Kernel-based Impulse Response Identification with Side-Information on Steady-State Gain

In this paper, we consider the problem of system identification when side-information is available on the steady-state gain (SSG) of the system. We formulate a general nonparametric identification method as an infinite-dimensional constrained convex program over the reproducing kernel Hilbert space...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 68; číslo 10; s. 1 - 8
Hlavní autoři: Khosravi, M., Smith, R. S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider the problem of system identification when side-information is available on the steady-state gain (SSG) of the system. We formulate a general nonparametric identification method as an infinite-dimensional constrained convex program over the reproducing kernel Hilbert space (RKHS) of stable impulse responses. The objective function of this optimization problem is the empirical loss regularized with the norm of RKHS, and the constraint is considered for enforcing the integration of the SSG side-information. The proposed formulation addresses both the discrete-time and continuous-time cases. We show that this program has a unique solution obtained by solving an equivalent finite-dimensional convex optimization. This solution has a closed-form when the empirical loss and regularization functions are quadratic and exact side-information is considered. We perform extensive numerical comparisons to verify the efficiency of the proposed identification methodology.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2023.3243099