Prediction and Diagnosis of Electric Vehicle Battery Fault Based on Abnormal Voltage: Using Decision Tree Algorithm Theories and Isolated Forest

Battery voltage is a pivotal parameter for evaluating battery health and safety. The precise prediction of battery voltage and the implementation of anomaly detection are imperative for ensuring the secure and dependable operation of battery systems. Nevertheless, during the actual operation of elec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Processes Ročník 12; číslo 1; s. 136
Hlavní autoři: Zhang, Zhaosheng, Dong, Shiji, Li, Da, Liu, Peng, Wang, Zhenpo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2024
Témata:
ISSN:2227-9717, 2227-9717
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Battery voltage is a pivotal parameter for evaluating battery health and safety. The precise prediction of battery voltage and the implementation of anomaly detection are imperative for ensuring the secure and dependable operation of battery systems. Nevertheless, during the actual operation of electric vehicles, battery performance is subject to the influence of the vehicle's operational state and battery characteristic parameters, introducing challenges to safety alerts. In order to address these challenges and achieve precise battery voltage prediction, this paper comprehensively considers the battery characteristics and driving behavior of electric vehicles in both charging and operational states. Mathematical processing, including averaging and variance calculation, is applied to the battery characteristic parameter data and driving behavior data. By integrating historical voltage data and employing a modified gradient boosting decision tree algorithm (GBDT), a fast and accurate online voltage prediction method is proposed. Hyperparameter optimization is employed to minimize prediction voltage errors. The accuracy and timeliness of the predictions are validated through a comprehensive evaluation and comparison of the forecasted voltages. To diagnose anomalies in battery voltage, the paper proposes a fault diagnosis method that combines the Isolation Forest and Boxplot techniques. Finally, utilizing authentic electric vehicle data for validation, the research underscores the capability of the proposed method to achieve accurate voltage predictions six minutes in advance and provide effective fault diagnosis. This investigation carries substantial practical implications for fortifying battery management and optimizing the performance of electric vehicles.
AbstractList Battery voltage is a pivotal parameter for evaluating battery health and safety. The precise prediction of battery voltage and the implementation of anomaly detection are imperative for ensuring the secure and dependable operation of battery systems. Nevertheless, during the actual operation of electric vehicles, battery performance is subject to the influence of the vehicle's operational state and battery characteristic parameters, introducing challenges to safety alerts. In order to address these challenges and achieve precise battery voltage prediction, this paper comprehensively considers the battery characteristics and driving behavior of electric vehicles in both charging and operational states. Mathematical processing, including averaging and variance calculation, is applied to the battery characteristic parameter data and driving behavior data. By integrating historical voltage data and employing a modified gradient boosting decision tree algorithm (GBDT), a fast and accurate online voltage prediction method is proposed. Hyperparameter optimization is employed to minimize prediction voltage errors. The accuracy and timeliness of the predictions are validated through a comprehensive evaluation and comparison of the forecasted voltages. To diagnose anomalies in battery voltage, the paper proposes a fault diagnosis method that combines the Isolation Forest and Boxplot techniques. Finally, utilizing authentic electric vehicle data for validation, the research underscores the capability of the proposed method to achieve accurate voltage predictions six minutes in advance and provide effective fault diagnosis. This investigation carries substantial practical implications for fortifying battery management and optimizing the performance of electric vehicles.
Audience Academic
Author Zhang, Zhaosheng
Liu, Peng
Li, Da
Dong, Shiji
Wang, Zhenpo
Author_xml – sequence: 1
  givenname: Zhaosheng
  surname: Zhang
  fullname: Zhang, Zhaosheng
– sequence: 2
  givenname: Shiji
  surname: Dong
  fullname: Dong, Shiji
– sequence: 3
  givenname: Da
  orcidid: 0000-0002-5507-5267
  surname: Li
  fullname: Li, Da
– sequence: 4
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
– sequence: 5
  givenname: Zhenpo
  surname: Wang
  fullname: Wang, Zhenpo
BookMark eNptUc1KAzEQDlJBrb34BAFvQmt-3E3jrbZWBUEPrdclm53dRtKkJunBt_CRTa2giMkhk5nvB745QT3nHSB0RsmIc0kuN4EyQgnl5QE6ZoyJoRRU9H7VR2gQ4yvJR1I-Lspj9PEcoDE6Ge-wcg2eGdU5H03EvsW3FnQKRuMXWBltAd-olCC847na2pR_ERqciZPa-bBWFr94m1QH13gZjevwDLSJO-VFAMAT2_lg0mqNFyvIFcQvx4forUpZaO4DxHSKDltlIwy-3z5azm8X0_vh49Pdw3TyONScX6WhoDXlLW9FXTQt45IXpCBKCgJ5ojUv6lo2NWSAqnnJy6IUtQJWyKYUmowJ76Pzve4m-LdtNq5e_Ta4bFkxScdCFpKJjBrtUZ2yUBnX-hSUzreBtdE5_tbk_kSMiWQlzaH2EdkTdPAxBmgrbZLaxZuJxlaUVLtdVT-7ypSLP5RNMGsV3v8DfwJQaJan
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128814
crossref_primary_10_3390_en18143750
crossref_primary_10_3389_fenrg_2025_1529608
crossref_primary_10_3390_app15116263
crossref_primary_10_1016_j_fub_2025_100110
crossref_primary_10_1016_j_etran_2025_100420
crossref_primary_10_1016_j_meaene_2025_100060
crossref_primary_10_1149_1945_7111_adf9ce
crossref_primary_10_1016_j_etran_2025_100418
crossref_primary_10_1038_s41598_025_98756_9
crossref_primary_10_3390_pr12020268
crossref_primary_10_3390_wevj16010036
Cites_doi 10.1149/2.0311410jes
10.1109/ICARCV.2006.345303
10.1016/j.jpowsour.2012.03.015
10.1016/j.conengprac.2016.08.002
10.1016/j.apenergy.2015.10.168
10.1016/j.arcontrol.2004.12.002
10.1109/TPEL.2015.2439578
10.1016/j.measurement.2018.09.007
10.1016/j.measurement.2020.108052
10.1109/ICDM.2008.17
10.1016/j.jpowsour.2011.04.024
10.1016/j.patrec.2017.09.009
10.1016/S0378-7753(01)00703-0
10.1016/j.jpowsour.2012.12.032
10.1016/j.jclepro.2018.03.259
10.1149/2.1381910jes
10.1109/CVCI47823.2019.8951717
10.1214/aos/1013203451
10.1117/12.2586332
10.1155/2015/631263
10.1016/j.apenergy.2019.113574
10.1016/j.est.2018.01.010
10.1109/QRS-C.2019.00098
10.1016/j.est.2022.106584
10.3390/en8054400
10.1016/j.microrel.2016.07.051
10.1016/j.jpowsour.2011.03.035
10.1016/j.ensm.2020.10.020
10.1016/j.apenergy.2019.113381
10.1109/MIE.2020.2964814
10.1016/j.apenergy.2018.01.068
10.1109/ITEC.2014.6861806
10.3390/en9050387
10.1109/TIE.2017.2787586
10.3390/pr7010038
10.1149/1.1379740
10.1109/TIA.2018.2874588
10.1109/iSPEC48194.2019.8975122
10.1016/j.energy.2019.02.147
10.1016/j.apenergy.2019.114170
10.20944/preprints201705.0116.v1
10.1109/TIE.2007.896496
10.1109/ACCESS.2017.2780258
10.1109/TPEL.2022.3150026
10.1002/cjoc.200890286
10.1016/j.energy.2016.08.094
10.1109/TCST.2009.2026285
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr12010136
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Biological Science Collection
Biological Science Database
Materials Science Collection
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID A780926191
10_3390_pr12010136
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c334t-71b13f3f7b5df23935050a970e71bcc35bb9dbe3f7ab3636567bae259d67c0803
IEDL.DBID M7P
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001151428400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Fri Jul 25 10:17:05 EDT 2025
Tue Nov 04 18:40:12 EST 2025
Tue Nov 18 22:02:32 EST 2025
Sat Nov 29 07:11:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-71b13f3f7b5df23935050a970e71bcc35bb9dbe3f7ab3636567bae259d67c0803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5507-5267
OpenAccessLink https://www.proquest.com/docview/2918795927?pq-origsite=%requestingapplication%
PQID 2918795927
PQPubID 2032344
ParticipantIDs proquest_journals_2918795927
gale_infotracacademiconefile_A780926191
crossref_citationtrail_10_3390_pr12010136
crossref_primary_10_3390_pr12010136
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_36) 2023; 60
Leising (ref_3) 2001; 148
Feng (ref_13) 2016; 115
Duan (ref_21) 2018; 16
Hong (ref_43) 2019; 251
ref_19
Hu (ref_40) 2016; 63
ref_17
Meng (ref_49) 2016; 31
Kang (ref_39) 2020; 259
Jindal (ref_15) 2019; 166
Li (ref_30) 2019; 174
Ren (ref_14) 2021; 34
Held (ref_18) 2016; 64
ref_24
ref_20
Tobar (ref_46) 2018; 105
Xiong (ref_2) 2017; 6
Isermann (ref_22) 2005; 29
Hu (ref_16) 2020; 14
ref_27
Sun (ref_48) 2015; 8
Gong (ref_28) 2016; 52
Wu (ref_7) 2015; 2015
Wang (ref_31) 2019; 131
Chemali (ref_50) 2018; 65
Yang (ref_26) 2018; 187
Larsson (ref_10) 2014; 161
Li (ref_12) 2019; 254
ref_34
ref_33
Friedman (ref_41) 2001; 29
Dey (ref_25) 2016; 56
Liu (ref_32) 2017; 185
ref_38
ref_37
Li (ref_11) 2008; 26
Lee (ref_51) 2008; 55
Orendorff (ref_9) 2011; 196
Kim (ref_29) 2012; 210
Saito (ref_4) 2001; 97
Zhang (ref_1) 2020; 164
Hwang (ref_23) 2010; 18
Li (ref_35) 2022; 37
ref_44
ref_42
Zhao (ref_45) 2019; 55
Lin (ref_5) 2013; 230
Cai (ref_8) 2011; 196
ref_6
Chen (ref_47) 2018; 213
References_xml – volume: 161
  start-page: A1611
  year: 2014
  ident: ref_10
  article-title: Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0311410jes
– ident: ref_17
  doi: 10.1109/ICARCV.2006.345303
– volume: 210
  start-page: 243
  year: 2012
  ident: ref_29
  article-title: Fail-safe design for large capacity lithium-ion battery systems
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.03.015
– volume: 56
  start-page: 37
  year: 2016
  ident: ref_25
  article-title: Model-based real-time thermal fault diagnosis of Lithium-ion batteries
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2016.08.002
– volume: 185
  start-page: 2033
  year: 2017
  ident: ref_32
  article-title: Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.10.168
– volume: 29
  start-page: 71
  year: 2005
  ident: ref_22
  article-title: Model-based fault-detection and diagnosis—Status and applications
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2004.12.002
– volume: 31
  start-page: 2226
  year: 2016
  ident: ref_49
  article-title: Lithium Polymer Battery State-of-Charge Estimation Based on Adaptive Unscented Kalman Filter and Support Vector Machine
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2015.2439578
– volume: 131
  start-page: 443
  year: 2019
  ident: ref_31
  article-title: Model based insulation fault diagnosis for lithium-ion battery pack in electric vehicles
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.09.007
– volume: 164
  start-page: 108052
  year: 2020
  ident: ref_1
  article-title: Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108052
– ident: ref_42
  doi: 10.1109/ICDM.2008.17
– volume: 196
  start-page: 7779
  year: 2011
  ident: ref_8
  article-title: Experimental simulation of internal short circuit in Li-ion and Li-ion-polymer cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.04.024
– volume: 105
  start-page: 200
  year: 2018
  ident: ref_46
  article-title: Improving battery voltage prediction in an electric bicycle using altitude measurements and kernel adaptive filters
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.09.009
– volume: 97
  start-page: 693
  year: 2001
  ident: ref_4
  article-title: Thermal behaviors of lithium-ion cells during overcharge
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00703-0
– volume: 63
  start-page: 2645
  year: 2016
  ident: ref_40
  article-title: Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling
  publication-title: IEEE Trans. Ind. Electron.
– volume: 230
  start-page: 32
  year: 2013
  ident: ref_5
  article-title: In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.12.032
– volume: 187
  start-page: 950
  year: 2018
  ident: ref_26
  article-title: A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.03.259
– volume: 166
  start-page: A2165
  year: 2019
  ident: ref_15
  article-title: Review-Understanding the Thermal Runaway Behavior of Li-Ion Batteries through Experimental Techniques
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1381910jes
– ident: ref_6
  doi: 10.1109/CVCI47823.2019.8951717
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_41
  article-title: Greedy Function Approximation: A Gradient Boosting Machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– ident: ref_37
  doi: 10.1117/12.2586332
– volume: 2015
  start-page: 631263
  year: 2015
  ident: ref_7
  article-title: A Review on Fault Mechanism and Diagnosis Approach for Li-Ion Batteries
  publication-title: J. Nanomater.
  doi: 10.1155/2015/631263
– volume: 254
  start-page: 113574
  year: 2019
  ident: ref_12
  article-title: Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113574
– volume: 16
  start-page: 160
  year: 2018
  ident: ref_21
  article-title: Evaluation of battery inconsistency based on information entropy
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.01.010
– ident: ref_38
  doi: 10.1109/QRS-C.2019.00098
– volume: 60
  start-page: 106584
  year: 2023
  ident: ref_36
  article-title: A weighted Pearson correlation coefficient based multi-fault comprehensive diagnosis for battery circuits
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.106584
– volume: 8
  start-page: 4400
  year: 2015
  ident: ref_48
  article-title: Online Internal Temperature Estimation for Lithium-Ion Batteries Based on Kalman Filter
  publication-title: Energies
  doi: 10.3390/en8054400
– volume: 64
  start-page: 705
  year: 2016
  ident: ref_18
  article-title: Safe cell, safe battery? Battery fire investigation using FMEA, FTA and practical experiments
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2016.07.051
– volume: 196
  start-page: 6554
  year: 2011
  ident: ref_9
  article-title: Experimental triggers for internal short circuits in lithium-ion cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.03.035
– volume: 34
  start-page: 563
  year: 2021
  ident: ref_14
  article-title: Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.10.020
– volume: 251
  start-page: 113381
  year: 2019
  ident: ref_43
  article-title: Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113381
– volume: 14
  start-page: 65
  year: 2020
  ident: ref_16
  article-title: Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2020.2964814
– volume: 213
  start-page: 375
  year: 2018
  ident: ref_47
  article-title: Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.01.068
– volume: 52
  start-page: 1759
  year: 2016
  ident: ref_28
  article-title: A Data-Driven Bias-Correction-Method-Based Lithium-Ion Battery Modeling Approach for Electric Vehicle Applications
  publication-title: IEEE Trans. Ind. Appl.
– ident: ref_20
  doi: 10.1109/ITEC.2014.6861806
– ident: ref_27
  doi: 10.3390/en9050387
– volume: 65
  start-page: 6730
  year: 2018
  ident: ref_50
  article-title: Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2787586
– ident: ref_24
  doi: 10.3390/pr7010038
– volume: 148
  start-page: A838
  year: 2001
  ident: ref_3
  article-title: Abuse testing of lithium-ion batteries: Characterization of the overcharge reaction of LiCoO2 graphite cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1379740
– ident: ref_44
– volume: 55
  start-page: 1922
  year: 2019
  ident: ref_45
  article-title: A Compact Methodology Via a Recurrent Neural Network for Accurate Equivalent Circuit Type Modeling of Lithium-Ion Batteries
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2018.2874588
– ident: ref_34
  doi: 10.1109/iSPEC48194.2019.8975122
– volume: 174
  start-page: 33
  year: 2019
  ident: ref_30
  article-title: Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.147
– volume: 259
  start-page: 114170
  year: 2020
  ident: ref_39
  article-title: Online multi-fault detection and diagnosis for battery packs in electric vehicles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114170
– ident: ref_33
  doi: 10.20944/preprints201705.0116.v1
– volume: 55
  start-page: 229
  year: 2008
  ident: ref_51
  article-title: Soft computing for battery state-of-charge (BSOC)—Estimation in battery string systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2007.896496
– volume: 6
  start-page: 1832
  year: 2017
  ident: ref_2
  article-title: Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780258
– volume: 37
  start-page: 8513
  year: 2022
  ident: ref_35
  article-title: Battery Thermal Runaway Fault Prognosis in Electric Vehicles Based on Abnormal Heat Generation and Deep Learning Algorithms
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2022.3150026
– volume: 26
  start-page: 1585
  year: 2008
  ident: ref_11
  article-title: Effect of overdischarge on swelling and recharge performance of lithium ion cells
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.200890286
– volume: 115
  start-page: 194
  year: 2016
  ident: ref_13
  article-title: A 3D thermal runaway propagation model for a large format lithium-ion battery module
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.094
– ident: ref_19
– volume: 18
  start-page: 636
  year: 2010
  ident: ref_23
  article-title: A Survey of Fault Detection, Isolation, and Reconfiguration Methods
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2009.2026285
SSID ssj0000913856
Score 2.3391986
Snippet Battery voltage is a pivotal parameter for evaluating battery health and safety. The precise prediction of battery voltage and the implementation of anomaly...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 136
SubjectTerms Algorithms
Anomalies
Batteries
Carbon
Circuits
Copper
Decision making
Decision theory
Decision trees
Electric potential
Electric vehicles
Electrodes
Electrolytes
Fault diagnosis
Fuzzy logic
Heat
Lithium
Parameters
Predictions
Product safety
Traffic safety
Voltage
Title Prediction and Diagnosis of Electric Vehicle Battery Fault Based on Abnormal Voltage: Using Decision Tree Algorithm Theories and Isolated Forest
URI https://www.proquest.com/docview/2918795927
Volume 12
WOSCitedRecordID wos001151428400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RlgMcgBYQhbIaCSToITSJN-uEC9rSXVEBqwiVqpyi2HHoSml2m6RIXPgN_GRmHG-XQ8WFS6TEn9J4xjNj5z2Al35cKkVbn1eaWHhDnURenAy1F4QmKqUQUhiLM_tJzmbx2VmSuoRb665VrmyiNdTFQnOO_CBMel7sUL5bXnrMGsWnq45CYwO2GCUhtFf30uscC2NextGoRyUVFN0fLJuAj38Di8i83odutsZ2i5ne_9_JPYB7zrnEcb8atuGWqXfg7l-Qgzuw7ZS5xdcOcXr_IfxOGz6vYRlhXhd41N-_m7e4KHFiiXLmGk_NOXeLPSTnT5zmV1VHb60pkBqOVc3-b4Wni6ojK_UW7XUEPHIsPnjSGIPj6jtNvDu_QIsKQHG6HfGYVIC83gKZKrTtHsHX6eTk_QfPUTV4Wohh58lABaIUpVRRUVpUNT_y80T6hkq0FpFSSaEMVciVGAlyIqXKDYVexUgy1rl4DJv1ojZPAJOCvmsGtfHzITVSWhZxqOKc2lE4F-zC_kpwmXY45kynUWUUz7CQs7WQd-HFdd1lj95xY61XLP-MVZp60rn7M4Hmw-BY2VjGfsKRJo29t5J_5nS9zdbCf_rv4mdwJySXqE_g7MFm11yZ53Bb_-jmbTOArcPJLP0ygI2Ph28GdiHz89eEStLjz-m3P9ki_hg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk4AC0gCgVGAgQ9WLW9dtZGQigijRo1jXIIVTkZ73pNIxkn2C6o_4Jfwm9kxo-GQ8WtB46296X1t7Mz-_g-gFd2kCpFU5-VmkBYng59Kwg9bTmu8VMphBSm5pmdyOk0OD0NZxvwu7sLw8cqO5tYG-pkqXmNfN8NG11sV35YfbdYNYp3VzsJjQYWR-biJ4Vs5fvxkP7va9cdHcw_HlqtqoClhfAqSzrKEalIpfKTtCYAs307DqVt6IvWwlcqTJShBLESfUH-jlSxoSgh6Uum5RZU7g3Y9BjsPdicjY9nny9XdZhlM_D7DQ-qEKG9vyoc3nB2ag7o9cx3tf2vJ7XRvf-tO-7D3dZ9xkGD9y3YMPk23PmLVHEbtlpzVeLbllN77wH8mhW8I8UoxDhPcNicMFyUuEzxoJYCWmg8MWdcLDakoxc4is-zip5KkyBlHKicPfwMT5ZZRXb4HdYHLnDY6hThvDAGB9lX6qjq7BvWvAcLagjXOKZBTn59giyGWlYP4dO19NMj6OXL3DwGDBN6r5m2x449yqS0TAJXBTHlo4DV2YG9DiiRbpnaWTAkiyhiY1BFa1DtwMvLtKuGn-TKVG8YbxEbLSpJx-3dC2oP039FAxnYIcfSVPduh7eotWZltAbbk39_fgG3DufHk2gynh49hdsuOYDNctUu9Kri3DyDm_pHtSiL5-3AQfhy3eD8AygeVto
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlALSAKBSwBAh6iJrEyTpBQmjFdsWqZZVDqcopxI-0K4XskqSg_gt-D7-OmcTpcqi49cAxiV9yPs_DHn8D8NKNcilR9Tm5ibgTqDh0ojhQjuebMBecC25antlDMZtFJydxsga_-7swFFbZy8RWUOuFoj3yPT_u8mKjq57bsIhkPHm__O5QBik6ae3TaXQQOTAXP9F9q99Nx_ivX_n-ZP_ow0fHZhhwFOdB4whPejznuZChzlsyMDd0s1i4Br8oxUMpYy0NFsgkH3K0fYTMDHoMeiiIoptjuzdgHU3ywB_AejL9lHy53OEhxs0oHHacqJzH7t6y8ujw2Wv5oFda8Gpd0Cq4yd3_eWruwR1rVrNRtw42Yc2UW3D7L7LFLdi0YqxmbyzX9u59-JVUdFJF6GRZqdm4izyc12yRs_02RdBcsWNzRs2yjoz0gk2y86LBp9pohhVHsiTLv2DHi6JB-fyWtYEYbGzzF7Gjyhg2Kk5xopqzb6zlQ5jjQKjHKS5-tPc1oySpdfMAPl_LPD2EQbkozSNgscb3iuh83CzASlIJHfkyyrAeOrLeNuz2oEmVZXCnRCJFip4cASxdAWwbXlyWXXa8JVeWek3YS0mYYUsqs3cycDxEC5aOROTG5GNj3zs99lIr5ep0BbzH__78HG4hItPD6ezgCWz4aBd2u1g7MGiqc_MUbqofzbyuntk1xODrdWPzD447X5o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+Diagnosis+of+Electric+Vehicle+Battery+Fault+Based+on+Abnormal+Voltage%3A+Using+Decision+Tree+Algorithm+Theories+and+Isolated+Forest&rft.jtitle=Processes&rft.au=Zhang%2C+Zhaosheng&rft.au=Dong%2C+Shiji&rft.au=Li%2C+Da&rft.au=Liu%2C+Peng&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=12&rft.issue=1&rft_id=info:doi/10.3390%2Fpr12010136&rft.externalDocID=A780926191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon