Numerical and Levenberg–Marquardt backpropagation neural networks computation of ternary nanofluid flow across parallel plates with Nield boundary conditions

The impact of the inclined magnetic field toward a flat parallel plate by operating incompressible suspension of three diverse types of oxide nano-sized particles in water-based ternary hybrid nano-liquid is investigated numerically. Flow is theoretically to be unstable squeezing the laminar flow of...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus Vol. 138; no. 1; p. 63
Main Authors: Sharma, Ram Prakash, Madhukesh, J. K., Shukla, Sunendra, Prasannakumara, B. C.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 21.01.2023
Springer Nature B.V
Subjects:
ISSN:2190-5444, 2190-5444
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The impact of the inclined magnetic field toward a flat parallel plate by operating incompressible suspension of three diverse types of oxide nano-sized particles in water-based ternary hybrid nano-liquid is investigated numerically. Flow is theoretically to be unstable squeezing the laminar flow of ternary nanofluid between infinite parallel plates with Nield boundary conditions with the help of neural networks computation taken. The surface is subjected to a steady fully developed free stream velocity with Cattaneo–Christov heat and mass flux used to mathematical model with the governing equations in the form of partial differential equations of flow, and thermal profile, including the boundary conditions. The entailed similarity solution to the problem changed into a system of ordinary differential equations and resolved to utilize RKF 45 with shooting technique. The impact of these processes' sensitivity of the liquid parameterized by different non-dimensional parameters has been discussed on usual profiles along with Sherwood number and Nusselt number with the characteristics with the support of plots and tables. The study reveals that for squeezing parameter S 1 < 0 velocity profile decays and is enhanced for S 1 > 0 . Increasing the magnetic effect decreases the velocity profile, whereas increasing the inclination angle increases the velocity profile. The developed ANN model was proved to be trustworthy due to its excellent accuracy throughout the training, validation, and testing processes.
AbstractList The impact of the inclined magnetic field toward a flat parallel plate by operating incompressible suspension of three diverse types of oxide nano-sized particles in water-based ternary hybrid nano-liquid is investigated numerically. Flow is theoretically to be unstable squeezing the laminar flow of ternary nanofluid between infinite parallel plates with Nield boundary conditions with the help of neural networks computation taken. The surface is subjected to a steady fully developed free stream velocity with Cattaneo–Christov heat and mass flux used to mathematical model with the governing equations in the form of partial differential equations of flow, and thermal profile, including the boundary conditions. The entailed similarity solution to the problem changed into a system of ordinary differential equations and resolved to utilize RKF 45 with shooting technique. The impact of these processes' sensitivity of the liquid parameterized by different non-dimensional parameters has been discussed on usual profiles along with Sherwood number and Nusselt number with the characteristics with the support of plots and tables. The study reveals that for squeezing parameter S 1 < 0 velocity profile decays and is enhanced for S 1 > 0 . Increasing the magnetic effect decreases the velocity profile, whereas increasing the inclination angle increases the velocity profile. The developed ANN model was proved to be trustworthy due to its excellent accuracy throughout the training, validation, and testing processes.
The impact of the inclined magnetic field toward a flat parallel plate by operating incompressible suspension of three diverse types of oxide nano-sized particles in water-based ternary hybrid nano-liquid is investigated numerically. Flow is theoretically to be unstable squeezing the laminar flow of ternary nanofluid between infinite parallel plates with Nield boundary conditions with the help of neural networks computation taken. The surface is subjected to a steady fully developed free stream velocity with Cattaneo–Christov heat and mass flux used to mathematical model with the governing equations in the form of partial differential equations of flow, and thermal profile, including the boundary conditions. The entailed similarity solution to the problem changed into a system of ordinary differential equations and resolved to utilize RKF 45 with shooting technique. The impact of these processes' sensitivity of the liquid parameterized by different non-dimensional parameters has been discussed on usual profiles along with Sherwood number and Nusselt number with the characteristics with the support of plots and tables. The study reveals that for squeezing parameter S1<0 velocity profile decays and is enhanced for S1>0. Increasing the magnetic effect decreases the velocity profile, whereas increasing the inclination angle increases the velocity profile. The developed ANN model was proved to be trustworthy due to its excellent accuracy throughout the training, validation, and testing processes.
ArticleNumber 63
Author Madhukesh, J. K.
Shukla, Sunendra
Prasannakumara, B. C.
Sharma, Ram Prakash
Author_xml – sequence: 1
  givenname: Ram Prakash
  surname: Sharma
  fullname: Sharma, Ram Prakash
  organization: Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh
– sequence: 2
  givenname: J. K.
  surname: Madhukesh
  fullname: Madhukesh, J. K.
  organization: Department of studies in Mathematics, Davangere University
– sequence: 3
  givenname: Sunendra
  surname: Shukla
  fullname: Shukla, Sunendra
  organization: Department of Basic and Applied Science, National Institute of Technology
– sequence: 4
  givenname: B. C.
  orcidid: 0000-0003-1950-4666
  surname: Prasannakumara
  fullname: Prasannakumara, B. C.
  email: dr.bcprasanna@gmail.com
  organization: Department of studies in Mathematics, Davangere University
BookMark eNqNkc9u3CAQh1GUSknTPEORcnYDBnvtQw9R1D-RtumlPSMMw5YNCw7grnLrO_QB8m55kuC4UqJeWi6DmPlGfPq9Roc-eEDoLSXvKOXkHMbteJ4oYy2pSM0qwtqOVPwAHde0J1XDOT98cT9CpyltSTm8p7znx-j-etpBtEo6LL3Ga_gJfoC4efj1-4uMt5OMOuNBqpsxhlFuZLbBYw9TLICHvA_xJmEVduOUl14wOEP0Mt5hL30wbrIaGxf2WKoYUsKjLKwDh0cnMyS8t_kHvrbgNB7C5PVMquC1ndelN-iVkS7B6Z96gr5__PDt8nO1_vrp6vJiXSnGeK5WXCvCmnroV6qrO8XKc6M0aZuuHowZuDGc1KDbpjVK9cTQXmnaUtWQgTNesxN0tuwtnrcTpCy2YSoaLom6p33Huo7OU--XqSeVCEYou3jnKK0TlIg5FjHHIpZYRIlFPMUieOFXf_FjtLti_B9kt5CpEH4D8fl__0IfAc3brZY
CitedBy_id crossref_primary_10_1007_s12043_024_02768_5
crossref_primary_10_1007_s10973_024_13767_4
crossref_primary_10_1177_23977914241304625
crossref_primary_10_1007_s10973_023_12483_9
crossref_primary_10_1140_epjp_s13360_024_05128_9
crossref_primary_10_1016_j_ijft_2025_101392
crossref_primary_10_1007_s10973_023_12691_3
crossref_primary_10_3390_molecules28083521
crossref_primary_10_1007_s11771_024_5741_1
crossref_primary_10_1007_s10973_025_13999_y
crossref_primary_10_1063_5_0154720
crossref_primary_10_1007_s40735_025_01032_6
crossref_primary_10_1016_j_molliq_2024_125257
crossref_primary_10_1080_10407782_2024_2366445
crossref_primary_10_1140_epjp_s13360_023_04852_y
crossref_primary_10_1007_s00521_025_11296_1
crossref_primary_10_1142_S0217984925501416
crossref_primary_10_1016_j_engappai_2024_109048
crossref_primary_10_1080_01430750_2025_2533372
crossref_primary_10_1016_j_chaos_2025_116301
crossref_primary_10_1007_s10973_023_12782_1
crossref_primary_10_1063_5_0249907
crossref_primary_10_1016_j_compbiomed_2025_110475
crossref_primary_10_1007_s11042_025_20623_6
crossref_primary_10_1080_02286203_2025_2460041
crossref_primary_10_1080_10407790_2024_2380034
crossref_primary_10_3390_ijms25094897
crossref_primary_10_1016_j_cjph_2025_04_026
crossref_primary_10_1007_s12043_024_02794_3
crossref_primary_10_3390_en16062630
crossref_primary_10_1080_10407790_2023_2282165
crossref_primary_10_1016_j_hybadv_2025_100427
crossref_primary_10_1016_j_engappai_2025_111101
crossref_primary_10_1155_2024_1223917
crossref_primary_10_1007_s00521_024_10325_9
crossref_primary_10_1007_s41939_024_00614_0
crossref_primary_10_1007_s10973_024_13146_z
crossref_primary_10_1140_epjb_s10051_025_00974_7
crossref_primary_10_1007_s11071_025_11496_3
Cites_doi 10.1007/s11012-012-9536-3
10.1016/j.apt.2019.04.009
10.1023/A:1018966222807
10.1016/j.jppr.2019.10.002
10.1016/j.aej.2021.10.027
10.1016/j.jmrt.2020.02.008
10.1016/j.aej.2021.08.033
10.1016/j.aej.2021.09.037
10.1016/B978-0-12-741252-8.50010-8
10.1515/nleng-2020-0009
10.1016/j.csite.2022.102074
10.1016/j.ijheatmasstransfer.2013.06.054
10.1016/j.surfin.2021.101654
10.1016/j.csite.2021.101362
10.3390/w12061723
10.1016/j.aej.2022.03.048
10.1016/j.jtice.2017.08.005
10.1016/j.aej.2021.01.050
10.1007/s10973-021-10981-2
10.1002/htj.21451
10.1016/j.molliq.2021.116103
10.1016/j.cjph.2021.07.016
10.1016/j.powtec.2021.01.033
10.1016/j.icheatmasstransfer.2019.104451
10.1007/s10483-021-2753-7
10.1016/j.cplett.2021.139194
10.1016/j.powtec.2020.05.013
10.1016/j.physa.2019.123138
10.1016/j.molliq.2017.02.061
10.3390/math10203918
10.1016/j.rinp.2020.103472
10.1016/j.molliq.2016.08.032
10.1108/HFF-12-2021-0767
10.1016/j.surfin.2021.101267
10.1515/phys-2022-0055
10.3390/mi13020302
10.1016/j.csite.2022.102332
10.1016/j.jclepro.2021.129525
10.1002/htj.22221
10.1016/j.rinp.2017.08.015
10.1016/j.icheatmasstransfer.2021.105425
10.1007/s11771-019-4080-0
10.1016/j.csite.2022.101837
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/s13360-023-03680-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_s13360_023_03680_4
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PCBAR
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c334t-74dc0352b97c828c3c335cd06582bffb4ff402ed656fcc90f19cd161c50b43423
IEDL.DBID P5Z
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932322900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-5444
IngestDate Wed Nov 05 02:13:00 EST 2025
Tue Nov 18 22:11:53 EST 2025
Sat Nov 29 03:58:24 EST 2025
Fri Feb 21 02:45:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-74dc0352b97c828c3c335cd06582bffb4ff402ed656fcc90f19cd161c50b43423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1950-4666
PQID 2919838812
PQPubID 2044220
ParticipantIDs proquest_journals_2919838812
crossref_citationtrail_10_1140_epjp_s13360_023_03680_4
crossref_primary_10_1140_epjp_s13360_023_03680_4
springer_journals_10_1140_epjp_s13360_023_03680_4
PublicationCentury 2000
PublicationDate 2023-01-21
PublicationDateYYYYMMDD 2023-01-21
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-21
  day: 21
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References NayakMKPrakashJTripathiDPandeyVS3D radiative convective flow of ZnO-SAE50nano-lubricant in presence of varying magnetic field and heterogeneous reactionsPropuls. Power Res.2019833935010.1016/j.jppr.2019.10.002
HasnainJAbidNAlansariMOZakaUllahMAnalysis on Cattaneo-Christov heat flux in three-phase oscillatory flow of non-Newtonian fluid through porous zone bounded by hybrid nanofluidsCase Stud. Therm. Eng.20223510207410.1016/j.csite.2022.102074
MuhammadKHayatTMomaniSAsgharSFDM analysis for squeezed flow of hybrid nanofluid in presence of Cattaneo-Christov (C-C) heat flux and convective boundary conditionAlex. Eng. J.2022614719472710.1016/j.aej.2021.10.027
NaduvinamaniNBShankarURadiative squeezing flow of unsteady magneto-hydrodynamic Casson fluid between two parallel platesJ. Cent. South Univ.2019261184120410.1007/s11771-019-4080-0
KhanUZaibAKhanIBaleanuDSherifEMComparative investigation on MHD nonlinear radiative flow through a moving thin needle comprising two hybridized AA7075 and AA7072 alloys nanomaterials through binary chemical reaction with activation energyJ Mater Res Techno.2020933817382810.1016/j.jmrt.2020.02.008
ShahNAWakifAEl-ZaharERThummaTYookSHeat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana- Baleanu time-fractional integralAlex. Eng. J.202261100451005310.1016/j.aej.2022.03.048
GasmiHKhanUZaibAIshakAEldinSMRaizahZAnalysis of mixed convection on two-phase nanofluid flow past a vertical plate in Brinkman-extended Darcy porous medium with Nield conditionsMathematics202210391810.3390/math10203918
MadhukeshJKNaveen KumarRGowdaRJPPrasannakumaraBCRameshGKKhanMIKhanSUChuYNumerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: a non-Fourier heat flux model approachJ. Mol. Liq.202133511610310.1016/j.molliq.2021.116103
S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. in The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco, USA 1995, 99–105 (FED 231/MD 66)
ArifMKumamPKumamWMostafaZHeat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: a fractional modelCase Stud. Therm. Eng.20223110183710.1016/j.csite.2022.101837
MathewAAreekaraSSabuASSaleemSSignificance of multiple slips and nanoparticle shape on stagnation point flow of a silver-blood nanofluid in the presence of the induced magnetic fieldSurf. Interfaces.20212510126710.1016/j.surfin.2021.101267
PuneethVAnandikaRManjunathaSKhanMIKhanMIAlthobaitiAGalalAMImplementation of modified Buongiorno model for the investigation of chemically reacting rGO–Fe3O4–TiO2–H2O ternary nanofluid jet flow in the presence of bio-active mixersChem. Phys. Lett.202278613919410.1016/j.cplett.2021.139194
OjjelaORajuAKambhatlaPKInfluence of thermophoresis and induced magnetic field on chemically reacting mixed convective flow of Jeffrey fluid between porous parallel platesJ. Mol. Liq.201723219520610.1016/j.molliq.2017.02.061
ChuYMNisarKSKhanUKasmaeiHDMalaverMZaibAKhanIMixed convection in MHD water-based molybdenum disulphide-graphene oxide hybrid nanofluid through an upright cylinder with shape factorWater202012172310.3390/w12061723
HussainAMalikMYMHD nanofluid flow over stretching cylinder with convective boundary conditions and Nield conditions in the presence of gyrotactic swimming microorganism: A bio mathematical modelInt. Commun. Heat Mass Transf.202112610542510.1016/j.icheatmasstransfer.2021.105425
FamakinwaOAKorikoOKAdegbieKSEffects of viscous dissipation and thermal radiation on time-dependent incompressible squeezing flow of CuO–Al2O3∕water hybrid nanofluid between two parallel plates with variable viscosityJCMDS20225100062
KuznetsovAVNieldDAThe Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised modelInt. J. Heat Mass Transf.20136568268510.1016/j.ijheatmasstransfer.2013.06.054
RameshGKMadhukeshJKPrasannakumaraBCRoopaGSSignificance of aluminium alloys particle flow through a parallel plates with activation energy and chemical reactionJ Therm Anal Calorim.20221476971698110.1007/s10973-021-10981-2
LahmarSKezzarMEidMRSariMRHeat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivityPhys. A Stat. Mech. Appl.20205401231380745798110.1016/j.physa.2019.123138
JavaherdehKKarimiHKhojastehANumerical study of heat transfer enhancement of non-Newtonian nanofluid in porous blocks in a channel partiallyPowder Technol.202138327027910.1016/j.powtec.2021.01.033
R. Hecht-Nielsen, Theory of the backpropagation neural network**based on “no indent” by Robert Hecht-Nielsen, which appeared in proceedings of the international joint conference on neural networks 1, 593–611, June 1989. © 1989 IEEE., in Neural Networks for Perception, (Elsevier, 1992), p. 65–93.
S. Lee, S.U.S. Choi, Application of metallic nanoparticle suspensions in advanced cooling systems. Technical report, Argonne National Lab. (ANL), (Argonne, IL, United States, 1996)
WainiIKhanUZaibAIshakAPopIThermophoresis particle deposition of CoFe2O4-TiO2 hybrid nanoparticles on micropolar flow through a moving flat plate with viscous dissipation effectsInt. J. Numer. Methods Heat Fluid Flow.2022323259328210.1108/HFF-12-2021-0767
GharamiPPMamunAGaziMdAAnannaSNAhmmedSFNumerical exploration of MHD unsteady flow of THNF passing through a moving cylinder with Soret and Dufour effectsPartial Diff. Equ. App. Math.20226100463
AtlasMHaqRUMekkaouiTActive and zero flux of nanoparticles between a squeezing channel with thermal radiation effectsJ. Mol. Liq.201622328929810.1016/j.molliq.2016.08.032
NakhchiMEEsfahaniJANumerical investigation of turbulent Cu-water nanofluid in heat exchanger tube equipped with perforated conical ringsAdv. Powder Technol.2019301338134710.1016/j.apt.2019.04.009
ErbRJIntroduction to backpropagation neural network computationPharm Res.19931016517010.1023/A:1018966222807
RekhaMBSarrisIEMadhukeshJKRaghunathaKRPrasannakumaraBCActivation energy impact on flow of AA7072-AA7075/water-based hybrid nanofluid through a cone, wedge, and plateMicromachines20221330210.3390/mi13020302
SahooRRThermo-hydraulic characteristics of a radiator with various shape nanoparticle-based ternary hybrid nanofluidPowder Technol.2020370192810.1016/j.powtec.2020.05.013
MadhukeshJKRameshGKPrasannakumaraBCShehzadSAAbbasiFMBio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energyAppl. Math. Mech.-Engl. Ed.2021421191120410.1007/s10483-021-2753-7
MustafaMHayatTObaidatSOn heat and mass transfer in the unsteady squeezing flow between parallel platesMeccanica201247158115891293.7605710.1007/s11012-012-9536-3
RameshGKMadhukeshJKActivation energy process in hybrid CNTs and induced magnetic slip flow with heat source/sinkChin. J. Phys.20217337539010.1016/j.cjph.2021.07.016
AnimasaunILYookSMuhammadTMathewADynamics of the ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surfaceSurf. Interfaces20222810165410.1016/j.surfin.2021.101654
WaqasHKhanSUShehzadSAImranMRadiative flow of Maxwell nanofluid containing gyrotactic microorganism and energy activation with convective Nield conditionsHeat Transf Asian Res.2019481663168710.1002/htj.21451
HayatTRashidMAlsaediAMHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheetResults Phys.20177310731152017ResPh...7.3107H10.1016/j.rinp.2017.08.015
KumarVSahooRR4 E’s (energy, exergy, economic, and environmental) performance analysis of air heat exchanger equipped with various twisted tabulator inserts utilizing ternary hybrid nanofluidsAlex. Eng. J.2022615033505010.1016/j.aej.2021.09.037
FarooqUWaqasHKhanMIKhanSUChuY-MKadrySThermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat sourceAlex. Eng. J.2021603073308610.1016/j.aej.2021.01.050
ShankarUNaduvinamaniNBBashaHA generalized perspective of Fourier and Fick’s laws: magnetized effects of Cattaneo-Christov models on transient nanofluid flow between two parallel plates with Brownian motion and thermophoresisNonlinear Eng.202092012222020NLE.....9..201S10.1515/nleng-2020-0009
RamzanMDawarASaeedAKumamPSitthithakerngkietKLoneSAAnalysis of the partially ionized kerosene oil-based ternary nanofluid flow over a convectively heated rotating surfaceOpen Phys.20222050752510.1515/phys-2022-0055
DogonchiASGanjiDDImpact of Cattaneo-Christov heat flux on MHD nanofluid flow and heat transfer between parallel plates considering thermal radiation effectJ Taiwan Inst Chem Eng.20178011210.1016/j.jtice.2017.08.005
JyothiAMVarun KumarRSMadhukeshJKPrasannakumaraBCRameshGKSqueezing flow of Casson hybrid nanofluid between parallel plates with a heat source or sink and thermophoretic particle depositionHeat Transfer.20215011810.1002/htj.22221
SahooRRKumarVDevelopment of a new correlation to determine the viscosity of ternary hybrid nanofluidInt. Commun. Heat Mass Transf.202011110445110.1016/j.icheatmasstransfer.2019.104451
FerdowsMAlamJMurtazaGTzirtzilakisEESunSBio magnetic flow with CoFe2O4 magnetic particles through an unsteady stretching/shrinking cylinderMagneto chem.2022827
IqbalMSMalikFMustafaIKhanIGhaffariARiazANisarKSImpact of induced magnetic field on thermal enhancement in gravity-driven Fe3O4 ferrofluid flow through vertical non-isothermal surfaceResults Phys.20201910347210.1016/j.rinp.2020.103472
Abou-zeidMYOuafMEHall currents effect on squeezing flow of non-Newtonian nanofluid through a porous medium between two parallel platesCase Stud. Therm. Eng.20212810136210.1016/j.csite.2021.101362
AnandVWJGaneshSChandrasekarPJayaramanJMariadhasAUnsteady MHD Couette viscous fluid flow through silver metallic parallel plates with an inclined magnetic field and angular velocity
O Ojjela (3680_CR27) 2017; 232
S Lahmar (3680_CR37) 2020; 540
V Puneeth (3680_CR18) 2022; 786
YM Chu (3680_CR39) 2020; 12
U Farooq (3680_CR36) 2021; 60
AV Kuznetsov (3680_CR44) 2013; 65
U Shankar (3680_CR38) 2020; 9
MB Rekha (3680_CR9) 2022; 13
3680_CR48
V Kumar (3680_CR13) 2022; 61
M Ramzan (3680_CR22) 2022; 20
T Hayat (3680_CR41) 2017; 7
M Mustafa (3680_CR31) 2012; 47
M Arif (3680_CR20) 2022; 31
AS Dogonchi (3680_CR35) 2017; 80
3680_CR1
3680_CR2
M Atlas (3680_CR34) 2016; 223
K Muhammad (3680_CR32) 2022; 61
OA Famakinwa (3680_CR10) 2022; 5
JK Madhukesh (3680_CR47) 2021; 42
RR Sahoo (3680_CR19) 2020; 370
AM Jyothi (3680_CR11) 2021; 50
MY Abou-zeid (3680_CR5) 2021; 28
RJ Erb (3680_CR49) 1993; 10
JK Madhukesh (3680_CR8) 2021; 335
GK Ramesh (3680_CR46) 2022; 147
I Waini (3680_CR40) 2022; 32
RR Sahoo (3680_CR14) 2020; 111
M Ferdows (3680_CR43) 2022; 8
PP Gharami (3680_CR21) 2022; 6
H Gasmi (3680_CR30) 2022; 10
IL Animasaun (3680_CR15) 2022; 28
A Hussain (3680_CR28) 2021; 126
K Sarada (3680_CR17) 2022; 38
A Mathew (3680_CR25) 2021; 25
MS Iqbal (3680_CR24) 2020; 19
H Waqas (3680_CR6) 2022; 61
ME Nakhchi (3680_CR3) 2019; 30
H Waqas (3680_CR29) 2019; 48
NA Shah (3680_CR16) 2022; 61
J Hasnain (3680_CR33) 2022; 35
VWJ Anand (3680_CR26) 2021; 44
NB Naduvinamani (3680_CR45) 2019; 26
U Khan (3680_CR7) 2020; 9
K Javaherdeh (3680_CR4) 2021; 383
GK Ramesh (3680_CR23) 2021; 73
H Adun (3680_CR12) 2021; 328
MK Nayak (3680_CR42) 2019; 8
References_xml – reference: WainiIKhanUZaibAIshakAPopIThermophoresis particle deposition of CoFe2O4-TiO2 hybrid nanoparticles on micropolar flow through a moving flat plate with viscous dissipation effectsInt. J. Numer. Methods Heat Fluid Flow.2022323259328210.1108/HFF-12-2021-0767
– reference: ArifMKumamPKumamWMostafaZHeat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: a fractional modelCase Stud. Therm. Eng.20223110183710.1016/j.csite.2022.101837
– reference: R. Hecht-Nielsen, Theory of the backpropagation neural network**based on “no indent” by Robert Hecht-Nielsen, which appeared in proceedings of the international joint conference on neural networks 1, 593–611, June 1989. © 1989 IEEE., in Neural Networks for Perception, (Elsevier, 1992), p. 65–93.
– reference: S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. in The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco, USA 1995, 99–105 (FED 231/MD 66)
– reference: OjjelaORajuAKambhatlaPKInfluence of thermophoresis and induced magnetic field on chemically reacting mixed convective flow of Jeffrey fluid between porous parallel platesJ. Mol. Liq.201723219520610.1016/j.molliq.2017.02.061
– reference: MustafaMHayatTObaidatSOn heat and mass transfer in the unsteady squeezing flow between parallel platesMeccanica201247158115891293.7605710.1007/s11012-012-9536-3
– reference: MuhammadKHayatTMomaniSAsgharSFDM analysis for squeezed flow of hybrid nanofluid in presence of Cattaneo-Christov (C-C) heat flux and convective boundary conditionAlex. Eng. J.2022614719472710.1016/j.aej.2021.10.027
– reference: SahooRRKumarVDevelopment of a new correlation to determine the viscosity of ternary hybrid nanofluidInt. Commun. Heat Mass Transf.202011110445110.1016/j.icheatmasstransfer.2019.104451
– reference: IqbalMSMalikFMustafaIKhanIGhaffariARiazANisarKSImpact of induced magnetic field on thermal enhancement in gravity-driven Fe3O4 ferrofluid flow through vertical non-isothermal surfaceResults Phys.20201910347210.1016/j.rinp.2020.103472
– reference: WaqasHKhanSUShehzadSAImranMRadiative flow of Maxwell nanofluid containing gyrotactic microorganism and energy activation with convective Nield conditionsHeat Transf Asian Res.2019481663168710.1002/htj.21451
– reference: MadhukeshJKNaveen KumarRGowdaRJPPrasannakumaraBCRameshGKKhanMIKhanSUChuYNumerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: a non-Fourier heat flux model approachJ. Mol. Liq.202133511610310.1016/j.molliq.2021.116103
– reference: RameshGKMadhukeshJKPrasannakumaraBCRoopaGSSignificance of aluminium alloys particle flow through a parallel plates with activation energy and chemical reactionJ Therm Anal Calorim.20221476971698110.1007/s10973-021-10981-2
– reference: RameshGKMadhukeshJKActivation energy process in hybrid CNTs and induced magnetic slip flow with heat source/sinkChin. J. Phys.20217337539010.1016/j.cjph.2021.07.016
– reference: HussainAMalikMYMHD nanofluid flow over stretching cylinder with convective boundary conditions and Nield conditions in the presence of gyrotactic swimming microorganism: A bio mathematical modelInt. Commun. Heat Mass Transf.202112610542510.1016/j.icheatmasstransfer.2021.105425
– reference: FamakinwaOAKorikoOKAdegbieKSEffects of viscous dissipation and thermal radiation on time-dependent incompressible squeezing flow of CuO–Al2O3∕water hybrid nanofluid between two parallel plates with variable viscosityJCMDS20225100062
– reference: MathewAAreekaraSSabuASSaleemSSignificance of multiple slips and nanoparticle shape on stagnation point flow of a silver-blood nanofluid in the presence of the induced magnetic fieldSurf. Interfaces.20212510126710.1016/j.surfin.2021.101267
– reference: FarooqUWaqasHKhanMIKhanSUChuY-MKadrySThermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat sourceAlex. Eng. J.2021603073308610.1016/j.aej.2021.01.050
– reference: RekhaMBSarrisIEMadhukeshJKRaghunathaKRPrasannakumaraBCActivation energy impact on flow of AA7072-AA7075/water-based hybrid nanofluid through a cone, wedge, and plateMicromachines20221330210.3390/mi13020302
– reference: PuneethVAnandikaRManjunathaSKhanMIKhanMIAlthobaitiAGalalAMImplementation of modified Buongiorno model for the investigation of chemically reacting rGO–Fe3O4–TiO2–H2O ternary nanofluid jet flow in the presence of bio-active mixersChem. Phys. Lett.202278613919410.1016/j.cplett.2021.139194
– reference: MadhukeshJKRameshGKPrasannakumaraBCShehzadSAAbbasiFMBio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energyAppl. Math. Mech.-Engl. Ed.2021421191120410.1007/s10483-021-2753-7
– reference: NaduvinamaniNBShankarURadiative squeezing flow of unsteady magneto-hydrodynamic Casson fluid between two parallel platesJ. Cent. South Univ.2019261184120410.1007/s11771-019-4080-0
– reference: DogonchiASGanjiDDImpact of Cattaneo-Christov heat flux on MHD nanofluid flow and heat transfer between parallel plates considering thermal radiation effectJ Taiwan Inst Chem Eng.20178011210.1016/j.jtice.2017.08.005
– reference: JavaherdehKKarimiHKhojastehANumerical study of heat transfer enhancement of non-Newtonian nanofluid in porous blocks in a channel partiallyPowder Technol.202138327027910.1016/j.powtec.2021.01.033
– reference: JyothiAMVarun KumarRSMadhukeshJKPrasannakumaraBCRameshGKSqueezing flow of Casson hybrid nanofluid between parallel plates with a heat source or sink and thermophoretic particle depositionHeat Transfer.20215011810.1002/htj.22221
– reference: ErbRJIntroduction to backpropagation neural network computationPharm Res.19931016517010.1023/A:1018966222807
– reference: KhanUZaibAKhanIBaleanuDSherifEMComparative investigation on MHD nonlinear radiative flow through a moving thin needle comprising two hybridized AA7075 and AA7072 alloys nanomaterials through binary chemical reaction with activation energyJ Mater Res Techno.2020933817382810.1016/j.jmrt.2020.02.008
– reference: ShankarUNaduvinamaniNBBashaHA generalized perspective of Fourier and Fick’s laws: magnetized effects of Cattaneo-Christov models on transient nanofluid flow between two parallel plates with Brownian motion and thermophoresisNonlinear Eng.202092012222020NLE.....9..201S10.1515/nleng-2020-0009
– reference: Abou-zeidMYOuafMEHall currents effect on squeezing flow of non-Newtonian nanofluid through a porous medium between two parallel platesCase Stud. Therm. Eng.20212810136210.1016/j.csite.2021.101362
– reference: SahooRRThermo-hydraulic characteristics of a radiator with various shape nanoparticle-based ternary hybrid nanofluidPowder Technol.2020370192810.1016/j.powtec.2020.05.013
– reference: S. Lee, S.U.S. Choi, Application of metallic nanoparticle suspensions in advanced cooling systems. Technical report, Argonne National Lab. (ANL), (Argonne, IL, United States, 1996)
– reference: NakhchiMEEsfahaniJANumerical investigation of turbulent Cu-water nanofluid in heat exchanger tube equipped with perforated conical ringsAdv. Powder Technol.2019301338134710.1016/j.apt.2019.04.009
– reference: ShahNAWakifAEl-ZaharERThummaTYookSHeat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana- Baleanu time-fractional integralAlex. Eng. J.202261100451005310.1016/j.aej.2022.03.048
– reference: WaqasHKhanSAMuhammadTThermal analysis of magnetized flow of AA7072-AA7075/blood-based hybrid nanofluids in a rotating channelAlex. Eng. J.2022613059306810.1016/j.aej.2021.08.033
– reference: AtlasMHaqRUMekkaouiTActive and zero flux of nanoparticles between a squeezing channel with thermal radiation effectsJ. Mol. Liq.201622328929810.1016/j.molliq.2016.08.032
– reference: KuznetsovAVNieldDAThe Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised modelInt. J. Heat Mass Transf.20136568268510.1016/j.ijheatmasstransfer.2013.06.054
– reference: RamzanMDawarASaeedAKumamPSitthithakerngkietKLoneSAAnalysis of the partially ionized kerosene oil-based ternary nanofluid flow over a convectively heated rotating surfaceOpen Phys.20222050752510.1515/phys-2022-0055
– reference: ChuYMNisarKSKhanUKasmaeiHDMalaverMZaibAKhanIMixed convection in MHD water-based molybdenum disulphide-graphene oxide hybrid nanofluid through an upright cylinder with shape factorWater202012172310.3390/w12061723
– reference: GasmiHKhanUZaibAIshakAEldinSMRaizahZAnalysis of mixed convection on two-phase nanofluid flow past a vertical plate in Brinkman-extended Darcy porous medium with Nield conditionsMathematics202210391810.3390/math10203918
– reference: AdunHKavazDDagbasiMReview of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effectsJ. Clean. Prod.202132812952510.1016/j.jclepro.2021.129525
– reference: HasnainJAbidNAlansariMOZakaUllahMAnalysis on Cattaneo-Christov heat flux in three-phase oscillatory flow of non-Newtonian fluid through porous zone bounded by hybrid nanofluidsCase Stud. Therm. Eng.20223510207410.1016/j.csite.2022.102074
– reference: GharamiPPMamunAGaziMdAAnannaSNAhmmedSFNumerical exploration of MHD unsteady flow of THNF passing through a moving cylinder with Soret and Dufour effectsPartial Diff. Equ. App. Math.20226100463
– reference: SaradaKGamaounFAbdulrahmanAParameshSOKumarRPrasannaGDGowdaRJPImpact of the exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux modelCase Stud. Therm. Eng.20223810233210.1016/j.csite.2022.102332
– reference: FerdowsMAlamJMurtazaGTzirtzilakisEESunSBio magnetic flow with CoFe2O4 magnetic particles through an unsteady stretching/shrinking cylinderMagneto chem.2022827
– reference: HayatTRashidMAlsaediAMHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheetResults Phys.20177310731152017ResPh...7.3107H10.1016/j.rinp.2017.08.015
– reference: AnandVWJGaneshSChandrasekarPJayaramanJMariadhasAUnsteady MHD Couette viscous fluid flow through silver metallic parallel plates with an inclined magnetic field and angular velocity subjected to constant suction at lower plateMater. Today: Proc.20214439193923
– reference: KumarVSahooRR4 E’s (energy, exergy, economic, and environmental) performance analysis of air heat exchanger equipped with various twisted tabulator inserts utilizing ternary hybrid nanofluidsAlex. Eng. J.2022615033505010.1016/j.aej.2021.09.037
– reference: AnimasaunILYookSMuhammadTMathewADynamics of the ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surfaceSurf. Interfaces20222810165410.1016/j.surfin.2021.101654
– reference: NayakMKPrakashJTripathiDPandeyVS3D radiative convective flow of ZnO-SAE50nano-lubricant in presence of varying magnetic field and heterogeneous reactionsPropuls. Power Res.2019833935010.1016/j.jppr.2019.10.002
– reference: LahmarSKezzarMEidMRSariMRHeat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivityPhys. A Stat. Mech. Appl.20205401231380745798110.1016/j.physa.2019.123138
– volume: 5
  start-page: 100062
  year: 2022
  ident: 3680_CR10
  publication-title: JCMDS
– volume: 47
  start-page: 1581
  year: 2012
  ident: 3680_CR31
  publication-title: Meccanica
  doi: 10.1007/s11012-012-9536-3
– ident: 3680_CR1
– volume: 30
  start-page: 1338
  year: 2019
  ident: 3680_CR3
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2019.04.009
– volume: 10
  start-page: 165
  year: 1993
  ident: 3680_CR49
  publication-title: Pharm Res.
  doi: 10.1023/A:1018966222807
– volume: 8
  start-page: 339
  year: 2019
  ident: 3680_CR42
  publication-title: Propuls. Power Res.
  doi: 10.1016/j.jppr.2019.10.002
– volume: 61
  start-page: 4719
  year: 2022
  ident: 3680_CR32
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.10.027
– volume: 8
  start-page: 27
  year: 2022
  ident: 3680_CR43
  publication-title: Magneto chem.
– volume: 9
  start-page: 3817
  issue: 3
  year: 2020
  ident: 3680_CR7
  publication-title: J Mater Res Techno.
  doi: 10.1016/j.jmrt.2020.02.008
– volume: 61
  start-page: 3059
  year: 2022
  ident: 3680_CR6
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.08.033
– volume: 61
  start-page: 5033
  year: 2022
  ident: 3680_CR13
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.09.037
– ident: 3680_CR48
  doi: 10.1016/B978-0-12-741252-8.50010-8
– volume: 9
  start-page: 201
  year: 2020
  ident: 3680_CR38
  publication-title: Nonlinear Eng.
  doi: 10.1515/nleng-2020-0009
– volume: 35
  start-page: 102074
  year: 2022
  ident: 3680_CR33
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102074
– volume: 65
  start-page: 682
  year: 2013
  ident: 3680_CR44
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.06.054
– ident: 3680_CR2
– volume: 28
  start-page: 101654
  year: 2022
  ident: 3680_CR15
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2021.101654
– volume: 28
  start-page: 101362
  year: 2021
  ident: 3680_CR5
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101362
– volume: 12
  start-page: 1723
  year: 2020
  ident: 3680_CR39
  publication-title: Water
  doi: 10.3390/w12061723
– volume: 61
  start-page: 10045
  year: 2022
  ident: 3680_CR16
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.03.048
– volume: 80
  start-page: 1
  year: 2017
  ident: 3680_CR35
  publication-title: J Taiwan Inst Chem Eng.
  doi: 10.1016/j.jtice.2017.08.005
– volume: 60
  start-page: 3073
  year: 2021
  ident: 3680_CR36
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.01.050
– volume: 147
  start-page: 6971
  year: 2022
  ident: 3680_CR46
  publication-title: J Therm Anal Calorim.
  doi: 10.1007/s10973-021-10981-2
– volume: 48
  start-page: 1663
  year: 2019
  ident: 3680_CR29
  publication-title: Heat Transf Asian Res.
  doi: 10.1002/htj.21451
– volume: 335
  start-page: 116103
  year: 2021
  ident: 3680_CR8
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.116103
– volume: 73
  start-page: 375
  year: 2021
  ident: 3680_CR23
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.07.016
– volume: 383
  start-page: 270
  year: 2021
  ident: 3680_CR4
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.01.033
– volume: 6
  start-page: 100463
  year: 2022
  ident: 3680_CR21
  publication-title: Partial Diff. Equ. App. Math.
– volume: 111
  start-page: 104451
  year: 2020
  ident: 3680_CR14
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.104451
– volume: 42
  start-page: 1191
  year: 2021
  ident: 3680_CR47
  publication-title: Appl. Math. Mech.-Engl. Ed.
  doi: 10.1007/s10483-021-2753-7
– volume: 786
  start-page: 139194
  year: 2022
  ident: 3680_CR18
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2021.139194
– volume: 370
  start-page: 19
  year: 2020
  ident: 3680_CR19
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.05.013
– volume: 540
  start-page: 123138
  year: 2020
  ident: 3680_CR37
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.123138
– volume: 232
  start-page: 195
  year: 2017
  ident: 3680_CR27
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.02.061
– volume: 10
  start-page: 3918
  year: 2022
  ident: 3680_CR30
  publication-title: Mathematics
  doi: 10.3390/math10203918
– volume: 19
  start-page: 103472
  year: 2020
  ident: 3680_CR24
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103472
– volume: 44
  start-page: 3919
  year: 2021
  ident: 3680_CR26
  publication-title: Mater. Today: Proc.
– volume: 223
  start-page: 289
  year: 2016
  ident: 3680_CR34
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.08.032
– volume: 32
  start-page: 3259
  year: 2022
  ident: 3680_CR40
  publication-title: Int. J. Numer. Methods Heat Fluid Flow.
  doi: 10.1108/HFF-12-2021-0767
– volume: 25
  start-page: 101267
  year: 2021
  ident: 3680_CR25
  publication-title: Surf. Interfaces.
  doi: 10.1016/j.surfin.2021.101267
– volume: 20
  start-page: 507
  year: 2022
  ident: 3680_CR22
  publication-title: Open Phys.
  doi: 10.1515/phys-2022-0055
– volume: 13
  start-page: 302
  year: 2022
  ident: 3680_CR9
  publication-title: Micromachines
  doi: 10.3390/mi13020302
– volume: 38
  start-page: 102332
  year: 2022
  ident: 3680_CR17
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102332
– volume: 328
  start-page: 129525
  year: 2021
  ident: 3680_CR12
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.129525
– volume: 50
  start-page: 1
  year: 2021
  ident: 3680_CR11
  publication-title: Heat Transfer.
  doi: 10.1002/htj.22221
– volume: 7
  start-page: 3107
  year: 2017
  ident: 3680_CR41
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.08.015
– volume: 126
  start-page: 105425
  year: 2021
  ident: 3680_CR28
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2021.105425
– volume: 26
  start-page: 1184
  year: 2019
  ident: 3680_CR45
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-019-4080-0
– volume: 31
  start-page: 101837
  year: 2022
  ident: 3680_CR20
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.101837
SSID ssj0000491494
Score 2.456243
Snippet The impact of the inclined magnetic field toward a flat parallel plate by operating incompressible suspension of three diverse types of oxide nano-sized...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Aluminum
Applied and Technical Physics
Atomic
Back propagation networks
Boundary conditions
Complex Systems
Compressing
Computation
Condensed Matter Physics
Differential equations
Energy
Fluid flow
Heat conductivity
Heat exchangers
Heat transfer
Hyperthermia
Inclination angle
Investigations
Laminar flow
Magnetic effects
Magnetic fields
Mathematical and Computational Physics
Mathematical models
Molecular
Nanofluids
Nanoparticles
Neural networks
Optical and Plasma Physics
Parallel plates
Parameter sensitivity
Partial differential equations
Physics
Physics and Astronomy
Radiation
Regular Article
Similarity solutions
Theoretical
Velocity
Velocity distribution
Viscosity
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYKbSUubaGtuvxUPnC1iB0nmxwRKuJAV1VbEDfLfyPRRtllswvi1nfoA_BuPAljO8tPDyCVa6yJnPHY841n8g0h24BuwUPmWQHCMWlAMF06w6T0RZEL4BAZ-I4Ph6NRdXJSf7vf6itUuy9SkvGkTny22Y6f_JrsdBhSlRlDR8Pw6K0yJpfIS_R5VdiT338c316vIPBF7C_7iq5H5B_6ozuQ-U9eNLqb_bfPmOg78qbHmHQ3GcUqeeHbNfI61nra7j25Gs1TmqahunX0MHA4hSqv6z9_v-rpWbCZGTXa_sZp4nETl44G3ksUaFPVeEdt7AaRxsZA47Xi9JK2uh1DMz91FJrxBdXxo2ngF28a39BJE6AtDZe_dBRq56iJbZ1QEuNyl8rHPpCj_S8_9w5Y36eB2TyXMzaUzgZaVVMPLQZwNsfHhXUB3AgDYCQARqneIXQEa-sMeG0dIk1bZEYGBsKPZLkdt_4ToUON8SAIrp32sgZRGc-F17LkVe1tCQNSLlZL2Z7EPPTSaFT6wTpTQfsqaV-h9lXUvpIDkt0KThKPx9MimwtzUP3G7pSoeV3lFcKiAeGL5b8bfuKV6_8hs0FWRDQjzgTfJMuz6dxvkVf2fHbaTT9Hq78BeusGZg
  priority: 102
  providerName: Springer Nature
Title Numerical and Levenberg–Marquardt backpropagation neural networks computation of ternary nanofluid flow across parallel plates with Nield boundary conditions
URI https://link.springer.com/article/10.1140/epjp/s13360-023-03680-4
https://www.proquest.com/docview/2919838812
Volume 138
WOSCitedRecordID wos000932322900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: P5Z
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: PCBAR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagBYlL-RdbSuUDV2sTx8kmJ1RQKw4lWhWoKi6R_0YqREm62aXqjXfoA_BuPAkzTrYrONADlxxijZNoxp75xpNvGHsN6BY8RF6kIJ1QBqTQmTNCKZ-miYQYAgPf6fGsLPOzs2I-Jtz6saxyvSeGjdq1lnLkU1kgPE5y9EdvugtBXaPodHVsoXGXbRNLAi3MefrlJseC0S8CADWWdSGUmPruazftEZdlkUBvJXD_ziOh_nRKm0jzr8PR4HOOHv7v2z5iO2O0yQ8G83jM7vjmCbsfqj5t_5T9LFfDgU3NdeP4MbE5Ub3Xrx_XH_TigqxnyY223_DpuPEEJXJiwESBZqgf77kNfSGGsRZ4SDAurnijmxbq1bnjULeXXIcv58Q0Xte-5l1NQS6nNDAvqYqOm9DgCSURobuhkOwZ-3x0-OndezF2bBA2SdRSzJSzRLBqiplFKGcTvJ1aR2GONABGASBe9Q6DSLC2iCAurMOY06aRUcRF-JxtNW3jXzA-04gMQcbaaa8KkLnxsfRaZXFeeJvBhGVrlVV2pDOnrhp1NfxqHVWk62rQdYW6roKuKzVh0Y1gNzB63C6yt9ZyNS7xvtqoeMLitZ1shm-ZcvffU75kD2Swz1jIeI9tLRcr_4rds9-X5_1in22_PSznJ_vB2vF68vH0NyuKDYw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLQgu_BaxUMAH4GZt4jjZ5MChFKpW3UYVKqg34_hHKkRJutml6o134AF4Ax6KJ2HsJF3BgZ564JpoLMX55tfjbwBeWHQLxgaGxpZpygvLqEx0QTk3cRwxG1rPwPdxNs3z9Pg4O1yDn8NdGNdWOdhEb6h1rVyNfMIyTI-jFP1R30G5b87PMD9rX--9xZ_5krGdd0fbu7QfIUBVFPEFnXKtHONnkU0V5hYqwsex0s7vssLagluLCZTRGNVYpbLAhpnSGASpOCi4I8fDdV81p9RNqXKnuf3IjmuwniZZzEewfrj9Zuv9RVUH421MOXjfSIbJy8Q0n5tJi5lgElD0jxQ9RhpQ_qcbXMW2fx3Hei-3c-d_25-7cLuPp8lWpwD3YM1U9-GG72tV7QP4kS-7I6mSyEqTmeOrch1tv759P5DzU6cfC1JI9QW_Fk2rhylxHJ8oUHUd8i1RfvJF9662xJdQ5-ekklVty-WJJrasz4j0O00cl3pZmpI0pQvjiSt0k9z1CZLCj7BCSVW7RgGn8Bvw4Uo27CGMqroyj4BMJea-loVSS8Mzy9LChMxInoRpZlRix5AMEBGqJ2x3c0NK0V0mD4TDluiwJRBbwmNL8DEEF4JNx1lyucjmgCrRG7FWrCA1hnDA5er1JUs-_veSz-Hm7tHBTMz28v0ncIt53QgpCzdhtJgvzVO4rr4uTtr5s17HCHy6aiT_BivqaIA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZKgYoL_6gLBXzgam3iONnkiKArEEtUCah6s_w3UkuUDZssiBvvwAPwbjwJYztpBQcqIa6xxnLGY8839vgbQp4BugUHiWM5cMuEBs5UYTUTwuV5xiGFwMB3vFrUdXlyUh3tkMPpLUzIdp-uJOObBs_S1A7zzsLIbZvMXXfWzXsMr4qEodNhuA2XCRNXyFXhKwf5oP3d8flRC4JgjAPEmN31F_nffdMF4PzjjjS4nuWt_zTo2-TmiD3p82gsd8iOa--S6yEH1PT3yI96G69vGqpaS1ee28lnf_389v2t2nzytjRQrcxHHDJuQ2FKqefDRIE2ZpP31IQqEbFtDTQcN26-0la1a2i2p5ZCs_5CVVAA9bzjTeMa2jUe8lJ_KExrn1NHdSj3hJL4jzamld0nH5aH71-8YmP9BmayTAxsIazxdKu6WhgM7EyGn3NjPejhGkALAIxenUVICcZUCaSVsYhATZ5o4ZkJH5Dddt26fUIXCuNE4KmyyokKeKldyp0SRVpWzhQwI8U0c9KM5Oa-xkYj48PrRHrty6h9idqXQftSzEhyLthFfo_LRQ4m05Djgu8lr9KqzEqESzOSTqZw0XxJlw__QeYp2Tt6uZSr1_WbR-QGDxaVMp4ekN1hs3WPyTXzeTjtN0_CYvgFqTISLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+and+Levenberg%E2%80%93Marquardt+backpropagation+neural+networks+computation+of+ternary+nanofluid+flow+across+parallel+plates+with+Nield+boundary+conditions&rft.jtitle=European+physical+journal+plus&rft.au=Sharma%2C+Ram+Prakash&rft.au=Madhukesh%2C+J.+K.&rft.au=Shukla%2C+Sunendra&rft.au=Prasannakumara%2C+B.+C.&rft.date=2023-01-21&rft.issn=2190-5444&rft.eissn=2190-5444&rft.volume=138&rft.issue=1&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-023-03680-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjp_s13360_023_03680_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon