Modeling strong/weak discontinuities by local mesh refinement variable-node XFEM with object-oriented implementation

•Numerical simulation for strong and weak discontinuities by local mesh refinement variable-node XFEM is presented.•A novel local mesh refinement scheme is proposed to model crack growth.•A Matlab object-oriented framework for the variable-node XFEM is developed.•Numerical examples demonstrate the s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical and applied fracture mechanics Ročník 106; s. 102434
Hlavní autoři: Ding, Junlei, Yu, Tiantang, Bui, Tinh Quoc
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Ltd 01.04.2020
Elsevier BV
Témata:
ISSN:0167-8442, 1872-7638
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Numerical simulation for strong and weak discontinuities by local mesh refinement variable-node XFEM is presented.•A novel local mesh refinement scheme is proposed to model crack growth.•A Matlab object-oriented framework for the variable-node XFEM is developed.•Numerical examples demonstrate the superiority of the object-oriented variable-node XFEM program.•This work offers an efficient object-oriented computer code for researchers and scientists, especially graduate students. In this paper, we present a Matlab object-oriented implementation of the variable-node extended finite element method (XFEM), which is enhanced by local mesh refinement technique, for modeling strong and weak discontinuities such as cracks, inclusions, and voids. An easy-to-use local mesh refinement scheme is thus proposed, in which the variable-node elements play an important role as they are integrated into the model for the purpose of connecting/linking different scale meshes. For efficiency, the fine-scale mesh is generated near discontinuities, and the refinement is controlled by three parameters: the number of extension layers, the number of subdivision scales, and the number of refinement levels. We detail the implementation of integrating the variable-node elements into the local mesh refinement XFEM codes in a seamless way. The concept of object-oriented programming (OOP) and strategy design pattern promote the extensibility of computer codes. We consider several numerical examples to show the applicability and accuracy of the current computer codes for mutiple crack growths, crack-hole interactions, multiple inclusions, and a rock slope with one interface and two faults.
AbstractList •Numerical simulation for strong and weak discontinuities by local mesh refinement variable-node XFEM is presented.•A novel local mesh refinement scheme is proposed to model crack growth.•A Matlab object-oriented framework for the variable-node XFEM is developed.•Numerical examples demonstrate the superiority of the object-oriented variable-node XFEM program.•This work offers an efficient object-oriented computer code for researchers and scientists, especially graduate students. In this paper, we present a Matlab object-oriented implementation of the variable-node extended finite element method (XFEM), which is enhanced by local mesh refinement technique, for modeling strong and weak discontinuities such as cracks, inclusions, and voids. An easy-to-use local mesh refinement scheme is thus proposed, in which the variable-node elements play an important role as they are integrated into the model for the purpose of connecting/linking different scale meshes. For efficiency, the fine-scale mesh is generated near discontinuities, and the refinement is controlled by three parameters: the number of extension layers, the number of subdivision scales, and the number of refinement levels. We detail the implementation of integrating the variable-node elements into the local mesh refinement XFEM codes in a seamless way. The concept of object-oriented programming (OOP) and strategy design pattern promote the extensibility of computer codes. We consider several numerical examples to show the applicability and accuracy of the current computer codes for mutiple crack growths, crack-hole interactions, multiple inclusions, and a rock slope with one interface and two faults.
In this paper, we present a Matlab object-oriented implementation of the variable-node extended finite element method (XFEM), which is enhanced by local mesh refinement technique, for modeling strong and weak discontinuities such as cracks, inclusions, and voids. An easy-to-use local mesh refinement scheme is thus proposed, in which the variable-node elements play an important role as they are integrated into the model for the purpose of connecting/linking different scale meshes. For efficiency, the fine-scale mesh is generated near discontinuities, and the refinement is controlled by three parameters: the number of extension layers, the number of subdivision scales, and the number of refinement levels. We detail the implementation of integrating the variable-node elements into the local mesh refinement XFEM codes in a seamless way. The concept of object-oriented programming (OOP) and strategy design pattern promote the extensibility of computer codes. We consider several numerical examples to show the applicability and accuracy of the current computer codes for mutiple crack growths, crack-hole interactions, multiple inclusions, and a rock slope with one interface and two faults.
ArticleNumber 102434
Author Yu, Tiantang
Ding, Junlei
Bui, Tinh Quoc
Author_xml – sequence: 1
  givenname: Junlei
  surname: Ding
  fullname: Ding, Junlei
  organization: Department of Engineering Mechanics, Hohai University, Nanjing 211100, PR China
– sequence: 2
  givenname: Tiantang
  surname: Yu
  fullname: Yu, Tiantang
  email: tiantangyu@hhu.edu.cn
  organization: Department of Engineering Mechanics, Hohai University, Nanjing 211100, PR China
– sequence: 3
  givenname: Tinh Quoc
  surname: Bui
  fullname: Bui, Tinh Quoc
  email: buiquoctinh@duytan.edu.vn, bui.t.aa@m.titech.ac.jp
  organization: Institute for Research and Development, Duy Tan University, Da Nang City, Viet Nam
BookMark eNqFkEtLJDEUhcOgMO3jH8wi4Lq6K4_qqsxCENEZQXGj4C6kUrf01lQlbZJW_PemrVm50FXgcr4TzndA9px3QMgvVi5ZydarYZlMP4Fd8pKpfOJSyB9kwZqaF_VaNHtkkWN10UjJf5KDGIeyZDVTYkHSje9gRPdIYwrePa5ewfyjHUbrXUK3xYQQaftGR2_NSCeITzRAjw4mcIm-mICmHaFwuYY-XF7c0FdMT9S3A9hU-IA5BR3FaTN-ECahd0dkvzdjhOP_7yG5v7y4O_9bXN_-uTo_uy6sEDIVFVQgFVcNCKMMM43qQYBYt01lTQ2t4pIL2fJWCdWyCmpre8WMaUzNu3UnxSE5mXs3wT9vISY9-G1w-Uud0bqSUjZVTsk5ZYOPMY_Tm4CTCW-alXrnVw969qt3fvXsN2O_P2EW53kpGBy_g09nGPL8F4Sgo82qLHQYsjjdefy64B2Ds50l
CitedBy_id crossref_primary_10_3390_math13071027
crossref_primary_10_1016_j_engfracmech_2022_108763
crossref_primary_10_1016_j_tafmec_2022_103389
crossref_primary_10_1080_15397734_2021_1956326
crossref_primary_10_1016_j_ijsolstr_2022_111559
crossref_primary_10_1016_j_cma_2024_116791
crossref_primary_10_1016_j_engfracmech_2024_110524
crossref_primary_10_1016_j_compgeo_2022_104940
crossref_primary_10_1108_EC_02_2020_0067
crossref_primary_10_1016_j_mechmat_2023_104811
crossref_primary_10_3390_math12243881
crossref_primary_10_1016_j_ijsolstr_2022_112090
crossref_primary_10_1016_j_cma_2023_116045
crossref_primary_10_1016_j_engfracmech_2022_108533
crossref_primary_10_1016_j_ijnonlinmec_2023_104522
crossref_primary_10_1016_j_tafmec_2022_103595
crossref_primary_10_1007_s10665_024_10335_5
crossref_primary_10_1016_j_engfracmech_2023_109286
crossref_primary_10_1016_j_engfracmech_2025_111167
crossref_primary_10_1177_09544062221148879
crossref_primary_10_1016_j_engfracmech_2024_110216
crossref_primary_10_1016_j_jcsr_2025_109494
crossref_primary_10_1007_s40997_021_00470_0
crossref_primary_10_32604_cmes_2022_018325
crossref_primary_10_1016_j_tafmec_2020_102843
crossref_primary_10_1016_j_ijsolstr_2023_112280
crossref_primary_10_1016_j_engfracmech_2021_107941
crossref_primary_10_1016_j_tafmec_2020_102647
crossref_primary_10_1016_j_tafmec_2022_103557
Cites_doi 10.1016/j.engfracmech.2017.07.028
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
10.1002/nme.3024
10.1007/s00466-018-1553-1
10.1016/j.cma.2016.10.011
10.1016/j.engfracmech.2017.08.004
10.1002/nme.2259
10.1016/j.compositesb.2016.01.024
10.1007/s00466-013-0845-8
10.1016/j.compscitech.2011.04.001
10.1016/j.finel.2013.02.001
10.1007/s00466-013-0861-8
10.1002/nme.2427
10.1016/j.engfracmech.2016.03.051
10.1016/S0045-7825(96)01087-0
10.1016/j.engfracmech.2010.06.009
10.1016/j.engfracmech.2018.11.036
10.1002/nme.1601
10.1016/S0045-7825(01)00260-2
10.1007/s00366-012-0261-2
10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
10.1016/j.enganabound.2010.02.001
10.1016/j.ijfatigue.2011.08.010
10.1007/s10999-011-9159-1
10.1002/nme.201
10.1108/EC-08-2013-0203
10.1016/j.ijsolstr.2014.02.024
10.1016/j.advengsoft.2016.09.007
10.12989/sem.2012.43.3.349
10.1115/1.3656897
10.1016/j.advengsoft.2017.09.005
10.1016/S0045-7825(01)00215-8
10.1007/s10704-013-9877-5
10.1007/s00466-013-0952-6
10.1016/j.ijsolstr.2015.07.021
10.1115/1.3153665
10.1002/nme.2001
10.1016/j.engfracmech.2008.10.015
10.1007/s12206-015-0225-8
10.1002/nme.468
10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
10.1016/j.compstruc.2006.08.085
10.1016/j.commatsci.2011.04.034
10.1002/nme.3268
10.1016/j.cma.2007.07.017
10.1016/j.ijsolstr.2003.08.002
10.1016/j.compstruc.2017.11.007
10.1016/j.cma.2018.12.023
10.1002/nme.1966
10.1115/1.801535.ch2
10.1016/j.ijmecsci.2017.01.028
10.1007/s00466-012-0732-8
10.1016/j.ijsolstr.2009.06.019
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Apr 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2020
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.tafmec.2019.102434
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7638
ExternalDocumentID 10_1016_j_tafmec_2019_102434
S0167844219305464
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UHS
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
7TB
8BQ
8FD
AGCQF
FR3
JG9
KR7
ID FETCH-LOGICAL-c334t-5e5e49298e3a9a1a89fe3e36b85ca7eb924234b2b939b15e7ccf91aa8a72d6d43
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519657500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8442
IngestDate Sun Sep 07 03:48:30 EDT 2025
Sat Nov 29 07:24:22 EST 2025
Tue Nov 18 22:43:16 EST 2025
Fri Feb 23 02:49:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Voids
Cracks
Local mesh refinement
Inclusions
Object-oriented programming
XFEM
Variable-node elements
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-5e5e49298e3a9a1a89fe3e36b85ca7eb924234b2b939b15e7ccf91aa8a72d6d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2427544485
PQPubID 2045390
ParticipantIDs proquest_journals_2427544485
crossref_primary_10_1016_j_tafmec_2019_102434
crossref_citationtrail_10_1016_j_tafmec_2019_102434
elsevier_sciencedirect_doi_10_1016_j_tafmec_2019_102434
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Theoretical and applied fracture mechanics
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sutula, Kerfriden, van Dam, Bordas (b0265) 2018; 191
Dolbow, Moës, Belytschko (b0080) 2001; 190
Liu, Yu, Bui, Zhang, Xu (b0060) 2014; 51
Nielsen, Legarth, Niordson (b0275) 2012; 89
Liu (b0065) 2015; 72
Loehnert, Belytschko (b0155) 2007; 71
Sukumar, Prévost (b0220) 2003; 40
Kumar, Singh, Mishra, Sharma, Khan (b0180) 2019; 205
Rannou, Gravouil, Baïetto-Dubourg (b0150) 2009; 77
Mohammadi (b0285) 2012
Bansal, Singh, Mishra, Bordas (b0130) 2019; 347
Guidault, Allix, Champaney, Navarro (b0140) 2007; 85
Nguyen, Nguyen, Truong, Bui (b0095) 2019; 206
Gu, Monteiro, He (b0040) 2011; 71
Sukumar, Chopp, Moës, Belytschko (b0085) 2001; 190
Moës, Dolbow, Belytschko (b0010) 1999; 46
Teng, Sun, Wu, Zhang, Chen, Liao (b0175) 2018; 62
Wang, Yu, Bui, Tanaka, Zhang, Hirose, Curiel-Sosa (b0195) 2017; 313
Sutula, Kerfriden, van Dam, Bordas (b0270) 2018; 191
H. Tada, P.C. Paris, G.R. Irwin, Stress Analysis Results for Common Test Specimen Configurations, third ed., vol. 1, ASME Press, 2000, book section 2, pp. 39–80.
Yau, Wang, Corten (b0255) 1980; 47
Bui, Zhang (b0045) 2013; 69
Budarapu, Gracie, Bordas, Rabczuk (b0165) 2014; 53
Bhattacharya, Singh, Mishra, Bui (b0120) 2013; 52
F. Haziza, The extended finite element method and its implementation in 2D in the Aster code, Royal Institute of Technology, Sweden, 2006.
Yu, Bui (b0185) 2018; 196
Belytschko, Black (b0005) 1999; 45
Benvenuti, Orlando, Ferretti, Tralli (b0055) 2016; 91
Melenk, Babuška (b0015) 1996; 139
Xiao, Karihaloo (b0245) 2006; 66
Stolarska, Chopp, Moës, Belytschko (b0135) 2001; 51
Bhattacharya, Singh, Mishra (b0110) 2013; 183
Fries, Byfut, Alizada, Cheng, Schröder (b0160) 2011; 86
Shi, Chopp, Lua, Sukumar, Belytschko (b0230) 2010; 77
E. Giner, N. Sukumar, J.E. Tarancón, F.J. Fuenmayor, An abaqus implementation of the extended finite element method, Eng. Fract. Mech. 76 (2009) 347–368.
Bordas, Nguyen, Dunant, Guidoum, Nguyen-Dang (b0205) 2007; 71
Malekan, Silva, Barros, Pitangueira, Penna (b0215) 2018; 115
Erdogan, Sih (b0250) 1963; 85
Patil, Mishra, Singh (b0170) 2017; 122
Singh, Mishra, Bhattacharya (b0105) 2011; 7
Lim, Sohn, Im (b0200) 2012; 43
Yu, Wu, Guo, Du, He (b0280) 2009; 46
Daneshyar, Mohammadi (b0035) 2013; 52
Zhang, Bui (b0070) 2015; 32
L. Jiang, The extended finite element method and its implementation in 2D in the Aster code, Martec Limited, 400–1800 Brunswick Street, Halifax, Nova Scotia, B3J 3J8 Canada, 2010.
Daux, Moës, Dolbow, Sukumar, Belytschko (b0090) 2000; 48
Hettich, Hund, Ramm (b0145) 2008; 197
Wang, Yu, Bui, Trinh, Nguyen, Nguyen, Doan (b0190) 2016; 102
Fries (b0020) 2008; 75
Bhattacharya, Singh, Mishra (b0115) 2013; 29
Singh, Mishra, Bhattacharya, Patil (b0100) 2012; 36
Singh, Bhardwaj, Mishra (b0125) 2015; 29
Chamrová, Patzák (b0210) 2010; 163
Bayesteh, Mohammadi (b0050) 2011; 50
Mohammadnejad, Khoei (b0025) 2013; 51
Ji, Chopp, Dolbow (b0075) 2002; 54
Zhang, Rong, Li (b0030) 2010; 34
Yau (10.1016/j.tafmec.2019.102434_b0255) 1980; 47
Lim (10.1016/j.tafmec.2019.102434_b0200) 2012; 43
Bayesteh (10.1016/j.tafmec.2019.102434_b0050) 2011; 50
10.1016/j.tafmec.2019.102434_b0225
Bordas (10.1016/j.tafmec.2019.102434_b0205) 2007; 71
Mohammadi (10.1016/j.tafmec.2019.102434_b0285) 2012
10.1016/j.tafmec.2019.102434_b0260
Guidault (10.1016/j.tafmec.2019.102434_b0140) 2007; 85
Nielsen (10.1016/j.tafmec.2019.102434_b0275) 2012; 89
Sutula (10.1016/j.tafmec.2019.102434_b0265) 2018; 191
Loehnert (10.1016/j.tafmec.2019.102434_b0155) 2007; 71
Erdogan (10.1016/j.tafmec.2019.102434_b0250) 1963; 85
Malekan (10.1016/j.tafmec.2019.102434_b0215) 2018; 115
Moës (10.1016/j.tafmec.2019.102434_b0010) 1999; 46
Zhang (10.1016/j.tafmec.2019.102434_b0070) 2015; 32
Budarapu (10.1016/j.tafmec.2019.102434_b0165) 2014; 53
Bui (10.1016/j.tafmec.2019.102434_b0045) 2013; 69
Xiao (10.1016/j.tafmec.2019.102434_b0245) 2006; 66
Zhang (10.1016/j.tafmec.2019.102434_b0030) 2010; 34
Dolbow (10.1016/j.tafmec.2019.102434_b0080) 2001; 190
Rannou (10.1016/j.tafmec.2019.102434_b0150) 2009; 77
Sukumar (10.1016/j.tafmec.2019.102434_b0220) 2003; 40
Singh (10.1016/j.tafmec.2019.102434_b0105) 2011; 7
Fries (10.1016/j.tafmec.2019.102434_b0160) 2011; 86
Bhattacharya (10.1016/j.tafmec.2019.102434_b0110) 2013; 183
Patil (10.1016/j.tafmec.2019.102434_b0170) 2017; 122
Daneshyar (10.1016/j.tafmec.2019.102434_b0035) 2013; 52
Liu (10.1016/j.tafmec.2019.102434_b0060) 2014; 51
Stolarska (10.1016/j.tafmec.2019.102434_b0135) 2001; 51
Yu (10.1016/j.tafmec.2019.102434_b0185) 2018; 196
Hettich (10.1016/j.tafmec.2019.102434_b0145) 2008; 197
Belytschko (10.1016/j.tafmec.2019.102434_b0005) 1999; 45
Ji (10.1016/j.tafmec.2019.102434_b0075) 2002; 54
Liu (10.1016/j.tafmec.2019.102434_b0065) 2015; 72
Sukumar (10.1016/j.tafmec.2019.102434_b0085) 2001; 190
Benvenuti (10.1016/j.tafmec.2019.102434_b0055) 2016; 91
Chamrová (10.1016/j.tafmec.2019.102434_b0210) 2010; 163
Wang (10.1016/j.tafmec.2019.102434_b0195) 2017; 313
Bhattacharya (10.1016/j.tafmec.2019.102434_b0115) 2013; 29
10.1016/j.tafmec.2019.102434_b0240
Melenk (10.1016/j.tafmec.2019.102434_b0015) 1996; 139
Teng (10.1016/j.tafmec.2019.102434_b0175) 2018; 62
Singh (10.1016/j.tafmec.2019.102434_b0100) 2012; 36
Daux (10.1016/j.tafmec.2019.102434_b0090) 2000; 48
Wang (10.1016/j.tafmec.2019.102434_b0190) 2016; 102
Kumar (10.1016/j.tafmec.2019.102434_b0180) 2019; 205
Bansal (10.1016/j.tafmec.2019.102434_b0130) 2019; 347
Sutula (10.1016/j.tafmec.2019.102434_b0270) 2018; 191
Gu (10.1016/j.tafmec.2019.102434_b0040) 2011; 71
Fries (10.1016/j.tafmec.2019.102434_b0020) 2008; 75
Singh (10.1016/j.tafmec.2019.102434_b0125) 2015; 29
10.1016/j.tafmec.2019.102434_b0235
Yu (10.1016/j.tafmec.2019.102434_b0280) 2009; 46
Nguyen (10.1016/j.tafmec.2019.102434_b0095) 2019; 206
Bhattacharya (10.1016/j.tafmec.2019.102434_b0120) 2013; 52
Shi (10.1016/j.tafmec.2019.102434_b0230) 2010; 77
Mohammadnejad (10.1016/j.tafmec.2019.102434_b0025) 2013; 51
References_xml – volume: 163
  start-page: 271
  year: 2010
  end-page: 278
  ident: b0210
  article-title: Object-oriented programming and the extended finite-element method
  publication-title: Proc. Inst. Civil Eng – Eng. Comput. Mech.
– volume: 72
  start-page: 174
  year: 2015
  end-page: 189
  ident: b0065
  article-title: Extended finite element method for strong discontinuity analysis of strain localization of non-associative plasticity materials
  publication-title: Int. J. Solids Struct.
– volume: 196
  start-page: 112
  year: 2018
  end-page: 133
  ident: b0185
  article-title: Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement
  publication-title: Comput. Struct.
– volume: 50
  start-page: 2793
  year: 2011
  end-page: 2813
  ident: b0050
  article-title: XFEM fracture analysis of shells: The effect of crack tip enrichments
  publication-title: Comput. Mater. Sci.
– volume: 53
  start-page: 1129
  year: 2014
  end-page: 1148
  ident: b0165
  article-title: An adaptive multiscale method for quasi-static crack growth
  publication-title: Comput. Mech.
– volume: 29
  start-page: 427
  year: 2013
  end-page: 448
  ident: b0115
  article-title: Fatigue-life estimation of functionally graded materials using XFEM
  publication-title: Eng. Comput.
– volume: 205
  start-page: 577
  year: 2019
  end-page: 602
  ident: b0180
  article-title: A homogenized multigrid XFEM to predict the crack growth behavior of ductile material in the presence of microstructural defects
  publication-title: Eng. Fract. Mech.
– volume: 75
  start-page: 503
  year: 2008
  end-page: 532
  ident: b0020
  article-title: A corrected XFEM approximation without problems in blending elements
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 51
  start-page: 2167
  year: 2014
  end-page: 2182
  ident: b0060
  article-title: Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method
  publication-title: Int. J. Solids Struct.
– volume: 102
  start-page: 105
  year: 2016
  end-page: 122
  ident: b0190
  article-title: Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM
  publication-title: Adv. Eng. Softw.
– volume: 89
  start-page: 786
  year: 2012
  end-page: 804
  ident: b0275
  article-title: Extended FEM modeling of crack paths near inclusions
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 36
  start-page: 109
  year: 2012
  end-page: 119
  ident: b0100
  article-title: The numerical simulation of fatigue crack growth using extended finite element method
  publication-title: Int. J. Fatigue
– volume: 85
  start-page: 1360
  year: 2007
  end-page: 1371
  ident: b0140
  article-title: A two-scale approach with homogenization for the computation of cracked structures
  publication-title: Comput. Struct.
– volume: 71
  start-page: 1466
  year: 2007
  end-page: 1482
  ident: b0155
  article-title: A multiscale projection method for macro/microcrack simulations
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 77
  start-page: 2840
  year: 2010
  end-page: 2863
  ident: b0230
  article-title: Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions
  publication-title: Eng. Fract. Mech.
– volume: 46
  start-page: 3710
  year: 2009
  end-page: 3724
  ident: b0280
  article-title: Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method
  publication-title: Int. J. Solids Struct.
– volume: 71
  start-page: 703
  year: 2007
  end-page: 732
  ident: b0205
  article-title: An extended finite element library
  publication-title: Int. J. Numer. Meth. Eng.
– reference: F. Haziza, The extended finite element method and its implementation in 2D in the Aster code, Royal Institute of Technology, Sweden, 2006.
– volume: 139
  start-page: 289
  year: 1996
  end-page: 314
  ident: b0015
  article-title: The partition of unity finite element method: basic theory and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 115
  start-page: 168
  year: 2018
  end-page: 193
  ident: b0215
  article-title: Two-dimensional fracture modeling with the generalized/extended finite element method: An object-oriented programming approach
  publication-title: Adv. Eng. Softw.
– reference: H. Tada, P.C. Paris, G.R. Irwin, Stress Analysis Results for Common Test Specimen Configurations, third ed., vol. 1, ASME Press, 2000, book section 2, pp. 39–80.
– volume: 40
  start-page: 7513
  year: 2003
  end-page: 7537
  ident: b0220
  article-title: Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation
  publication-title: Int. J. Solids Struct.
– volume: 91
  start-page: 346
  year: 2016
  end-page: 360
  ident: b0055
  article-title: A new 3D experimentally consistent XFEM to simulate delamination in FRP-reinforced concrete
  publication-title: Compos. Part B
– volume: 51
  start-page: 943
  year: 2001
  end-page: 960
  ident: b0135
  article-title: Modelling crack growth by level sets in the extended finite element method
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 77
  start-page: 581
  year: 2009
  end-page: 600
  ident: b0150
  article-title: A local multigrid X-FEM strategy for 3-D crack propagation
  publication-title: Int. J. Numer. Meth. Eng.
– reference: L. Jiang, The extended finite element method and its implementation in 2D in the Aster code, Martec Limited, 400–1800 Brunswick Street, Halifax, Nova Scotia, B3J 3J8 Canada, 2010.
– volume: 43
  start-page: 349
  year: 2012
  end-page: 370
  ident: b0200
  article-title: Variable-node element families for mesh connection and adaptive mesh computation
  publication-title: Struct. Eng. Mech.
– volume: 52
  start-page: 1023
  year: 2013
  end-page: 1038
  ident: b0035
  article-title: Strong tangential discontinuity modeling of shear bands using the extended finite element method
  publication-title: Comput. Mech.
– volume: 190
  start-page: 6183
  year: 2001
  end-page: 6200
  ident: b0085
  article-title: Modeling holes and inclusions by level sets in the extended finite-element method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 86
  start-page: 404
  year: 2011
  end-page: 430
  ident: b0160
  article-title: Hanging nodes and XFEM
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 347
  start-page: 365
  year: 2019
  end-page: 401
  ident: b0130
  article-title: A parallel and efficient multi-split XFEM for 3-D analysis of heterogeneous materials
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 34
  start-page: 619
  year: 2010
  end-page: 624
  ident: b0030
  article-title: Numerical study on deformations in a cracked viscoelastic body with the extended finite element method
  publication-title: Eng. Anal. Boundary Elem.
– volume: 52
  start-page: 799
  year: 2013
  end-page: 814
  ident: b0120
  article-title: Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM
  publication-title: Comput. Mech.
– volume: 122
  start-page: 277
  year: 2017
  end-page: 287
  ident: b0170
  article-title: A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials
  publication-title: Int. J. Mech. Sci.
– volume: 206
  start-page: 89
  year: 2019
  end-page: 113
  ident: b0095
  article-title: Thermal-mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive-interpolation element (XCQ4)
  publication-title: Eng. Fract. Mech.
– volume: 85
  start-page: 519
  year: 1963
  end-page: 525
  ident: b0250
  article-title: On the crack extension in plates under plane loading and transverse shear
  publication-title: J. Basic Eng.
– volume: 62
  start-page: 1087
  year: 2018
  end-page: 1106
  ident: b0175
  article-title: An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems
  publication-title: Comput. Mech.
– volume: 46
  start-page: 131
  year: 1999
  end-page: 150
  ident: b0010
  article-title: A finite element method for crack growth without remeshing
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 197
  start-page: 414
  year: 2008
  end-page: 424
  ident: b0145
  article-title: Modeling of failure in composites by X-FEM and level sets within a multiscale framework
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 29
  start-page: 1131
  year: 2015
  end-page: 1143
  ident: b0125
  article-title: A new criterion for modeling multiple discontinuities passing through an element using XIGA
  publication-title: J. Mech. Sci. Technol.
– volume: 183
  start-page: 81
  year: 2013
  end-page: 97
  ident: b0110
  article-title: Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM
  publication-title: Int. J. Fract.
– volume: 48
  start-page: 1741
  year: 2000
  end-page: 1760
  ident: b0090
  article-title: Arbitrary branched and intersecting cracks with the extended finite element method
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 51
  start-page: 327
  year: 2013
  end-page: 345
  ident: b0025
  article-title: An extended finite element method for fluid flow in partially saturated porous media with weak discontinuities; the convergence analysis of local enrichment strategies
  publication-title: Comput. Mech.
– volume: 191
  start-page: 205
  year: 2018
  end-page: 224
  ident: b0270
  article-title: Minimum energy multiple crack propagation. Part I: Theory and state of the art review
  publication-title: Eng. Fract. Mech.
– volume: 313
  start-page: 375
  year: 2017
  end-page: 405
  ident: b0195
  article-title: 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks
  publication-title: Comput. Methods Appl. Mech. Eng.
– reference: E. Giner, N. Sukumar, J.E. Tarancón, F.J. Fuenmayor, An abaqus implementation of the extended finite element method, Eng. Fract. Mech. 76 (2009) 347–368.
– volume: 69
  start-page: 19
  year: 2013
  end-page: 36
  ident: b0045
  article-title: Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM
  publication-title: Finite Elem. Anal. Des.
– volume: 45
  start-page: 601
  year: 1999
  end-page: 620
  ident: b0005
  article-title: Elastic crack growth in finite elements with minimal remeshing
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 7
  start-page: 199
  year: 2011
  end-page: 218
  ident: b0105
  article-title: XFEM simulation of cracks, holes and inclusions in functionally graded materials
  publication-title: Int. J. Mech. Mater. Des.
– volume: 71
  start-page: 1209
  year: 2011
  end-page: 1216
  ident: b0040
  article-title: Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites
  publication-title: Compos. Sci. Technol.
– volume: 32
  start-page: 473
  year: 2015
  end-page: 497
  ident: b0070
  article-title: A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures
  publication-title: Eng. Comput.
– year: 2012
  ident: b0285
  article-title: XFEM Fracture Analysis of Composites
– volume: 191
  start-page: 257
  year: 2018
  end-page: 276
  ident: b0265
  article-title: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications
  publication-title: Eng. Fract. Mech.
– volume: 54
  start-page: 1209
  year: 2002
  end-page: 1233
  ident: b0075
  article-title: A hybrid extended finite element/level set method for modeling phase transformations
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 47
  start-page: 335
  year: 1980
  end-page: 341
  ident: b0255
  article-title: A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity
  publication-title: J. Appl. Mech.
– volume: 66
  start-page: 1378
  year: 2006
  end-page: 1410
  ident: b0245
  article-title: Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 190
  start-page: 6825
  year: 2001
  end-page: 6846
  ident: b0080
  article-title: An extended finite element method for modeling crack growth with frictional contact
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 191
  start-page: 205
  year: 2018
  ident: 10.1016/j.tafmec.2019.102434_b0270
  article-title: Minimum energy multiple crack propagation. Part I: Theory and state of the art review
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.07.028
– volume: 46
  start-page: 131
  issue: 1
  year: 1999
  ident: 10.1016/j.tafmec.2019.102434_b0010
  article-title: A finite element method for crack growth without remeshing
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– volume: 86
  start-page: 404
  issue: 4–5
  year: 2011
  ident: 10.1016/j.tafmec.2019.102434_b0160
  article-title: Hanging nodes and XFEM
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.3024
– volume: 62
  start-page: 1087
  issue: 5
  year: 2018
  ident: 10.1016/j.tafmec.2019.102434_b0175
  article-title: An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1553-1
– volume: 313
  start-page: 375
  year: 2017
  ident: 10.1016/j.tafmec.2019.102434_b0195
  article-title: 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.10.011
– volume: 191
  start-page: 257
  year: 2018
  ident: 10.1016/j.tafmec.2019.102434_b0265
  article-title: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.08.004
– volume: 75
  start-page: 503
  issue: 5
  year: 2008
  ident: 10.1016/j.tafmec.2019.102434_b0020
  article-title: A corrected XFEM approximation without problems in blending elements
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.2259
– volume: 91
  start-page: 346
  year: 2016
  ident: 10.1016/j.tafmec.2019.102434_b0055
  article-title: A new 3D experimentally consistent XFEM to simulate delamination in FRP-reinforced concrete
  publication-title: Compos. Part B
  doi: 10.1016/j.compositesb.2016.01.024
– volume: 52
  start-page: 799
  issue: 4
  year: 2013
  ident: 10.1016/j.tafmec.2019.102434_b0120
  article-title: Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0845-8
– volume: 71
  start-page: 1209
  year: 2011
  ident: 10.1016/j.tafmec.2019.102434_b0040
  article-title: Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2011.04.001
– volume: 69
  start-page: 19
  year: 2013
  ident: 10.1016/j.tafmec.2019.102434_b0045
  article-title: Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2013.02.001
– volume: 52
  start-page: 1023
  year: 2013
  ident: 10.1016/j.tafmec.2019.102434_b0035
  article-title: Strong tangential discontinuity modeling of shear bands using the extended finite element method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0861-8
– volume: 77
  start-page: 581
  issue: 4
  year: 2009
  ident: 10.1016/j.tafmec.2019.102434_b0150
  article-title: A local multigrid X-FEM strategy for 3-D crack propagation
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.2427
– volume: 205
  start-page: 577
  year: 2019
  ident: 10.1016/j.tafmec.2019.102434_b0180
  article-title: A homogenized multigrid XFEM to predict the crack growth behavior of ductile material in the presence of microstructural defects
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2016.03.051
– volume: 139
  start-page: 289
  issue: 1–4
  year: 1996
  ident: 10.1016/j.tafmec.2019.102434_b0015
  article-title: The partition of unity finite element method: basic theory and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01087-0
– volume: 77
  start-page: 2840
  year: 2010
  ident: 10.1016/j.tafmec.2019.102434_b0230
  article-title: Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2010.06.009
– volume: 206
  start-page: 89
  year: 2019
  ident: 10.1016/j.tafmec.2019.102434_b0095
  article-title: Thermal-mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive-interpolation element (XCQ4)
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.11.036
– volume: 66
  start-page: 1378
  issue: 9
  year: 2006
  ident: 10.1016/j.tafmec.2019.102434_b0245
  article-title: Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1601
– volume: 190
  start-page: 6825
  issue: 51
  year: 2001
  ident: 10.1016/j.tafmec.2019.102434_b0080
  article-title: An extended finite element method for modeling crack growth with frictional contact
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00260-2
– volume: 29
  start-page: 427
  issue: 4
  year: 2013
  ident: 10.1016/j.tafmec.2019.102434_b0115
  article-title: Fatigue-life estimation of functionally graded materials using XFEM
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-012-0261-2
– ident: 10.1016/j.tafmec.2019.102434_b0240
– volume: 48
  start-page: 1741
  issue: 12
  year: 2000
  ident: 10.1016/j.tafmec.2019.102434_b0090
  article-title: Arbitrary branched and intersecting cracks with the extended finite element method
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
– volume: 34
  start-page: 619
  year: 2010
  ident: 10.1016/j.tafmec.2019.102434_b0030
  article-title: Numerical study on deformations in a cracked viscoelastic body with the extended finite element method
  publication-title: Eng. Anal. Boundary Elem.
  doi: 10.1016/j.enganabound.2010.02.001
– volume: 36
  start-page: 109
  issue: 1
  year: 2012
  ident: 10.1016/j.tafmec.2019.102434_b0100
  article-title: The numerical simulation of fatigue crack growth using extended finite element method
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2011.08.010
– volume: 7
  start-page: 199
  issue: 3
  year: 2011
  ident: 10.1016/j.tafmec.2019.102434_b0105
  article-title: XFEM simulation of cracks, holes and inclusions in functionally graded materials
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-011-9159-1
– volume: 51
  start-page: 943
  issue: 8
  year: 2001
  ident: 10.1016/j.tafmec.2019.102434_b0135
  article-title: Modelling crack growth by level sets in the extended finite element method
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.201
– volume: 32
  start-page: 473
  issue: 2
  year: 2015
  ident: 10.1016/j.tafmec.2019.102434_b0070
  article-title: A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures
  publication-title: Eng. Comput.
  doi: 10.1108/EC-08-2013-0203
– volume: 51
  start-page: 2167
  issue: 11–12
  year: 2014
  ident: 10.1016/j.tafmec.2019.102434_b0060
  article-title: Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2014.02.024
– volume: 102
  start-page: 105
  year: 2016
  ident: 10.1016/j.tafmec.2019.102434_b0190
  article-title: Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.09.007
– volume: 43
  start-page: 349
  issue: 3
  year: 2012
  ident: 10.1016/j.tafmec.2019.102434_b0200
  article-title: Variable-node element families for mesh connection and adaptive mesh computation
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2012.43.3.349
– volume: 85
  start-page: 519
  issue: 4
  year: 1963
  ident: 10.1016/j.tafmec.2019.102434_b0250
  article-title: On the crack extension in plates under plane loading and transverse shear
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3656897
– volume: 115
  start-page: 168
  year: 2018
  ident: 10.1016/j.tafmec.2019.102434_b0215
  article-title: Two-dimensional fracture modeling with the generalized/extended finite element method: An object-oriented programming approach
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.09.005
– volume: 190
  start-page: 6183
  issue: 46–47
  year: 2001
  ident: 10.1016/j.tafmec.2019.102434_b0085
  article-title: Modeling holes and inclusions by level sets in the extended finite-element method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00215-8
– volume: 183
  start-page: 81
  issue: 1
  year: 2013
  ident: 10.1016/j.tafmec.2019.102434_b0110
  article-title: Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-013-9877-5
– volume: 53
  start-page: 1129
  issue: 6
  year: 2014
  ident: 10.1016/j.tafmec.2019.102434_b0165
  article-title: An adaptive multiscale method for quasi-static crack growth
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0952-6
– volume: 72
  start-page: 174
  year: 2015
  ident: 10.1016/j.tafmec.2019.102434_b0065
  article-title: Extended finite element method for strong discontinuity analysis of strain localization of non-associative plasticity materials
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.07.021
– volume: 47
  start-page: 335
  issue: 2
  year: 1980
  ident: 10.1016/j.tafmec.2019.102434_b0255
  article-title: A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3153665
– volume: 71
  start-page: 1466
  issue: 12
  year: 2007
  ident: 10.1016/j.tafmec.2019.102434_b0155
  article-title: A multiscale projection method for macro/microcrack simulations
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.2001
– ident: 10.1016/j.tafmec.2019.102434_b0225
  doi: 10.1016/j.engfracmech.2008.10.015
– volume: 29
  start-page: 1131
  issue: 3
  year: 2015
  ident: 10.1016/j.tafmec.2019.102434_b0125
  article-title: A new criterion for modeling multiple discontinuities passing through an element using XIGA
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-015-0225-8
– ident: 10.1016/j.tafmec.2019.102434_b0235
– volume: 54
  start-page: 1209
  issue: 8
  year: 2002
  ident: 10.1016/j.tafmec.2019.102434_b0075
  article-title: A hybrid extended finite element/level set method for modeling phase transformations
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.468
– volume: 45
  start-page: 601
  issue: 5
  year: 1999
  ident: 10.1016/j.tafmec.2019.102434_b0005
  article-title: Elastic crack growth in finite elements with minimal remeshing
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
– volume: 85
  start-page: 1360
  issue: 17–18
  year: 2007
  ident: 10.1016/j.tafmec.2019.102434_b0140
  article-title: A two-scale approach with homogenization for the computation of cracked structures
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.08.085
– volume: 50
  start-page: 2793
  year: 2011
  ident: 10.1016/j.tafmec.2019.102434_b0050
  article-title: XFEM fracture analysis of shells: The effect of crack tip enrichments
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.04.034
– volume: 89
  start-page: 786
  issue: 6
  year: 2012
  ident: 10.1016/j.tafmec.2019.102434_b0275
  article-title: Extended FEM modeling of crack paths near inclusions
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.3268
– volume: 197
  start-page: 414
  issue: 5
  year: 2008
  ident: 10.1016/j.tafmec.2019.102434_b0145
  article-title: Modeling of failure in composites by X-FEM and level sets within a multiscale framework
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.07.017
– volume: 40
  start-page: 7513
  year: 2003
  ident: 10.1016/j.tafmec.2019.102434_b0220
  article-title: Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2003.08.002
– volume: 196
  start-page: 112
  year: 2018
  ident: 10.1016/j.tafmec.2019.102434_b0185
  article-title: Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2017.11.007
– volume: 347
  start-page: 365
  year: 2019
  ident: 10.1016/j.tafmec.2019.102434_b0130
  article-title: A parallel and efficient multi-split XFEM for 3-D analysis of heterogeneous materials
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.12.023
– volume: 163
  start-page: 271
  issue: 4
  year: 2010
  ident: 10.1016/j.tafmec.2019.102434_b0210
  article-title: Object-oriented programming and the extended finite-element method
  publication-title: Proc. Inst. Civil Eng – Eng. Comput. Mech.
– volume: 71
  start-page: 703
  issue: 6
  year: 2007
  ident: 10.1016/j.tafmec.2019.102434_b0205
  article-title: An extended finite element library
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1966
– ident: 10.1016/j.tafmec.2019.102434_b0260
  doi: 10.1115/1.801535.ch2
– volume: 122
  start-page: 277
  year: 2017
  ident: 10.1016/j.tafmec.2019.102434_b0170
  article-title: A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.01.028
– volume: 51
  start-page: 327
  year: 2013
  ident: 10.1016/j.tafmec.2019.102434_b0025
  article-title: An extended finite element method for fluid flow in partially saturated porous media with weak discontinuities; the convergence analysis of local enrichment strategies
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-012-0732-8
– volume: 46
  start-page: 3710
  issue: 20
  year: 2009
  ident: 10.1016/j.tafmec.2019.102434_b0280
  article-title: Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2009.06.019
– year: 2012
  ident: 10.1016/j.tafmec.2019.102434_b0285
SSID ssj0017193
Score 2.3699903
Snippet •Numerical simulation for strong and weak discontinuities by local mesh refinement variable-node XFEM is presented.•A novel local mesh refinement scheme is...
In this paper, we present a Matlab object-oriented implementation of the variable-node extended finite element method (XFEM), which is enhanced by local mesh...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102434
SubjectTerms Cracks
Discontinuity
Finite element method
Grid refinement (mathematics)
Inclusions
Local mesh refinement
Mesh generation
Nodes
Object oriented programming
Variable-node elements
Voids
XFEM
Title Modeling strong/weak discontinuities by local mesh refinement variable-node XFEM with object-oriented implementation
URI https://dx.doi.org/10.1016/j.tafmec.2019.102434
https://www.proquest.com/docview/2427544485
Volume 106
WOSCitedRecordID wos000519657500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-7638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017193
  issn: 0167-8442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE8xGMgHblVGkzh1fJygFUxiAmlIvUW262jt2nRqk7L9F_uTec920rR8jB24RJHlWG5_v7z38vw-CHkXcQ1mgNGBwkZh2N44SHU_DKSUIAmNSmLNbLMJfnqajkbia6dzU-fCrGe8KNKrK3H5X6GGMQAbU2fvAHezKAzAPYAOV4Adrv8EPHY3mzkvwdLG2w5_GHmBJzEYlj4pKltDFc1Oq8e6c7M674KeBHPTBgas4esZ86mCAhbqjoaDL85Zu1DosgkWWBgZzdTJvA49b7CdNtRrkiNtLVhv6eaYkYUHFnOD-catOPuPvrPKSVXMzKSRRJVjE4AvvYK1iRcTN1ycd79VC932W0S9VriLd2WCiE4Z25bFvbY0DbFcIvutoHc-h-lRKXPYM4boiaPN9O262jv6rolCrAPcpplbJcNVMrfKPbIf8USAnNw__jwYnTQnUzx0hZzr3dfpmDZm8Nfd_Mnc2VH81po5e0we-c8Qeuzo84R0TPGUPGwVp3xGyppI1BHpPdKI7tCIqmtqaUSRRnRDI7pFI4o0okgjukMjuk2j5-T7cHD24VPge3QEOo5ZGSQmMQxM7NTEUshQpiI3sYn7Kk205EYJtNeZipSIhQoTw7XORShlKnk07o9Z_ILsFYvCvCQ04j3BVcIN5yFLYIrQJs3HoJJ0qAyPDkhc_5WZ9gXssY_KLPsbkAckaJ66dAVcbpnPa5Qyb4Q64zID6t3y5GENaublwSqDn48lJlmavLrjRl6TB5vX5pDslcvKvCH39bqcrJZvPS1_AmduuQQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+strong%2Fweak+discontinuities+by+local+mesh+refinement+variable-node+XFEM+with+object-oriented+implementation&rft.jtitle=Theoretical+and+applied+fracture+mechanics&rft.au=Ding%2C+Junlei&rft.au=Yu%2C+Tiantang&rft.au=Bui%2C+Tinh+Quoc&rft.date=2020-04-01&rft.issn=0167-8442&rft.volume=106&rft.spage=102434&rft_id=info:doi/10.1016%2Fj.tafmec.2019.102434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tafmec_2019_102434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8442&client=summon