Numerical and Levenberg–Marquardt backpropagation neural networks computation of ternary nanofluid flow across parallel plates with Nield boundary conditions
The impact of the inclined magnetic field toward a flat parallel plate by operating incompressible suspension of three diverse types of oxide nano-sized particles in water-based ternary hybrid nano-liquid is investigated numerically. Flow is theoretically to be unstable squeezing the laminar flow of...
Saved in:
| Published in: | European physical journal plus Vol. 138; no. 1; p. 63 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
21.01.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2190-5444, 2190-5444 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The impact of the inclined magnetic field toward a flat parallel plate by operating incompressible suspension of three diverse types of oxide nano-sized particles in water-based ternary hybrid nano-liquid is investigated numerically. Flow is theoretically to be unstable squeezing the laminar flow of ternary nanofluid between infinite parallel plates with Nield boundary conditions with the help of neural networks computation taken. The surface is subjected to a steady fully developed free stream velocity with Cattaneo–Christov heat and mass flux used to mathematical model with the governing equations in the form of partial differential equations of flow, and thermal profile, including the boundary conditions. The entailed similarity solution to the problem changed into a system of ordinary differential equations and resolved to utilize RKF 45 with shooting technique. The impact of these processes' sensitivity of the liquid parameterized by different non-dimensional parameters has been discussed on usual profiles along with Sherwood number and Nusselt number with the characteristics with the support of plots and tables. The study reveals that for squeezing parameter
S
1
<
0
velocity profile decays and is enhanced for
S
1
>
0
. Increasing the magnetic effect decreases the velocity profile, whereas increasing the inclination angle increases the velocity profile. The developed ANN model was proved to be trustworthy due to its excellent accuracy throughout the training, validation, and testing processes. |
|---|---|
| AbstractList | The impact of the inclined magnetic field toward a flat parallel plate by operating incompressible suspension of three diverse types of oxide nano-sized particles in water-based ternary hybrid nano-liquid is investigated numerically. Flow is theoretically to be unstable squeezing the laminar flow of ternary nanofluid between infinite parallel plates with Nield boundary conditions with the help of neural networks computation taken. The surface is subjected to a steady fully developed free stream velocity with Cattaneo–Christov heat and mass flux used to mathematical model with the governing equations in the form of partial differential equations of flow, and thermal profile, including the boundary conditions. The entailed similarity solution to the problem changed into a system of ordinary differential equations and resolved to utilize RKF 45 with shooting technique. The impact of these processes' sensitivity of the liquid parameterized by different non-dimensional parameters has been discussed on usual profiles along with Sherwood number and Nusselt number with the characteristics with the support of plots and tables. The study reveals that for squeezing parameter
S
1
<
0
velocity profile decays and is enhanced for
S
1
>
0
. Increasing the magnetic effect decreases the velocity profile, whereas increasing the inclination angle increases the velocity profile. The developed ANN model was proved to be trustworthy due to its excellent accuracy throughout the training, validation, and testing processes. The impact of the inclined magnetic field toward a flat parallel plate by operating incompressible suspension of three diverse types of oxide nano-sized particles in water-based ternary hybrid nano-liquid is investigated numerically. Flow is theoretically to be unstable squeezing the laminar flow of ternary nanofluid between infinite parallel plates with Nield boundary conditions with the help of neural networks computation taken. The surface is subjected to a steady fully developed free stream velocity with Cattaneo–Christov heat and mass flux used to mathematical model with the governing equations in the form of partial differential equations of flow, and thermal profile, including the boundary conditions. The entailed similarity solution to the problem changed into a system of ordinary differential equations and resolved to utilize RKF 45 with shooting technique. The impact of these processes' sensitivity of the liquid parameterized by different non-dimensional parameters has been discussed on usual profiles along with Sherwood number and Nusselt number with the characteristics with the support of plots and tables. The study reveals that for squeezing parameter S1<0 velocity profile decays and is enhanced for S1>0. Increasing the magnetic effect decreases the velocity profile, whereas increasing the inclination angle increases the velocity profile. The developed ANN model was proved to be trustworthy due to its excellent accuracy throughout the training, validation, and testing processes. |
| ArticleNumber | 63 |
| Author | Madhukesh, J. K. Shukla, Sunendra Prasannakumara, B. C. Sharma, Ram Prakash |
| Author_xml | – sequence: 1 givenname: Ram Prakash surname: Sharma fullname: Sharma, Ram Prakash organization: Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh – sequence: 2 givenname: J. K. surname: Madhukesh fullname: Madhukesh, J. K. organization: Department of studies in Mathematics, Davangere University – sequence: 3 givenname: Sunendra surname: Shukla fullname: Shukla, Sunendra organization: Department of Basic and Applied Science, National Institute of Technology – sequence: 4 givenname: B. C. orcidid: 0000-0003-1950-4666 surname: Prasannakumara fullname: Prasannakumara, B. C. email: dr.bcprasanna@gmail.com organization: Department of studies in Mathematics, Davangere University |
| BookMark | eNqNkc9u3CAQh1GUSknTPEORcnYDBnvtQw9R1D-RtumlPSMMw5YNCw7grnLrO_QB8m55kuC4UqJeWi6DmPlGfPq9Roc-eEDoLSXvKOXkHMbteJ4oYy2pSM0qwtqOVPwAHde0J1XDOT98cT9CpyltSTm8p7znx-j-etpBtEo6LL3Ga_gJfoC4efj1-4uMt5OMOuNBqpsxhlFuZLbBYw9TLICHvA_xJmEVduOUl14wOEP0Mt5hL30wbrIaGxf2WKoYUsKjLKwDh0cnMyS8t_kHvrbgNB7C5PVMquC1ndelN-iVkS7B6Z96gr5__PDt8nO1_vrp6vJiXSnGeK5WXCvCmnroV6qrO8XKc6M0aZuuHowZuDGc1KDbpjVK9cTQXmnaUtWQgTNesxN0tuwtnrcTpCy2YSoaLom6p33Huo7OU--XqSeVCEYou3jnKK0TlIg5FjHHIpZYRIlFPMUieOFXf_FjtLti_B9kt5CpEH4D8fl__0IfAc3brZY |
| CitedBy_id | crossref_primary_10_1007_s12043_024_02768_5 crossref_primary_10_1007_s10973_024_13767_4 crossref_primary_10_1177_23977914241304625 crossref_primary_10_1007_s10973_023_12483_9 crossref_primary_10_1140_epjp_s13360_024_05128_9 crossref_primary_10_1016_j_ijft_2025_101392 crossref_primary_10_1007_s10973_023_12691_3 crossref_primary_10_3390_molecules28083521 crossref_primary_10_1007_s11771_024_5741_1 crossref_primary_10_1007_s10973_025_13999_y crossref_primary_10_1063_5_0154720 crossref_primary_10_1007_s40735_025_01032_6 crossref_primary_10_1016_j_molliq_2024_125257 crossref_primary_10_1080_10407782_2024_2366445 crossref_primary_10_1140_epjp_s13360_023_04852_y crossref_primary_10_1007_s00521_025_11296_1 crossref_primary_10_1142_S0217984925501416 crossref_primary_10_1016_j_engappai_2024_109048 crossref_primary_10_1080_01430750_2025_2533372 crossref_primary_10_1016_j_chaos_2025_116301 crossref_primary_10_1007_s10973_023_12782_1 crossref_primary_10_1063_5_0249907 crossref_primary_10_1016_j_compbiomed_2025_110475 crossref_primary_10_1007_s11042_025_20623_6 crossref_primary_10_1080_02286203_2025_2460041 crossref_primary_10_1080_10407790_2024_2380034 crossref_primary_10_3390_ijms25094897 crossref_primary_10_1016_j_cjph_2025_04_026 crossref_primary_10_1007_s12043_024_02794_3 crossref_primary_10_3390_en16062630 crossref_primary_10_1080_10407790_2023_2282165 crossref_primary_10_1016_j_hybadv_2025_100427 crossref_primary_10_1016_j_engappai_2025_111101 crossref_primary_10_1155_2024_1223917 crossref_primary_10_1007_s00521_024_10325_9 crossref_primary_10_1007_s41939_024_00614_0 crossref_primary_10_1007_s10973_024_13146_z crossref_primary_10_1140_epjb_s10051_025_00974_7 crossref_primary_10_1007_s11071_025_11496_3 |
| Cites_doi | 10.1007/s11012-012-9536-3 10.1016/j.apt.2019.04.009 10.1023/A:1018966222807 10.1016/j.jppr.2019.10.002 10.1016/j.aej.2021.10.027 10.1016/j.jmrt.2020.02.008 10.1016/j.aej.2021.08.033 10.1016/j.aej.2021.09.037 10.1016/B978-0-12-741252-8.50010-8 10.1515/nleng-2020-0009 10.1016/j.csite.2022.102074 10.1016/j.ijheatmasstransfer.2013.06.054 10.1016/j.surfin.2021.101654 10.1016/j.csite.2021.101362 10.3390/w12061723 10.1016/j.aej.2022.03.048 10.1016/j.jtice.2017.08.005 10.1016/j.aej.2021.01.050 10.1007/s10973-021-10981-2 10.1002/htj.21451 10.1016/j.molliq.2021.116103 10.1016/j.cjph.2021.07.016 10.1016/j.powtec.2021.01.033 10.1016/j.icheatmasstransfer.2019.104451 10.1007/s10483-021-2753-7 10.1016/j.cplett.2021.139194 10.1016/j.powtec.2020.05.013 10.1016/j.physa.2019.123138 10.1016/j.molliq.2017.02.061 10.3390/math10203918 10.1016/j.rinp.2020.103472 10.1016/j.molliq.2016.08.032 10.1108/HFF-12-2021-0767 10.1016/j.surfin.2021.101267 10.1515/phys-2022-0055 10.3390/mi13020302 10.1016/j.csite.2022.102332 10.1016/j.jclepro.2021.129525 10.1002/htj.22221 10.1016/j.rinp.2017.08.015 10.1016/j.icheatmasstransfer.2021.105425 10.1007/s11771-019-4080-0 10.1016/j.csite.2022.101837 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1140/epjp/s13360-023-03680-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2190-5444 |
| ExternalDocumentID | 10_1140_epjp_s13360_023_03680_4 |
| GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY BENPR BGLVJ BGNMA BHPHI BKSAR CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PCBAR PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG DWQXO P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c334t-74dc0352b97c828c3c335cd06582bffb4ff402ed656fcc90f19cd161c50b43423 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932322900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2190-5444 |
| IngestDate | Wed Nov 05 02:13:00 EST 2025 Tue Nov 18 22:11:53 EST 2025 Sat Nov 29 03:58:24 EST 2025 Fri Feb 21 02:45:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-74dc0352b97c828c3c335cd06582bffb4ff402ed656fcc90f19cd161c50b43423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1950-4666 |
| PQID | 2919838812 |
| PQPubID | 2044220 |
| ParticipantIDs | proquest_journals_2919838812 crossref_citationtrail_10_1140_epjp_s13360_023_03680_4 crossref_primary_10_1140_epjp_s13360_023_03680_4 springer_journals_10_1140_epjp_s13360_023_03680_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-21 |
| PublicationDateYYYYMMDD | 2023-01-21 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | European physical journal plus |
| PublicationTitleAbbrev | Eur. Phys. J. Plus |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | NayakMKPrakashJTripathiDPandeyVS3D radiative convective flow of ZnO-SAE50nano-lubricant in presence of varying magnetic field and heterogeneous reactionsPropuls. Power Res.2019833935010.1016/j.jppr.2019.10.002 HasnainJAbidNAlansariMOZakaUllahMAnalysis on Cattaneo-Christov heat flux in three-phase oscillatory flow of non-Newtonian fluid through porous zone bounded by hybrid nanofluidsCase Stud. Therm. Eng.20223510207410.1016/j.csite.2022.102074 MuhammadKHayatTMomaniSAsgharSFDM analysis for squeezed flow of hybrid nanofluid in presence of Cattaneo-Christov (C-C) heat flux and convective boundary conditionAlex. Eng. J.2022614719472710.1016/j.aej.2021.10.027 NaduvinamaniNBShankarURadiative squeezing flow of unsteady magneto-hydrodynamic Casson fluid between two parallel platesJ. Cent. South Univ.2019261184120410.1007/s11771-019-4080-0 KhanUZaibAKhanIBaleanuDSherifEMComparative investigation on MHD nonlinear radiative flow through a moving thin needle comprising two hybridized AA7075 and AA7072 alloys nanomaterials through binary chemical reaction with activation energyJ Mater Res Techno.2020933817382810.1016/j.jmrt.2020.02.008 ShahNAWakifAEl-ZaharERThummaTYookSHeat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana- Baleanu time-fractional integralAlex. Eng. J.202261100451005310.1016/j.aej.2022.03.048 GasmiHKhanUZaibAIshakAEldinSMRaizahZAnalysis of mixed convection on two-phase nanofluid flow past a vertical plate in Brinkman-extended Darcy porous medium with Nield conditionsMathematics202210391810.3390/math10203918 MadhukeshJKNaveen KumarRGowdaRJPPrasannakumaraBCRameshGKKhanMIKhanSUChuYNumerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: a non-Fourier heat flux model approachJ. Mol. Liq.202133511610310.1016/j.molliq.2021.116103 S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. in The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco, USA 1995, 99–105 (FED 231/MD 66) ArifMKumamPKumamWMostafaZHeat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: a fractional modelCase Stud. Therm. Eng.20223110183710.1016/j.csite.2022.101837 MathewAAreekaraSSabuASSaleemSSignificance of multiple slips and nanoparticle shape on stagnation point flow of a silver-blood nanofluid in the presence of the induced magnetic fieldSurf. Interfaces.20212510126710.1016/j.surfin.2021.101267 PuneethVAnandikaRManjunathaSKhanMIKhanMIAlthobaitiAGalalAMImplementation of modified Buongiorno model for the investigation of chemically reacting rGO–Fe3O4–TiO2–H2O ternary nanofluid jet flow in the presence of bio-active mixersChem. Phys. Lett.202278613919410.1016/j.cplett.2021.139194 OjjelaORajuAKambhatlaPKInfluence of thermophoresis and induced magnetic field on chemically reacting mixed convective flow of Jeffrey fluid between porous parallel platesJ. Mol. Liq.201723219520610.1016/j.molliq.2017.02.061 ChuYMNisarKSKhanUKasmaeiHDMalaverMZaibAKhanIMixed convection in MHD water-based molybdenum disulphide-graphene oxide hybrid nanofluid through an upright cylinder with shape factorWater202012172310.3390/w12061723 HussainAMalikMYMHD nanofluid flow over stretching cylinder with convective boundary conditions and Nield conditions in the presence of gyrotactic swimming microorganism: A bio mathematical modelInt. Commun. Heat Mass Transf.202112610542510.1016/j.icheatmasstransfer.2021.105425 FamakinwaOAKorikoOKAdegbieKSEffects of viscous dissipation and thermal radiation on time-dependent incompressible squeezing flow of CuO–Al2O3∕water hybrid nanofluid between two parallel plates with variable viscosityJCMDS20225100062 KuznetsovAVNieldDAThe Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised modelInt. J. Heat Mass Transf.20136568268510.1016/j.ijheatmasstransfer.2013.06.054 RameshGKMadhukeshJKPrasannakumaraBCRoopaGSSignificance of aluminium alloys particle flow through a parallel plates with activation energy and chemical reactionJ Therm Anal Calorim.20221476971698110.1007/s10973-021-10981-2 LahmarSKezzarMEidMRSariMRHeat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivityPhys. A Stat. Mech. Appl.20205401231380745798110.1016/j.physa.2019.123138 JavaherdehKKarimiHKhojastehANumerical study of heat transfer enhancement of non-Newtonian nanofluid in porous blocks in a channel partiallyPowder Technol.202138327027910.1016/j.powtec.2021.01.033 R. Hecht-Nielsen, Theory of the backpropagation neural network**based on “no indent” by Robert Hecht-Nielsen, which appeared in proceedings of the international joint conference on neural networks 1, 593–611, June 1989. © 1989 IEEE., in Neural Networks for Perception, (Elsevier, 1992), p. 65–93. S. Lee, S.U.S. Choi, Application of metallic nanoparticle suspensions in advanced cooling systems. Technical report, Argonne National Lab. (ANL), (Argonne, IL, United States, 1996) WainiIKhanUZaibAIshakAPopIThermophoresis particle deposition of CoFe2O4-TiO2 hybrid nanoparticles on micropolar flow through a moving flat plate with viscous dissipation effectsInt. J. Numer. Methods Heat Fluid Flow.2022323259328210.1108/HFF-12-2021-0767 GharamiPPMamunAGaziMdAAnannaSNAhmmedSFNumerical exploration of MHD unsteady flow of THNF passing through a moving cylinder with Soret and Dufour effectsPartial Diff. Equ. App. Math.20226100463 AtlasMHaqRUMekkaouiTActive and zero flux of nanoparticles between a squeezing channel with thermal radiation effectsJ. Mol. Liq.201622328929810.1016/j.molliq.2016.08.032 NakhchiMEEsfahaniJANumerical investigation of turbulent Cu-water nanofluid in heat exchanger tube equipped with perforated conical ringsAdv. Powder Technol.2019301338134710.1016/j.apt.2019.04.009 ErbRJIntroduction to backpropagation neural network computationPharm Res.19931016517010.1023/A:1018966222807 RekhaMBSarrisIEMadhukeshJKRaghunathaKRPrasannakumaraBCActivation energy impact on flow of AA7072-AA7075/water-based hybrid nanofluid through a cone, wedge, and plateMicromachines20221330210.3390/mi13020302 SahooRRThermo-hydraulic characteristics of a radiator with various shape nanoparticle-based ternary hybrid nanofluidPowder Technol.2020370192810.1016/j.powtec.2020.05.013 MadhukeshJKRameshGKPrasannakumaraBCShehzadSAAbbasiFMBio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energyAppl. Math. Mech.-Engl. Ed.2021421191120410.1007/s10483-021-2753-7 MustafaMHayatTObaidatSOn heat and mass transfer in the unsteady squeezing flow between parallel platesMeccanica201247158115891293.7605710.1007/s11012-012-9536-3 RameshGKMadhukeshJKActivation energy process in hybrid CNTs and induced magnetic slip flow with heat source/sinkChin. J. Phys.20217337539010.1016/j.cjph.2021.07.016 AnimasaunILYookSMuhammadTMathewADynamics of the ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surfaceSurf. Interfaces20222810165410.1016/j.surfin.2021.101654 WaqasHKhanSUShehzadSAImranMRadiative flow of Maxwell nanofluid containing gyrotactic microorganism and energy activation with convective Nield conditionsHeat Transf Asian Res.2019481663168710.1002/htj.21451 HayatTRashidMAlsaediAMHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheetResults Phys.20177310731152017ResPh...7.3107H10.1016/j.rinp.2017.08.015 KumarVSahooRR4 E’s (energy, exergy, economic, and environmental) performance analysis of air heat exchanger equipped with various twisted tabulator inserts utilizing ternary hybrid nanofluidsAlex. Eng. J.2022615033505010.1016/j.aej.2021.09.037 FarooqUWaqasHKhanMIKhanSUChuY-MKadrySThermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat sourceAlex. Eng. J.2021603073308610.1016/j.aej.2021.01.050 ShankarUNaduvinamaniNBBashaHA generalized perspective of Fourier and Fick’s laws: magnetized effects of Cattaneo-Christov models on transient nanofluid flow between two parallel plates with Brownian motion and thermophoresisNonlinear Eng.202092012222020NLE.....9..201S10.1515/nleng-2020-0009 RamzanMDawarASaeedAKumamPSitthithakerngkietKLoneSAAnalysis of the partially ionized kerosene oil-based ternary nanofluid flow over a convectively heated rotating surfaceOpen Phys.20222050752510.1515/phys-2022-0055 DogonchiASGanjiDDImpact of Cattaneo-Christov heat flux on MHD nanofluid flow and heat transfer between parallel plates considering thermal radiation effectJ Taiwan Inst Chem Eng.20178011210.1016/j.jtice.2017.08.005 JyothiAMVarun KumarRSMadhukeshJKPrasannakumaraBCRameshGKSqueezing flow of Casson hybrid nanofluid between parallel plates with a heat source or sink and thermophoretic particle depositionHeat Transfer.20215011810.1002/htj.22221 SahooRRKumarVDevelopment of a new correlation to determine the viscosity of ternary hybrid nanofluidInt. Commun. Heat Mass Transf.202011110445110.1016/j.icheatmasstransfer.2019.104451 FerdowsMAlamJMurtazaGTzirtzilakisEESunSBio magnetic flow with CoFe2O4 magnetic particles through an unsteady stretching/shrinking cylinderMagneto chem.2022827 IqbalMSMalikFMustafaIKhanIGhaffariARiazANisarKSImpact of induced magnetic field on thermal enhancement in gravity-driven Fe3O4 ferrofluid flow through vertical non-isothermal surfaceResults Phys.20201910347210.1016/j.rinp.2020.103472 Abou-zeidMYOuafMEHall currents effect on squeezing flow of non-Newtonian nanofluid through a porous medium between two parallel platesCase Stud. Therm. Eng.20212810136210.1016/j.csite.2021.101362 AnandVWJGaneshSChandrasekarPJayaramanJMariadhasAUnsteady MHD Couette viscous fluid flow through silver metallic parallel plates with an inclined magnetic field and angular velocity O Ojjela (3680_CR27) 2017; 232 S Lahmar (3680_CR37) 2020; 540 V Puneeth (3680_CR18) 2022; 786 YM Chu (3680_CR39) 2020; 12 U Farooq (3680_CR36) 2021; 60 AV Kuznetsov (3680_CR44) 2013; 65 U Shankar (3680_CR38) 2020; 9 MB Rekha (3680_CR9) 2022; 13 3680_CR48 V Kumar (3680_CR13) 2022; 61 M Ramzan (3680_CR22) 2022; 20 T Hayat (3680_CR41) 2017; 7 M Mustafa (3680_CR31) 2012; 47 M Arif (3680_CR20) 2022; 31 AS Dogonchi (3680_CR35) 2017; 80 3680_CR1 3680_CR2 M Atlas (3680_CR34) 2016; 223 K Muhammad (3680_CR32) 2022; 61 OA Famakinwa (3680_CR10) 2022; 5 JK Madhukesh (3680_CR47) 2021; 42 RR Sahoo (3680_CR19) 2020; 370 AM Jyothi (3680_CR11) 2021; 50 MY Abou-zeid (3680_CR5) 2021; 28 RJ Erb (3680_CR49) 1993; 10 JK Madhukesh (3680_CR8) 2021; 335 GK Ramesh (3680_CR46) 2022; 147 I Waini (3680_CR40) 2022; 32 RR Sahoo (3680_CR14) 2020; 111 M Ferdows (3680_CR43) 2022; 8 PP Gharami (3680_CR21) 2022; 6 H Gasmi (3680_CR30) 2022; 10 IL Animasaun (3680_CR15) 2022; 28 A Hussain (3680_CR28) 2021; 126 K Sarada (3680_CR17) 2022; 38 A Mathew (3680_CR25) 2021; 25 MS Iqbal (3680_CR24) 2020; 19 H Waqas (3680_CR6) 2022; 61 ME Nakhchi (3680_CR3) 2019; 30 H Waqas (3680_CR29) 2019; 48 NA Shah (3680_CR16) 2022; 61 J Hasnain (3680_CR33) 2022; 35 VWJ Anand (3680_CR26) 2021; 44 NB Naduvinamani (3680_CR45) 2019; 26 U Khan (3680_CR7) 2020; 9 K Javaherdeh (3680_CR4) 2021; 383 GK Ramesh (3680_CR23) 2021; 73 H Adun (3680_CR12) 2021; 328 MK Nayak (3680_CR42) 2019; 8 |
| References_xml | – reference: WainiIKhanUZaibAIshakAPopIThermophoresis particle deposition of CoFe2O4-TiO2 hybrid nanoparticles on micropolar flow through a moving flat plate with viscous dissipation effectsInt. J. Numer. Methods Heat Fluid Flow.2022323259328210.1108/HFF-12-2021-0767 – reference: ArifMKumamPKumamWMostafaZHeat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: a fractional modelCase Stud. Therm. Eng.20223110183710.1016/j.csite.2022.101837 – reference: R. Hecht-Nielsen, Theory of the backpropagation neural network**based on “no indent” by Robert Hecht-Nielsen, which appeared in proceedings of the international joint conference on neural networks 1, 593–611, June 1989. © 1989 IEEE., in Neural Networks for Perception, (Elsevier, 1992), p. 65–93. – reference: S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. in The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco, USA 1995, 99–105 (FED 231/MD 66) – reference: OjjelaORajuAKambhatlaPKInfluence of thermophoresis and induced magnetic field on chemically reacting mixed convective flow of Jeffrey fluid between porous parallel platesJ. Mol. Liq.201723219520610.1016/j.molliq.2017.02.061 – reference: MustafaMHayatTObaidatSOn heat and mass transfer in the unsteady squeezing flow between parallel platesMeccanica201247158115891293.7605710.1007/s11012-012-9536-3 – reference: MuhammadKHayatTMomaniSAsgharSFDM analysis for squeezed flow of hybrid nanofluid in presence of Cattaneo-Christov (C-C) heat flux and convective boundary conditionAlex. Eng. J.2022614719472710.1016/j.aej.2021.10.027 – reference: SahooRRKumarVDevelopment of a new correlation to determine the viscosity of ternary hybrid nanofluidInt. Commun. Heat Mass Transf.202011110445110.1016/j.icheatmasstransfer.2019.104451 – reference: IqbalMSMalikFMustafaIKhanIGhaffariARiazANisarKSImpact of induced magnetic field on thermal enhancement in gravity-driven Fe3O4 ferrofluid flow through vertical non-isothermal surfaceResults Phys.20201910347210.1016/j.rinp.2020.103472 – reference: WaqasHKhanSUShehzadSAImranMRadiative flow of Maxwell nanofluid containing gyrotactic microorganism and energy activation with convective Nield conditionsHeat Transf Asian Res.2019481663168710.1002/htj.21451 – reference: MadhukeshJKNaveen KumarRGowdaRJPPrasannakumaraBCRameshGKKhanMIKhanSUChuYNumerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: a non-Fourier heat flux model approachJ. Mol. Liq.202133511610310.1016/j.molliq.2021.116103 – reference: RameshGKMadhukeshJKPrasannakumaraBCRoopaGSSignificance of aluminium alloys particle flow through a parallel plates with activation energy and chemical reactionJ Therm Anal Calorim.20221476971698110.1007/s10973-021-10981-2 – reference: RameshGKMadhukeshJKActivation energy process in hybrid CNTs and induced magnetic slip flow with heat source/sinkChin. J. Phys.20217337539010.1016/j.cjph.2021.07.016 – reference: HussainAMalikMYMHD nanofluid flow over stretching cylinder with convective boundary conditions and Nield conditions in the presence of gyrotactic swimming microorganism: A bio mathematical modelInt. Commun. Heat Mass Transf.202112610542510.1016/j.icheatmasstransfer.2021.105425 – reference: FamakinwaOAKorikoOKAdegbieKSEffects of viscous dissipation and thermal radiation on time-dependent incompressible squeezing flow of CuO–Al2O3∕water hybrid nanofluid between two parallel plates with variable viscosityJCMDS20225100062 – reference: MathewAAreekaraSSabuASSaleemSSignificance of multiple slips and nanoparticle shape on stagnation point flow of a silver-blood nanofluid in the presence of the induced magnetic fieldSurf. Interfaces.20212510126710.1016/j.surfin.2021.101267 – reference: FarooqUWaqasHKhanMIKhanSUChuY-MKadrySThermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat sourceAlex. Eng. J.2021603073308610.1016/j.aej.2021.01.050 – reference: RekhaMBSarrisIEMadhukeshJKRaghunathaKRPrasannakumaraBCActivation energy impact on flow of AA7072-AA7075/water-based hybrid nanofluid through a cone, wedge, and plateMicromachines20221330210.3390/mi13020302 – reference: PuneethVAnandikaRManjunathaSKhanMIKhanMIAlthobaitiAGalalAMImplementation of modified Buongiorno model for the investigation of chemically reacting rGO–Fe3O4–TiO2–H2O ternary nanofluid jet flow in the presence of bio-active mixersChem. Phys. Lett.202278613919410.1016/j.cplett.2021.139194 – reference: MadhukeshJKRameshGKPrasannakumaraBCShehzadSAAbbasiFMBio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energyAppl. Math. Mech.-Engl. Ed.2021421191120410.1007/s10483-021-2753-7 – reference: NaduvinamaniNBShankarURadiative squeezing flow of unsteady magneto-hydrodynamic Casson fluid between two parallel platesJ. Cent. South Univ.2019261184120410.1007/s11771-019-4080-0 – reference: DogonchiASGanjiDDImpact of Cattaneo-Christov heat flux on MHD nanofluid flow and heat transfer between parallel plates considering thermal radiation effectJ Taiwan Inst Chem Eng.20178011210.1016/j.jtice.2017.08.005 – reference: JavaherdehKKarimiHKhojastehANumerical study of heat transfer enhancement of non-Newtonian nanofluid in porous blocks in a channel partiallyPowder Technol.202138327027910.1016/j.powtec.2021.01.033 – reference: JyothiAMVarun KumarRSMadhukeshJKPrasannakumaraBCRameshGKSqueezing flow of Casson hybrid nanofluid between parallel plates with a heat source or sink and thermophoretic particle depositionHeat Transfer.20215011810.1002/htj.22221 – reference: ErbRJIntroduction to backpropagation neural network computationPharm Res.19931016517010.1023/A:1018966222807 – reference: KhanUZaibAKhanIBaleanuDSherifEMComparative investigation on MHD nonlinear radiative flow through a moving thin needle comprising two hybridized AA7075 and AA7072 alloys nanomaterials through binary chemical reaction with activation energyJ Mater Res Techno.2020933817382810.1016/j.jmrt.2020.02.008 – reference: ShankarUNaduvinamaniNBBashaHA generalized perspective of Fourier and Fick’s laws: magnetized effects of Cattaneo-Christov models on transient nanofluid flow between two parallel plates with Brownian motion and thermophoresisNonlinear Eng.202092012222020NLE.....9..201S10.1515/nleng-2020-0009 – reference: Abou-zeidMYOuafMEHall currents effect on squeezing flow of non-Newtonian nanofluid through a porous medium between two parallel platesCase Stud. Therm. Eng.20212810136210.1016/j.csite.2021.101362 – reference: SahooRRThermo-hydraulic characteristics of a radiator with various shape nanoparticle-based ternary hybrid nanofluidPowder Technol.2020370192810.1016/j.powtec.2020.05.013 – reference: S. Lee, S.U.S. Choi, Application of metallic nanoparticle suspensions in advanced cooling systems. Technical report, Argonne National Lab. (ANL), (Argonne, IL, United States, 1996) – reference: NakhchiMEEsfahaniJANumerical investigation of turbulent Cu-water nanofluid in heat exchanger tube equipped with perforated conical ringsAdv. Powder Technol.2019301338134710.1016/j.apt.2019.04.009 – reference: ShahNAWakifAEl-ZaharERThummaTYookSHeat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana- Baleanu time-fractional integralAlex. Eng. J.202261100451005310.1016/j.aej.2022.03.048 – reference: WaqasHKhanSAMuhammadTThermal analysis of magnetized flow of AA7072-AA7075/blood-based hybrid nanofluids in a rotating channelAlex. Eng. J.2022613059306810.1016/j.aej.2021.08.033 – reference: AtlasMHaqRUMekkaouiTActive and zero flux of nanoparticles between a squeezing channel with thermal radiation effectsJ. Mol. Liq.201622328929810.1016/j.molliq.2016.08.032 – reference: KuznetsovAVNieldDAThe Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised modelInt. J. Heat Mass Transf.20136568268510.1016/j.ijheatmasstransfer.2013.06.054 – reference: RamzanMDawarASaeedAKumamPSitthithakerngkietKLoneSAAnalysis of the partially ionized kerosene oil-based ternary nanofluid flow over a convectively heated rotating surfaceOpen Phys.20222050752510.1515/phys-2022-0055 – reference: ChuYMNisarKSKhanUKasmaeiHDMalaverMZaibAKhanIMixed convection in MHD water-based molybdenum disulphide-graphene oxide hybrid nanofluid through an upright cylinder with shape factorWater202012172310.3390/w12061723 – reference: GasmiHKhanUZaibAIshakAEldinSMRaizahZAnalysis of mixed convection on two-phase nanofluid flow past a vertical plate in Brinkman-extended Darcy porous medium with Nield conditionsMathematics202210391810.3390/math10203918 – reference: AdunHKavazDDagbasiMReview of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effectsJ. Clean. Prod.202132812952510.1016/j.jclepro.2021.129525 – reference: HasnainJAbidNAlansariMOZakaUllahMAnalysis on Cattaneo-Christov heat flux in three-phase oscillatory flow of non-Newtonian fluid through porous zone bounded by hybrid nanofluidsCase Stud. Therm. Eng.20223510207410.1016/j.csite.2022.102074 – reference: GharamiPPMamunAGaziMdAAnannaSNAhmmedSFNumerical exploration of MHD unsteady flow of THNF passing through a moving cylinder with Soret and Dufour effectsPartial Diff. Equ. App. Math.20226100463 – reference: SaradaKGamaounFAbdulrahmanAParameshSOKumarRPrasannaGDGowdaRJPImpact of the exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux modelCase Stud. Therm. Eng.20223810233210.1016/j.csite.2022.102332 – reference: FerdowsMAlamJMurtazaGTzirtzilakisEESunSBio magnetic flow with CoFe2O4 magnetic particles through an unsteady stretching/shrinking cylinderMagneto chem.2022827 – reference: HayatTRashidMAlsaediAMHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheetResults Phys.20177310731152017ResPh...7.3107H10.1016/j.rinp.2017.08.015 – reference: AnandVWJGaneshSChandrasekarPJayaramanJMariadhasAUnsteady MHD Couette viscous fluid flow through silver metallic parallel plates with an inclined magnetic field and angular velocity subjected to constant suction at lower plateMater. Today: Proc.20214439193923 – reference: KumarVSahooRR4 E’s (energy, exergy, economic, and environmental) performance analysis of air heat exchanger equipped with various twisted tabulator inserts utilizing ternary hybrid nanofluidsAlex. Eng. J.2022615033505010.1016/j.aej.2021.09.037 – reference: AnimasaunILYookSMuhammadTMathewADynamics of the ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surfaceSurf. Interfaces20222810165410.1016/j.surfin.2021.101654 – reference: NayakMKPrakashJTripathiDPandeyVS3D radiative convective flow of ZnO-SAE50nano-lubricant in presence of varying magnetic field and heterogeneous reactionsPropuls. Power Res.2019833935010.1016/j.jppr.2019.10.002 – reference: LahmarSKezzarMEidMRSariMRHeat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivityPhys. A Stat. Mech. Appl.20205401231380745798110.1016/j.physa.2019.123138 – volume: 5 start-page: 100062 year: 2022 ident: 3680_CR10 publication-title: JCMDS – volume: 47 start-page: 1581 year: 2012 ident: 3680_CR31 publication-title: Meccanica doi: 10.1007/s11012-012-9536-3 – ident: 3680_CR1 – volume: 30 start-page: 1338 year: 2019 ident: 3680_CR3 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2019.04.009 – volume: 10 start-page: 165 year: 1993 ident: 3680_CR49 publication-title: Pharm Res. doi: 10.1023/A:1018966222807 – volume: 8 start-page: 339 year: 2019 ident: 3680_CR42 publication-title: Propuls. Power Res. doi: 10.1016/j.jppr.2019.10.002 – volume: 61 start-page: 4719 year: 2022 ident: 3680_CR32 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.10.027 – volume: 8 start-page: 27 year: 2022 ident: 3680_CR43 publication-title: Magneto chem. – volume: 9 start-page: 3817 issue: 3 year: 2020 ident: 3680_CR7 publication-title: J Mater Res Techno. doi: 10.1016/j.jmrt.2020.02.008 – volume: 61 start-page: 3059 year: 2022 ident: 3680_CR6 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.08.033 – volume: 61 start-page: 5033 year: 2022 ident: 3680_CR13 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.09.037 – ident: 3680_CR48 doi: 10.1016/B978-0-12-741252-8.50010-8 – volume: 9 start-page: 201 year: 2020 ident: 3680_CR38 publication-title: Nonlinear Eng. doi: 10.1515/nleng-2020-0009 – volume: 35 start-page: 102074 year: 2022 ident: 3680_CR33 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102074 – volume: 65 start-page: 682 year: 2013 ident: 3680_CR44 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.06.054 – ident: 3680_CR2 – volume: 28 start-page: 101654 year: 2022 ident: 3680_CR15 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2021.101654 – volume: 28 start-page: 101362 year: 2021 ident: 3680_CR5 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101362 – volume: 12 start-page: 1723 year: 2020 ident: 3680_CR39 publication-title: Water doi: 10.3390/w12061723 – volume: 61 start-page: 10045 year: 2022 ident: 3680_CR16 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.03.048 – volume: 80 start-page: 1 year: 2017 ident: 3680_CR35 publication-title: J Taiwan Inst Chem Eng. doi: 10.1016/j.jtice.2017.08.005 – volume: 60 start-page: 3073 year: 2021 ident: 3680_CR36 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.01.050 – volume: 147 start-page: 6971 year: 2022 ident: 3680_CR46 publication-title: J Therm Anal Calorim. doi: 10.1007/s10973-021-10981-2 – volume: 48 start-page: 1663 year: 2019 ident: 3680_CR29 publication-title: Heat Transf Asian Res. doi: 10.1002/htj.21451 – volume: 335 start-page: 116103 year: 2021 ident: 3680_CR8 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.116103 – volume: 73 start-page: 375 year: 2021 ident: 3680_CR23 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.07.016 – volume: 383 start-page: 270 year: 2021 ident: 3680_CR4 publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.01.033 – volume: 6 start-page: 100463 year: 2022 ident: 3680_CR21 publication-title: Partial Diff. Equ. App. Math. – volume: 111 start-page: 104451 year: 2020 ident: 3680_CR14 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.104451 – volume: 42 start-page: 1191 year: 2021 ident: 3680_CR47 publication-title: Appl. Math. Mech.-Engl. Ed. doi: 10.1007/s10483-021-2753-7 – volume: 786 start-page: 139194 year: 2022 ident: 3680_CR18 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2021.139194 – volume: 370 start-page: 19 year: 2020 ident: 3680_CR19 publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.05.013 – volume: 540 start-page: 123138 year: 2020 ident: 3680_CR37 publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2019.123138 – volume: 232 start-page: 195 year: 2017 ident: 3680_CR27 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.02.061 – volume: 10 start-page: 3918 year: 2022 ident: 3680_CR30 publication-title: Mathematics doi: 10.3390/math10203918 – volume: 19 start-page: 103472 year: 2020 ident: 3680_CR24 publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103472 – volume: 44 start-page: 3919 year: 2021 ident: 3680_CR26 publication-title: Mater. Today: Proc. – volume: 223 start-page: 289 year: 2016 ident: 3680_CR34 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.08.032 – volume: 32 start-page: 3259 year: 2022 ident: 3680_CR40 publication-title: Int. J. Numer. Methods Heat Fluid Flow. doi: 10.1108/HFF-12-2021-0767 – volume: 25 start-page: 101267 year: 2021 ident: 3680_CR25 publication-title: Surf. Interfaces. doi: 10.1016/j.surfin.2021.101267 – volume: 20 start-page: 507 year: 2022 ident: 3680_CR22 publication-title: Open Phys. doi: 10.1515/phys-2022-0055 – volume: 13 start-page: 302 year: 2022 ident: 3680_CR9 publication-title: Micromachines doi: 10.3390/mi13020302 – volume: 38 start-page: 102332 year: 2022 ident: 3680_CR17 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102332 – volume: 328 start-page: 129525 year: 2021 ident: 3680_CR12 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129525 – volume: 50 start-page: 1 year: 2021 ident: 3680_CR11 publication-title: Heat Transfer. doi: 10.1002/htj.22221 – volume: 7 start-page: 3107 year: 2017 ident: 3680_CR41 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.08.015 – volume: 126 start-page: 105425 year: 2021 ident: 3680_CR28 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105425 – volume: 26 start-page: 1184 year: 2019 ident: 3680_CR45 publication-title: J. Cent. South Univ. doi: 10.1007/s11771-019-4080-0 – volume: 31 start-page: 101837 year: 2022 ident: 3680_CR20 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.101837 |
| SSID | ssj0000491494 |
| Score | 2.456243 |
| Snippet | The impact of the inclined magnetic field toward a flat parallel plate by operating incompressible suspension of three diverse types of oxide nano-sized... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 63 |
| SubjectTerms | Aluminum Applied and Technical Physics Atomic Back propagation networks Boundary conditions Complex Systems Compressing Computation Condensed Matter Physics Differential equations Energy Fluid flow Heat conductivity Heat exchangers Heat transfer Hyperthermia Inclination angle Investigations Laminar flow Magnetic effects Magnetic fields Mathematical and Computational Physics Mathematical models Molecular Nanofluids Nanoparticles Neural networks Optical and Plasma Physics Parallel plates Parameter sensitivity Partial differential equations Physics Physics and Astronomy Radiation Regular Article Similarity solutions Theoretical Velocity Velocity distribution Viscosity |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYKbSUubaGtuvxUPnC1iB0nmxwRKuJAV1VbEDfLfyPRRtllswvi1nfoA_BuPAljO8tPDyCVa6yJnPHY841n8g0h24BuwUPmWQHCMWlAMF06w6T0RZEL4BAZ-I4Ph6NRdXJSf7vf6itUuy9SkvGkTny22Y6f_JrsdBhSlRlDR8Pw6K0yJpfIS_R5VdiT338c316vIPBF7C_7iq5H5B_6ozuQ-U9eNLqb_bfPmOg78qbHmHQ3GcUqeeHbNfI61nra7j25Gs1TmqahunX0MHA4hSqv6z9_v-rpWbCZGTXa_sZp4nETl44G3ksUaFPVeEdt7AaRxsZA47Xi9JK2uh1DMz91FJrxBdXxo2ngF28a39BJE6AtDZe_dBRq56iJbZ1QEuNyl8rHPpCj_S8_9w5Y36eB2TyXMzaUzgZaVVMPLQZwNsfHhXUB3AgDYCQARqneIXQEa-sMeG0dIk1bZEYGBsKPZLkdt_4ToUON8SAIrp32sgZRGc-F17LkVe1tCQNSLlZL2Z7EPPTSaFT6wTpTQfsqaV-h9lXUvpIDkt0KThKPx9MimwtzUP3G7pSoeV3lFcKiAeGL5b8bfuKV6_8hs0FWRDQjzgTfJMuz6dxvkVf2fHbaTT9Hq78BeusGZg priority: 102 providerName: Springer Nature |
| Title | Numerical and Levenberg–Marquardt backpropagation neural networks computation of ternary nanofluid flow across parallel plates with Nield boundary conditions |
| URI | https://link.springer.com/article/10.1140/epjp/s13360-023-03680-4 https://www.proquest.com/docview/2919838812 |
| Volume | 138 |
| WOSCitedRecordID | wos000932322900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2190-5444 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: P5Z dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2190-5444 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: PCBAR dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2190-5444 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2190-5444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: RSV dateStart: 20110101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagBYlL-RdbSuUDV2sTx8kmJ1RQKw4lWhWoKi6R_0YqREm62aXqjXfoA_BuPAkzTrYrONADlxxijZNoxp75xpNvGHsN6BY8RF6kIJ1QBqTQmTNCKZ-miYQYAgPf6fGsLPOzs2I-Jtz6saxyvSeGjdq1lnLkU1kgPE5y9EdvugtBXaPodHVsoXGXbRNLAi3MefrlJseC0S8CADWWdSGUmPruazftEZdlkUBvJXD_ziOh_nRKm0jzr8PR4HOOHv7v2z5iO2O0yQ8G83jM7vjmCbsfqj5t_5T9LFfDgU3NdeP4MbE5Ub3Xrx_XH_TigqxnyY223_DpuPEEJXJiwESBZqgf77kNfSGGsRZ4SDAurnijmxbq1bnjULeXXIcv58Q0Xte-5l1NQS6nNDAvqYqOm9DgCSURobuhkOwZ-3x0-OndezF2bBA2SdRSzJSzRLBqiplFKGcTvJ1aR2GONABGASBe9Q6DSLC2iCAurMOY06aRUcRF-JxtNW3jXzA-04gMQcbaaa8KkLnxsfRaZXFeeJvBhGVrlVV2pDOnrhp1NfxqHVWk62rQdYW6roKuKzVh0Y1gNzB63C6yt9ZyNS7xvtqoeMLitZ1shm-ZcvffU75kD2Swz1jIeI9tLRcr_4rds9-X5_1in22_PSznJ_vB2vF68vH0NyuKDYw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLQgu_BaxUMAH4GZt4jjZ5MChFKpW3UYVKqg34_hHKkRJutml6o134AF4Ax6KJ2HsJF3BgZ564JpoLMX55tfjbwBeWHQLxgaGxpZpygvLqEx0QTk3cRwxG1rPwPdxNs3z9Pg4O1yDn8NdGNdWOdhEb6h1rVyNfMIyTI-jFP1R30G5b87PMD9rX--9xZ_5krGdd0fbu7QfIUBVFPEFnXKtHONnkU0V5hYqwsex0s7vssLagluLCZTRGNVYpbLAhpnSGASpOCi4I8fDdV81p9RNqXKnuf3IjmuwniZZzEewfrj9Zuv9RVUH421MOXjfSIbJy8Q0n5tJi5lgElD0jxQ9RhpQ_qcbXMW2fx3Hei-3c-d_25-7cLuPp8lWpwD3YM1U9-GG72tV7QP4kS-7I6mSyEqTmeOrch1tv759P5DzU6cfC1JI9QW_Fk2rhylxHJ8oUHUd8i1RfvJF9662xJdQ5-ekklVty-WJJrasz4j0O00cl3pZmpI0pQvjiSt0k9z1CZLCj7BCSVW7RgGn8Bvw4Uo27CGMqroyj4BMJea-loVSS8Mzy9LChMxInoRpZlRix5AMEBGqJ2x3c0NK0V0mD4TDluiwJRBbwmNL8DEEF4JNx1lyucjmgCrRG7FWrCA1hnDA5er1JUs-_veSz-Hm7tHBTMz28v0ncIt53QgpCzdhtJgvzVO4rr4uTtr5s17HCHy6aiT_BivqaIA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZKgYoL_6gLBXzgam3iONnkiKArEEtUCah6s_w3UkuUDZssiBvvwAPwbjwJYztpBQcqIa6xxnLGY8839vgbQp4BugUHiWM5cMuEBs5UYTUTwuV5xiGFwMB3vFrUdXlyUh3tkMPpLUzIdp-uJOObBs_S1A7zzsLIbZvMXXfWzXsMr4qEodNhuA2XCRNXyFXhKwf5oP3d8flRC4JgjAPEmN31F_nffdMF4PzjjjS4nuWt_zTo2-TmiD3p82gsd8iOa--S6yEH1PT3yI96G69vGqpaS1ee28lnf_389v2t2nzytjRQrcxHHDJuQ2FKqefDRIE2ZpP31IQqEbFtDTQcN26-0la1a2i2p5ZCs_5CVVAA9bzjTeMa2jUe8lJ_KExrn1NHdSj3hJL4jzamld0nH5aH71-8YmP9BmayTAxsIazxdKu6WhgM7EyGn3NjPejhGkALAIxenUVICcZUCaSVsYhATZ5o4ZkJH5Dddt26fUIXCuNE4KmyyokKeKldyp0SRVpWzhQwI8U0c9KM5Oa-xkYj48PrRHrty6h9idqXQftSzEhyLthFfo_LRQ4m05Djgu8lr9KqzEqESzOSTqZw0XxJlw__QeYp2Tt6uZSr1_WbR-QGDxaVMp4ekN1hs3WPyTXzeTjtN0_CYvgFqTISLg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+and+Levenberg%E2%80%93Marquardt+backpropagation+neural+networks+computation+of+ternary+nanofluid+flow+across+parallel+plates+with+Nield+boundary+conditions&rft.jtitle=European+physical+journal+plus&rft.au=Sharma%2C+Ram+Prakash&rft.au=Madhukesh%2C+J.+K.&rft.au=Shukla%2C+Sunendra&rft.au=Prasannakumara%2C+B.+C.&rft.date=2023-01-21&rft.issn=2190-5444&rft.eissn=2190-5444&rft.volume=138&rft.issue=1&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-023-03680-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjp_s13360_023_03680_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |