197
  ident: bib0335
  article-title: The ellipsoid method and its consequences in combinatorial optimization
  publication-title: Combinatorica
– volume: 36
  start-page: 11352
  year: 2009
  end-page: 11357
  ident: bib0245
  article-title: Fault diagnosis of power transformer based on support vector machine with genetic algorithm
  publication-title: Expert Syst. Appl.
– start-page: 407
  year: 2005
  ident: bib0285
  article-title: Recurrent support vector machines in reliability prediction
  publication-title: Advances in Natural Computation
– volume: 17
  start-page: 113
  year: 2004
  end-page: 126
  ident: bib0320
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw.
– volume: 28
  start-page: 141
  year: 2012
  end-page: 158
  ident: bib0365
  article-title: A particle swarm-optimized support vector machine for reliability prediction
  publication-title: Qual. Reliab. Eng. Int.
– year: 1994
  ident: bib0400
  article-title: Simulated Binary Crossover for Continuous Search Space
– start-page: 144
  year: 1992
  end-page: 152
  ident: bib0375
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Proceedings of the Fifth Annual Workshop on Computational Learning Theory
– volume: 4
  start-page: 65
  year: 1994
  end-page: 85
  ident: bib0380
  article-title: A genetic algorithm tutorial
  publication-title: Stat. Comput.
– volume: 79
  start-page: 747
  year: 2006
  end-page: 755
  ident: bib0345
  article-title: Software reliability forecasting by support vector machines with simulated annealing algorithms
  publication-title: J. Syst. Softw.
– start-page: 11
  year: 2007
  ident: bib0270
  article-title: A novel approach for prediction of tacrolimus blood concentration in liver transplantation patients in the intensive care unit through support vector regression
  publication-title: Crit. Care
– year: 2003
  ident: bib0325
  article-title: A Practical Guide to Support Vector Classification
– volume: 40
  start-page: 3196
  year: 2013
  end-page: 3206
  ident: bib0370
  article-title: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic
  publication-title: Expert Syst. Appl.
– year: 1995
  ident: bib0250
  article-title: The Nature of Statistical Learning Theory
– volume: 11
  start-page: 1881
  year: 2011
  end-page: 1890
  ident: bib0355
  article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
  publication-title: Appl. Soft Comput.
– volume: 39
  start-page: 3494
  year: 2012
  ident: 10.1016/j.asoc.2015.02.026_bib0310
  article-title: A new approach for time series prediction using ensembles of ANFIS models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.040
– start-page: 2077
  year: 2003
  ident: 10.1016/j.asoc.2015.02.026_bib0385
  article-title: Optimizing support vector regression hyperparameters based on cross-validation
– year: 2013
  ident: 10.1016/j.asoc.2015.02.026_bib0300
– volume: 123
  start-page: 1065
  year: 2011
  ident: 10.1016/j.asoc.2015.02.026_bib0265
  article-title: Application of support vector regression to genome-assisted prediction of quantitative traits
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-011-1648-y
– volume: 1
  start-page: 169
  year: 1981
  ident: 10.1016/j.asoc.2015.02.026_bib0335
  article-title: The ellipsoid method and its consequences in combinatorial optimization
  publication-title: Combinatorica
  doi: 10.1007/BF02579273
– volume: 34
  start-page: 817
  year: 1998
  ident: 10.1016/j.asoc.2015.02.026_bib0340
  article-title: Implementation of the simultaneous perturbation algorithm for stochastic optimization
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.705889
– volume: 2
  start-page: 255
  year: 2003
  ident: 10.1016/j.asoc.2015.02.026_bib0405
  article-title: Application of neural networks in forecasting engine systems reliability
  publication-title: Appl. Soft Comput.
  doi: 10.1016/S1568-4946(02)00059-5
– volume: 42
  start-page: 371
  year: 2002
  ident: 10.1016/j.asoc.2015.02.026_bib0235
  article-title: A comparative study of neural network and Box–Jenkins ARIMA modeling in time series prediction
  publication-title: Comp. Ind. Eng.
  doi: 10.1016/S0360-8352(02)00036-0
– volume: 36
  start-page: 11352
  year: 2009
  ident: 10.1016/j.asoc.2015.02.026_bib0245
  article-title: Fault diagnosis of power transformer based on support vector machine with genetic algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.03.022
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.asoc.2015.02.026_bib0260
  article-title: A tutorial on support vector regression
  publication-title: Statist. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– start-page: 407
  year: 2005
  ident: 10.1016/j.asoc.2015.02.026_bib0285
  article-title: Recurrent support vector machines in reliability prediction
– start-page: 971
  year: 2005
  ident: 10.1016/j.asoc.2015.02.026_bib0295
  article-title: Application research of support vector machines in condition trend prediction of mechanical equipment
  publication-title: Adv. Neural Netw. – ISNN
– volume: 11
  start-page: 1881
  year: 2011
  ident: 10.1016/j.asoc.2015.02.026_bib0355
  article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.003
– start-page: 144
  year: 1992
  ident: 10.1016/j.asoc.2015.02.026_bib0375
  article-title: A training algorithm for optimal margin classifiers
– start-page: 11
  year: 2007
  ident: 10.1016/j.asoc.2015.02.026_bib0270
  article-title: A novel approach for prediction of tacrolimus blood concentration in liver transplantation patients in the intensive care unit through support vector regression
  publication-title: Crit. Care
– volume: 119
  start-page: 109
  year: 2013
  ident: 10.1016/j.asoc.2015.02.026_bib0210
  article-title: A dynamic particle filter-support vector regression method for reliability prediction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2013.05.021
– volume: 28
  start-page: 154
  year: 2006
  ident: 10.1016/j.asoc.2015.02.026_bib0280
  article-title: Predicting engine reliability by support vector machines
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-004-2340-z
– start-page: 211
  year: 1999
  ident: 10.1016/j.asoc.2015.02.026_bib0390
– start-page: 405
  year: 2001
  ident: 10.1016/j.asoc.2015.02.026_bib0395
  article-title: Linear dependency between ɛ and the input noise in ɛ-support vector regression
– volume: 9
  start-page: 53
  year: 1992
  ident: 10.1016/j.asoc.2015.02.026_bib0240
  article-title: Using neural networks in reliability prediction
  publication-title: IEEE Softw.
  doi: 10.1109/52.143107
– volume: 92
  start-page: 423
  year: 2007
  ident: 10.1016/j.asoc.2015.02.026_bib0350
  article-title: Forecasting systems reliability based on support vector regression with genetic algorithms
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2005.12.014
– year: 2003
  ident: 10.1016/j.asoc.2015.02.026_bib0325
– year: 1995
  ident: 10.1016/j.asoc.2015.02.026_bib0250
– year: 1994
  ident: 10.1016/j.asoc.2015.02.026_bib0400
– volume: 96
  start-page: 1527
  year: 2011
  ident: 10.1016/j.asoc.2015.02.026_bib0290
  article-title: Failure and reliability prediction by support vector machines regression of time series data
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2011.06.006
– year: 1995
  ident: 10.1016/j.asoc.2015.02.026_bib0305
– start-page: 2114
  year: 2009
  ident: 10.1016/j.asoc.2015.02.026_bib0410
  article-title: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making
– start-page: 16
  year: 2013
  ident: 10.1016/j.asoc.2015.02.026_bib0315
  article-title: Optimization of ensemble neural networks with type-2 fuzzy response integration for predicting the Mackey–Glass time series
– volume: 28
  start-page: 141
  year: 2012
  ident: 10.1016/j.asoc.2015.02.026_bib0365
  article-title: A particle swarm-optimized support vector machine for reliability prediction
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.1221
– volume: 17
  start-page: 113
  year: 2004
  ident: 10.1016/j.asoc.2015.02.026_bib0320
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(03)00169-2
– volume: 40
  start-page: 3196
  year: 2013
  ident: 10.1016/j.asoc.2015.02.026_bib0370
  article-title: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.12.033
– volume: 3
  start-page: 194
  year: 2012
  ident: 10.1016/j.asoc.2015.02.026_bib0225
  article-title: An empirical study of software reliability prediction using machine learning techniques
  publication-title: Int. J. Syst. Assur. Eng. Manage.
  doi: 10.1007/s13198-012-0123-8
– start-page: 145
  year: 1992
  ident: 10.1016/j.asoc.2015.02.026_bib0220
  article-title: Non-homogeneous autoregressive processes for tracking (software) reliability growth, and their Bayesian analysis
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1992.tb01869.x
– start-page: 1241
  year: 1993
  ident: 10.1016/j.asoc.2015.02.026_bib0330
  article-title: Gradient descent method for optimizing various fuzzy rule bases
– volume: 14
  start-page: 287
  year: 1999
  ident: 10.1016/j.asoc.2015.02.026_bib0230
  article-title: Evaluation of power systems reliability by an artificial neural network
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.744545
– volume: 2
  start-page: 121
  year: 1998
  ident: 10.1016/j.asoc.2015.02.026_bib0255
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 79
  start-page: 747
  year: 2006
  ident: 10.1016/j.asoc.2015.02.026_bib0345
  article-title: Software reliability forecasting by support vector machines with simulated annealing algorithms
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2005.02.025
– volume: 227
  start-page: 2780
  year: 2013
  ident: 10.1016/j.asoc.2015.02.026_bib0275
  article-title: Reliability prediction through guided tail modeling using support vector machines Proceedings of the Institution of Mechanical Engineers
  publication-title: Part C: Journal of Mechanical Engineering
– volume: 4
  start-page: 65
  year: 1994
  ident: 10.1016/j.asoc.2015.02.026_bib0380
  article-title: A genetic algorithm tutorial
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175354
– volume: 61
  start-page: 282
  year: 2012
  ident: 10.1016/j.asoc.2015.02.026_bib0215
  article-title: Overview of reliability testing
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2012.2194190
– volume: 35
  start-page: 1817
  year: 2008
  ident: 10.1016/j.asoc.2015.02.026_bib0360
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.08.088
SSID ssj0016928
Score 2.351861
Snippet •A novel ASGA–SVR method has been proposed and applied for reliability prediction.•This method combines an analytic selection (AS) and GA search for SVR...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 792
SubjectTerms Analytic selection
Artificial Intelligence
Computer Science
Genetic algorithms
Parameter selection
Reliability prediction
Support vector regression
Time series forecasting
Title System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection
URI https://dx.doi.org/10.1016/j.asoc.2015.02.026
https://hal.science/hal-01340578
Volume 30
WOSCitedRecordID wos000351296200068&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7cpIde-i5JXyylN6MiS1qv9mhaB6c1JlC3mFyW1UqKHRTZWLaJKf3vnX1J6iukh4IRZrySFs3n0ezszDcIve35MvUTFnlUktCLpM880ZPUk1SEhKZBJHUh7dcxnUzi2YyddTrfXC3MrqBlGV9fs9V_VTXIQNmqdPYf1F1fFATwHZQOR1A7HG-leMNBropUFoaDe6-IANKF6QkO3ma1XSmnu7vTAXsYeGFyYUtX6CaKvaJxrXSLHJeuDPfLNLlrcbFcw7irrmINv1LZNFUztO3rOge3AkuvU9e3G_ee1FtBOo_gfC6WTfRAx22njeR8oSXDEqz1sh2g6JEmHdBEzewrvm1k-7EXMRt6tFbY7M78ZtBNbOHynQCsqkQ8ohlWgz-wZ48Gn_nZhxM-Pp18-vnXVsrhaDCG41wUMMNQ-arxDpbOhwElDKz64eB0OPtYb0L1mW7NW0_X1lyZ9MBfJ_Q3v-bO3EXotccyfYju26UGHhiIPEKdrHyMHrg2Htha9Sfou0EMbiEGN4jByR5bxGCDGNwgBivEYIcYXMMARCm2iME1YnCDmGboU_TlZDh9P_JsVw5PhmG0geWY2g3vBSIRNAN3Elx8kkcykIzJhIJDGGVRLoI0ISyhcRJJsAKqeWVORJJLkoTP0EG5LLMjhP1MUTexPM7giiylTJEtKr2A9SA5zY9Rzz1TLi1lveqcUnCXm3jJlR640gP3A_j0j1G3PmdlCFtuHE2cqrh1OY0ryQGAN573BvRa30BxtAO0uJI1wHp-m0Ev0L3mT_MSHWzW2-wVuit3m0W1fm0h-QMNDrHO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+reliability+prediction+by+support+vector+regression+with+analytic+selection+and+genetic+algorithm+parameters+selection&rft.jtitle=Applied+soft+computing&rft.au=Wei%2C+Zhao&rft.au=Tao%2C+Tao&rft.au=Zio%2C+Enrico&rft.date=2015-05-01&rft.pub=Elsevier&rft.issn=1568-4946&rft.volume=30&rft_id=info:doi/10.1016%2Fj.asoc.2015.02.026&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01340578v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon