Modeling strong/weak discontinuities by local mesh refinement variable-node XFEM with object-oriented implementation
•Numerical simulation for strong and weak discontinuities by local mesh refinement variable-node XFEM is presented.•A novel local mesh refinement scheme is proposed to model crack growth.•A Matlab object-oriented framework for the variable-node XFEM is developed.•Numerical examples demonstrate the s...
Uloženo v:
| Vydáno v: | Theoretical and applied fracture mechanics Ročník 106; s. 102434 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Ltd
01.04.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0167-8442, 1872-7638 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Numerical simulation for strong and weak discontinuities by local mesh refinement variable-node XFEM is presented.•A novel local mesh refinement scheme is proposed to model crack growth.•A Matlab object-oriented framework for the variable-node XFEM is developed.•Numerical examples demonstrate the superiority of the object-oriented variable-node XFEM program.•This work offers an efficient object-oriented computer code for researchers and scientists, especially graduate students.
In this paper, we present a Matlab object-oriented implementation of the variable-node extended finite element method (XFEM), which is enhanced by local mesh refinement technique, for modeling strong and weak discontinuities such as cracks, inclusions, and voids. An easy-to-use local mesh refinement scheme is thus proposed, in which the variable-node elements play an important role as they are integrated into the model for the purpose of connecting/linking different scale meshes. For efficiency, the fine-scale mesh is generated near discontinuities, and the refinement is controlled by three parameters: the number of extension layers, the number of subdivision scales, and the number of refinement levels. We detail the implementation of integrating the variable-node elements into the local mesh refinement XFEM codes in a seamless way. The concept of object-oriented programming (OOP) and strategy design pattern promote the extensibility of computer codes. We consider several numerical examples to show the applicability and accuracy of the current computer codes for mutiple crack growths, crack-hole interactions, multiple inclusions, and a rock slope with one interface and two faults. |
|---|---|
| AbstractList | •Numerical simulation for strong and weak discontinuities by local mesh refinement variable-node XFEM is presented.•A novel local mesh refinement scheme is proposed to model crack growth.•A Matlab object-oriented framework for the variable-node XFEM is developed.•Numerical examples demonstrate the superiority of the object-oriented variable-node XFEM program.•This work offers an efficient object-oriented computer code for researchers and scientists, especially graduate students.
In this paper, we present a Matlab object-oriented implementation of the variable-node extended finite element method (XFEM), which is enhanced by local mesh refinement technique, for modeling strong and weak discontinuities such as cracks, inclusions, and voids. An easy-to-use local mesh refinement scheme is thus proposed, in which the variable-node elements play an important role as they are integrated into the model for the purpose of connecting/linking different scale meshes. For efficiency, the fine-scale mesh is generated near discontinuities, and the refinement is controlled by three parameters: the number of extension layers, the number of subdivision scales, and the number of refinement levels. We detail the implementation of integrating the variable-node elements into the local mesh refinement XFEM codes in a seamless way. The concept of object-oriented programming (OOP) and strategy design pattern promote the extensibility of computer codes. We consider several numerical examples to show the applicability and accuracy of the current computer codes for mutiple crack growths, crack-hole interactions, multiple inclusions, and a rock slope with one interface and two faults. In this paper, we present a Matlab object-oriented implementation of the variable-node extended finite element method (XFEM), which is enhanced by local mesh refinement technique, for modeling strong and weak discontinuities such as cracks, inclusions, and voids. An easy-to-use local mesh refinement scheme is thus proposed, in which the variable-node elements play an important role as they are integrated into the model for the purpose of connecting/linking different scale meshes. For efficiency, the fine-scale mesh is generated near discontinuities, and the refinement is controlled by three parameters: the number of extension layers, the number of subdivision scales, and the number of refinement levels. We detail the implementation of integrating the variable-node elements into the local mesh refinement XFEM codes in a seamless way. The concept of object-oriented programming (OOP) and strategy design pattern promote the extensibility of computer codes. We consider several numerical examples to show the applicability and accuracy of the current computer codes for mutiple crack growths, crack-hole interactions, multiple inclusions, and a rock slope with one interface and two faults. |
| ArticleNumber | 102434 |
| Author | Yu, Tiantang Ding, Junlei Bui, Tinh Quoc |
| Author_xml | – sequence: 1 givenname: Junlei surname: Ding fullname: Ding, Junlei organization: Department of Engineering Mechanics, Hohai University, Nanjing 211100, PR China – sequence: 2 givenname: Tiantang surname: Yu fullname: Yu, Tiantang email: tiantangyu@hhu.edu.cn organization: Department of Engineering Mechanics, Hohai University, Nanjing 211100, PR China – sequence: 3 givenname: Tinh Quoc surname: Bui fullname: Bui, Tinh Quoc email: buiquoctinh@duytan.edu.vn, bui.t.aa@m.titech.ac.jp organization: Institute for Research and Development, Duy Tan University, Da Nang City, Viet Nam |
| BookMark | eNqFkEtLJDEUhcOgMO3jH8wi4Lq6K4_qqsxCENEZQXGj4C6kUrf01lQlbZJW_PemrVm50FXgcr4TzndA9px3QMgvVi5ZydarYZlMP4Fd8pKpfOJSyB9kwZqaF_VaNHtkkWN10UjJf5KDGIeyZDVTYkHSje9gRPdIYwrePa5ewfyjHUbrXUK3xYQQaftGR2_NSCeITzRAjw4mcIm-mICmHaFwuYY-XF7c0FdMT9S3A9hU-IA5BR3FaTN-ECahd0dkvzdjhOP_7yG5v7y4O_9bXN_-uTo_uy6sEDIVFVQgFVcNCKMMM43qQYBYt01lTQ2t4pIL2fJWCdWyCmpre8WMaUzNu3UnxSE5mXs3wT9vISY9-G1w-Uud0bqSUjZVTsk5ZYOPMY_Tm4CTCW-alXrnVw969qt3fvXsN2O_P2EW53kpGBy_g09nGPL8F4Sgo82qLHQYsjjdefy64B2Ds50l |
| CitedBy_id | crossref_primary_10_3390_math13071027 crossref_primary_10_1016_j_engfracmech_2022_108763 crossref_primary_10_1016_j_tafmec_2022_103389 crossref_primary_10_1080_15397734_2021_1956326 crossref_primary_10_1016_j_ijsolstr_2022_111559 crossref_primary_10_1016_j_cma_2024_116791 crossref_primary_10_1016_j_engfracmech_2024_110524 crossref_primary_10_1016_j_compgeo_2022_104940 crossref_primary_10_1108_EC_02_2020_0067 crossref_primary_10_1016_j_mechmat_2023_104811 crossref_primary_10_3390_math12243881 crossref_primary_10_1016_j_ijsolstr_2022_112090 crossref_primary_10_1016_j_cma_2023_116045 crossref_primary_10_1016_j_engfracmech_2022_108533 crossref_primary_10_1016_j_ijnonlinmec_2023_104522 crossref_primary_10_1016_j_tafmec_2022_103595 crossref_primary_10_1007_s10665_024_10335_5 crossref_primary_10_1016_j_engfracmech_2023_109286 crossref_primary_10_1016_j_engfracmech_2025_111167 crossref_primary_10_1177_09544062221148879 crossref_primary_10_1016_j_engfracmech_2024_110216 crossref_primary_10_1016_j_jcsr_2025_109494 crossref_primary_10_1007_s40997_021_00470_0 crossref_primary_10_32604_cmes_2022_018325 crossref_primary_10_1016_j_tafmec_2020_102843 crossref_primary_10_1016_j_ijsolstr_2023_112280 crossref_primary_10_1016_j_engfracmech_2021_107941 crossref_primary_10_1016_j_tafmec_2020_102647 crossref_primary_10_1016_j_tafmec_2022_103557 |
| Cites_doi | 10.1016/j.engfracmech.2017.07.028 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J 10.1002/nme.3024 10.1007/s00466-018-1553-1 10.1016/j.cma.2016.10.011 10.1016/j.engfracmech.2017.08.004 10.1002/nme.2259 10.1016/j.compositesb.2016.01.024 10.1007/s00466-013-0845-8 10.1016/j.compscitech.2011.04.001 10.1016/j.finel.2013.02.001 10.1007/s00466-013-0861-8 10.1002/nme.2427 10.1016/j.engfracmech.2016.03.051 10.1016/S0045-7825(96)01087-0 10.1016/j.engfracmech.2010.06.009 10.1016/j.engfracmech.2018.11.036 10.1002/nme.1601 10.1016/S0045-7825(01)00260-2 10.1007/s00366-012-0261-2 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L 10.1016/j.enganabound.2010.02.001 10.1016/j.ijfatigue.2011.08.010 10.1007/s10999-011-9159-1 10.1002/nme.201 10.1108/EC-08-2013-0203 10.1016/j.ijsolstr.2014.02.024 10.1016/j.advengsoft.2016.09.007 10.12989/sem.2012.43.3.349 10.1115/1.3656897 10.1016/j.advengsoft.2017.09.005 10.1016/S0045-7825(01)00215-8 10.1007/s10704-013-9877-5 10.1007/s00466-013-0952-6 10.1016/j.ijsolstr.2015.07.021 10.1115/1.3153665 10.1002/nme.2001 10.1016/j.engfracmech.2008.10.015 10.1007/s12206-015-0225-8 10.1002/nme.468 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S 10.1016/j.compstruc.2006.08.085 10.1016/j.commatsci.2011.04.034 10.1002/nme.3268 10.1016/j.cma.2007.07.017 10.1016/j.ijsolstr.2003.08.002 10.1016/j.compstruc.2017.11.007 10.1016/j.cma.2018.12.023 10.1002/nme.1966 10.1115/1.801535.ch2 10.1016/j.ijmecsci.2017.01.028 10.1007/s00466-012-0732-8 10.1016/j.ijsolstr.2009.06.019 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Apr 2020 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Apr 2020 |
| DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
| DOI | 10.1016/j.tafmec.2019.102434 |
| DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-7638 |
| ExternalDocumentID | 10_1016_j_tafmec_2019_102434 S0167844219305464 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UHS WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SR 7TB 8BQ 8FD AGCQF FR3 JG9 KR7 |
| ID | FETCH-LOGICAL-c334t-5e5e49298e3a9a1a89fe3e36b85ca7eb924234b2b939b15e7ccf91aa8a72d6d43 |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519657500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-8442 |
| IngestDate | Sun Sep 07 03:48:30 EDT 2025 Sat Nov 29 07:24:22 EST 2025 Tue Nov 18 22:43:16 EST 2025 Fri Feb 23 02:49:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Voids Cracks Local mesh refinement Inclusions Object-oriented programming XFEM Variable-node elements |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-5e5e49298e3a9a1a89fe3e36b85ca7eb924234b2b939b15e7ccf91aa8a72d6d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2427544485 |
| PQPubID | 2045390 |
| ParticipantIDs | proquest_journals_2427544485 crossref_primary_10_1016_j_tafmec_2019_102434 crossref_citationtrail_10_1016_j_tafmec_2019_102434 elsevier_sciencedirect_doi_10_1016_j_tafmec_2019_102434 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 2020-04-00 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Theoretical and applied fracture mechanics |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Sutula, Kerfriden, van Dam, Bordas (b0265) 2018; 191 Dolbow, Moës, Belytschko (b0080) 2001; 190 Liu, Yu, Bui, Zhang, Xu (b0060) 2014; 51 Nielsen, Legarth, Niordson (b0275) 2012; 89 Liu (b0065) 2015; 72 Loehnert, Belytschko (b0155) 2007; 71 Sukumar, Prévost (b0220) 2003; 40 Kumar, Singh, Mishra, Sharma, Khan (b0180) 2019; 205 Rannou, Gravouil, Baïetto-Dubourg (b0150) 2009; 77 Mohammadi (b0285) 2012 Bansal, Singh, Mishra, Bordas (b0130) 2019; 347 Guidault, Allix, Champaney, Navarro (b0140) 2007; 85 Nguyen, Nguyen, Truong, Bui (b0095) 2019; 206 Gu, Monteiro, He (b0040) 2011; 71 Sukumar, Chopp, Moës, Belytschko (b0085) 2001; 190 Moës, Dolbow, Belytschko (b0010) 1999; 46 Teng, Sun, Wu, Zhang, Chen, Liao (b0175) 2018; 62 Wang, Yu, Bui, Tanaka, Zhang, Hirose, Curiel-Sosa (b0195) 2017; 313 Sutula, Kerfriden, van Dam, Bordas (b0270) 2018; 191 H. Tada, P.C. Paris, G.R. Irwin, Stress Analysis Results for Common Test Specimen Configurations, third ed., vol. 1, ASME Press, 2000, book section 2, pp. 39–80. Yau, Wang, Corten (b0255) 1980; 47 Bui, Zhang (b0045) 2013; 69 Budarapu, Gracie, Bordas, Rabczuk (b0165) 2014; 53 Bhattacharya, Singh, Mishra, Bui (b0120) 2013; 52 F. Haziza, The extended finite element method and its implementation in 2D in the Aster code, Royal Institute of Technology, Sweden, 2006. Yu, Bui (b0185) 2018; 196 Belytschko, Black (b0005) 1999; 45 Benvenuti, Orlando, Ferretti, Tralli (b0055) 2016; 91 Melenk, Babuška (b0015) 1996; 139 Xiao, Karihaloo (b0245) 2006; 66 Stolarska, Chopp, Moës, Belytschko (b0135) 2001; 51 Bhattacharya, Singh, Mishra (b0110) 2013; 183 Fries, Byfut, Alizada, Cheng, Schröder (b0160) 2011; 86 Shi, Chopp, Lua, Sukumar, Belytschko (b0230) 2010; 77 E. Giner, N. Sukumar, J.E. Tarancón, F.J. Fuenmayor, An abaqus implementation of the extended finite element method, Eng. Fract. Mech. 76 (2009) 347–368. Bordas, Nguyen, Dunant, Guidoum, Nguyen-Dang (b0205) 2007; 71 Malekan, Silva, Barros, Pitangueira, Penna (b0215) 2018; 115 Erdogan, Sih (b0250) 1963; 85 Patil, Mishra, Singh (b0170) 2017; 122 Singh, Mishra, Bhattacharya (b0105) 2011; 7 Lim, Sohn, Im (b0200) 2012; 43 Yu, Wu, Guo, Du, He (b0280) 2009; 46 Daneshyar, Mohammadi (b0035) 2013; 52 Zhang, Bui (b0070) 2015; 32 L. Jiang, The extended finite element method and its implementation in 2D in the Aster code, Martec Limited, 400–1800 Brunswick Street, Halifax, Nova Scotia, B3J 3J8 Canada, 2010. Daux, Moës, Dolbow, Sukumar, Belytschko (b0090) 2000; 48 Hettich, Hund, Ramm (b0145) 2008; 197 Wang, Yu, Bui, Trinh, Nguyen, Nguyen, Doan (b0190) 2016; 102 Fries (b0020) 2008; 75 Bhattacharya, Singh, Mishra (b0115) 2013; 29 Singh, Mishra, Bhattacharya, Patil (b0100) 2012; 36 Singh, Bhardwaj, Mishra (b0125) 2015; 29 Chamrová, Patzák (b0210) 2010; 163 Bayesteh, Mohammadi (b0050) 2011; 50 Mohammadnejad, Khoei (b0025) 2013; 51 Ji, Chopp, Dolbow (b0075) 2002; 54 Zhang, Rong, Li (b0030) 2010; 34 Yau (10.1016/j.tafmec.2019.102434_b0255) 1980; 47 Lim (10.1016/j.tafmec.2019.102434_b0200) 2012; 43 Bayesteh (10.1016/j.tafmec.2019.102434_b0050) 2011; 50 10.1016/j.tafmec.2019.102434_b0225 Bordas (10.1016/j.tafmec.2019.102434_b0205) 2007; 71 Mohammadi (10.1016/j.tafmec.2019.102434_b0285) 2012 10.1016/j.tafmec.2019.102434_b0260 Guidault (10.1016/j.tafmec.2019.102434_b0140) 2007; 85 Nielsen (10.1016/j.tafmec.2019.102434_b0275) 2012; 89 Sutula (10.1016/j.tafmec.2019.102434_b0265) 2018; 191 Loehnert (10.1016/j.tafmec.2019.102434_b0155) 2007; 71 Erdogan (10.1016/j.tafmec.2019.102434_b0250) 1963; 85 Malekan (10.1016/j.tafmec.2019.102434_b0215) 2018; 115 Moës (10.1016/j.tafmec.2019.102434_b0010) 1999; 46 Zhang (10.1016/j.tafmec.2019.102434_b0070) 2015; 32 Budarapu (10.1016/j.tafmec.2019.102434_b0165) 2014; 53 Bui (10.1016/j.tafmec.2019.102434_b0045) 2013; 69 Xiao (10.1016/j.tafmec.2019.102434_b0245) 2006; 66 Zhang (10.1016/j.tafmec.2019.102434_b0030) 2010; 34 Dolbow (10.1016/j.tafmec.2019.102434_b0080) 2001; 190 Rannou (10.1016/j.tafmec.2019.102434_b0150) 2009; 77 Sukumar (10.1016/j.tafmec.2019.102434_b0220) 2003; 40 Singh (10.1016/j.tafmec.2019.102434_b0105) 2011; 7 Fries (10.1016/j.tafmec.2019.102434_b0160) 2011; 86 Bhattacharya (10.1016/j.tafmec.2019.102434_b0110) 2013; 183 Patil (10.1016/j.tafmec.2019.102434_b0170) 2017; 122 Daneshyar (10.1016/j.tafmec.2019.102434_b0035) 2013; 52 Liu (10.1016/j.tafmec.2019.102434_b0060) 2014; 51 Stolarska (10.1016/j.tafmec.2019.102434_b0135) 2001; 51 Yu (10.1016/j.tafmec.2019.102434_b0185) 2018; 196 Hettich (10.1016/j.tafmec.2019.102434_b0145) 2008; 197 Belytschko (10.1016/j.tafmec.2019.102434_b0005) 1999; 45 Ji (10.1016/j.tafmec.2019.102434_b0075) 2002; 54 Liu (10.1016/j.tafmec.2019.102434_b0065) 2015; 72 Sukumar (10.1016/j.tafmec.2019.102434_b0085) 2001; 190 Benvenuti (10.1016/j.tafmec.2019.102434_b0055) 2016; 91 Chamrová (10.1016/j.tafmec.2019.102434_b0210) 2010; 163 Wang (10.1016/j.tafmec.2019.102434_b0195) 2017; 313 Bhattacharya (10.1016/j.tafmec.2019.102434_b0115) 2013; 29 10.1016/j.tafmec.2019.102434_b0240 Melenk (10.1016/j.tafmec.2019.102434_b0015) 1996; 139 Teng (10.1016/j.tafmec.2019.102434_b0175) 2018; 62 Singh (10.1016/j.tafmec.2019.102434_b0100) 2012; 36 Daux (10.1016/j.tafmec.2019.102434_b0090) 2000; 48 Wang (10.1016/j.tafmec.2019.102434_b0190) 2016; 102 Kumar (10.1016/j.tafmec.2019.102434_b0180) 2019; 205 Bansal (10.1016/j.tafmec.2019.102434_b0130) 2019; 347 Sutula (10.1016/j.tafmec.2019.102434_b0270) 2018; 191 Gu (10.1016/j.tafmec.2019.102434_b0040) 2011; 71 Fries (10.1016/j.tafmec.2019.102434_b0020) 2008; 75 Singh (10.1016/j.tafmec.2019.102434_b0125) 2015; 29 10.1016/j.tafmec.2019.102434_b0235 Yu (10.1016/j.tafmec.2019.102434_b0280) 2009; 46 Nguyen (10.1016/j.tafmec.2019.102434_b0095) 2019; 206 Bhattacharya (10.1016/j.tafmec.2019.102434_b0120) 2013; 52 Shi (10.1016/j.tafmec.2019.102434_b0230) 2010; 77 Mohammadnejad (10.1016/j.tafmec.2019.102434_b0025) 2013; 51 |
| References_xml | – volume: 163 start-page: 271 year: 2010 end-page: 278 ident: b0210 article-title: Object-oriented programming and the extended finite-element method publication-title: Proc. Inst. Civil Eng – Eng. Comput. Mech. – volume: 72 start-page: 174 year: 2015 end-page: 189 ident: b0065 article-title: Extended finite element method for strong discontinuity analysis of strain localization of non-associative plasticity materials publication-title: Int. J. Solids Struct. – volume: 196 start-page: 112 year: 2018 end-page: 133 ident: b0185 article-title: Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement publication-title: Comput. Struct. – volume: 50 start-page: 2793 year: 2011 end-page: 2813 ident: b0050 article-title: XFEM fracture analysis of shells: The effect of crack tip enrichments publication-title: Comput. Mater. Sci. – volume: 53 start-page: 1129 year: 2014 end-page: 1148 ident: b0165 article-title: An adaptive multiscale method for quasi-static crack growth publication-title: Comput. Mech. – volume: 29 start-page: 427 year: 2013 end-page: 448 ident: b0115 article-title: Fatigue-life estimation of functionally graded materials using XFEM publication-title: Eng. Comput. – volume: 205 start-page: 577 year: 2019 end-page: 602 ident: b0180 article-title: A homogenized multigrid XFEM to predict the crack growth behavior of ductile material in the presence of microstructural defects publication-title: Eng. Fract. Mech. – volume: 75 start-page: 503 year: 2008 end-page: 532 ident: b0020 article-title: A corrected XFEM approximation without problems in blending elements publication-title: Int. J. Numer. Meth. Eng. – volume: 51 start-page: 2167 year: 2014 end-page: 2182 ident: b0060 article-title: Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method publication-title: Int. J. Solids Struct. – volume: 102 start-page: 105 year: 2016 end-page: 122 ident: b0190 article-title: Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM publication-title: Adv. Eng. Softw. – volume: 89 start-page: 786 year: 2012 end-page: 804 ident: b0275 article-title: Extended FEM modeling of crack paths near inclusions publication-title: Int. J. Numer. Meth. Eng. – volume: 36 start-page: 109 year: 2012 end-page: 119 ident: b0100 article-title: The numerical simulation of fatigue crack growth using extended finite element method publication-title: Int. J. Fatigue – volume: 85 start-page: 1360 year: 2007 end-page: 1371 ident: b0140 article-title: A two-scale approach with homogenization for the computation of cracked structures publication-title: Comput. Struct. – volume: 71 start-page: 1466 year: 2007 end-page: 1482 ident: b0155 article-title: A multiscale projection method for macro/microcrack simulations publication-title: Int. J. Numer. Meth. Eng. – volume: 77 start-page: 2840 year: 2010 end-page: 2863 ident: b0230 article-title: Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions publication-title: Eng. Fract. Mech. – volume: 46 start-page: 3710 year: 2009 end-page: 3724 ident: b0280 article-title: Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method publication-title: Int. J. Solids Struct. – volume: 71 start-page: 703 year: 2007 end-page: 732 ident: b0205 article-title: An extended finite element library publication-title: Int. J. Numer. Meth. Eng. – reference: F. Haziza, The extended finite element method and its implementation in 2D in the Aster code, Royal Institute of Technology, Sweden, 2006. – volume: 139 start-page: 289 year: 1996 end-page: 314 ident: b0015 article-title: The partition of unity finite element method: basic theory and applications publication-title: Comput. Methods Appl. Mech. Eng. – volume: 115 start-page: 168 year: 2018 end-page: 193 ident: b0215 article-title: Two-dimensional fracture modeling with the generalized/extended finite element method: An object-oriented programming approach publication-title: Adv. Eng. Softw. – reference: H. Tada, P.C. Paris, G.R. Irwin, Stress Analysis Results for Common Test Specimen Configurations, third ed., vol. 1, ASME Press, 2000, book section 2, pp. 39–80. – volume: 40 start-page: 7513 year: 2003 end-page: 7537 ident: b0220 article-title: Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation publication-title: Int. J. Solids Struct. – volume: 91 start-page: 346 year: 2016 end-page: 360 ident: b0055 article-title: A new 3D experimentally consistent XFEM to simulate delamination in FRP-reinforced concrete publication-title: Compos. Part B – volume: 51 start-page: 943 year: 2001 end-page: 960 ident: b0135 article-title: Modelling crack growth by level sets in the extended finite element method publication-title: Int. J. Numer. Meth. Eng. – volume: 77 start-page: 581 year: 2009 end-page: 600 ident: b0150 article-title: A local multigrid X-FEM strategy for 3-D crack propagation publication-title: Int. J. Numer. Meth. Eng. – reference: L. Jiang, The extended finite element method and its implementation in 2D in the Aster code, Martec Limited, 400–1800 Brunswick Street, Halifax, Nova Scotia, B3J 3J8 Canada, 2010. – volume: 43 start-page: 349 year: 2012 end-page: 370 ident: b0200 article-title: Variable-node element families for mesh connection and adaptive mesh computation publication-title: Struct. Eng. Mech. – volume: 52 start-page: 1023 year: 2013 end-page: 1038 ident: b0035 article-title: Strong tangential discontinuity modeling of shear bands using the extended finite element method publication-title: Comput. Mech. – volume: 190 start-page: 6183 year: 2001 end-page: 6200 ident: b0085 article-title: Modeling holes and inclusions by level sets in the extended finite-element method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 86 start-page: 404 year: 2011 end-page: 430 ident: b0160 article-title: Hanging nodes and XFEM publication-title: Int. J. Numer. Meth. Eng. – volume: 347 start-page: 365 year: 2019 end-page: 401 ident: b0130 article-title: A parallel and efficient multi-split XFEM for 3-D analysis of heterogeneous materials publication-title: Comput. Methods Appl. Mech. Eng. – volume: 34 start-page: 619 year: 2010 end-page: 624 ident: b0030 article-title: Numerical study on deformations in a cracked viscoelastic body with the extended finite element method publication-title: Eng. Anal. Boundary Elem. – volume: 52 start-page: 799 year: 2013 end-page: 814 ident: b0120 article-title: Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM publication-title: Comput. Mech. – volume: 122 start-page: 277 year: 2017 end-page: 287 ident: b0170 article-title: A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials publication-title: Int. J. Mech. Sci. – volume: 206 start-page: 89 year: 2019 end-page: 113 ident: b0095 article-title: Thermal-mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive-interpolation element (XCQ4) publication-title: Eng. Fract. Mech. – volume: 85 start-page: 519 year: 1963 end-page: 525 ident: b0250 article-title: On the crack extension in plates under plane loading and transverse shear publication-title: J. Basic Eng. – volume: 62 start-page: 1087 year: 2018 end-page: 1106 ident: b0175 article-title: An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems publication-title: Comput. Mech. – volume: 46 start-page: 131 year: 1999 end-page: 150 ident: b0010 article-title: A finite element method for crack growth without remeshing publication-title: Int. J. Numer. Meth. Eng. – volume: 197 start-page: 414 year: 2008 end-page: 424 ident: b0145 article-title: Modeling of failure in composites by X-FEM and level sets within a multiscale framework publication-title: Comput. Methods Appl. Mech. Eng. – volume: 29 start-page: 1131 year: 2015 end-page: 1143 ident: b0125 article-title: A new criterion for modeling multiple discontinuities passing through an element using XIGA publication-title: J. Mech. Sci. Technol. – volume: 183 start-page: 81 year: 2013 end-page: 97 ident: b0110 article-title: Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM publication-title: Int. J. Fract. – volume: 48 start-page: 1741 year: 2000 end-page: 1760 ident: b0090 article-title: Arbitrary branched and intersecting cracks with the extended finite element method publication-title: Int. J. Numer. Meth. Eng. – volume: 51 start-page: 327 year: 2013 end-page: 345 ident: b0025 article-title: An extended finite element method for fluid flow in partially saturated porous media with weak discontinuities; the convergence analysis of local enrichment strategies publication-title: Comput. Mech. – volume: 191 start-page: 205 year: 2018 end-page: 224 ident: b0270 article-title: Minimum energy multiple crack propagation. Part I: Theory and state of the art review publication-title: Eng. Fract. Mech. – volume: 313 start-page: 375 year: 2017 end-page: 405 ident: b0195 article-title: 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks publication-title: Comput. Methods Appl. Mech. Eng. – reference: E. Giner, N. Sukumar, J.E. Tarancón, F.J. Fuenmayor, An abaqus implementation of the extended finite element method, Eng. Fract. Mech. 76 (2009) 347–368. – volume: 69 start-page: 19 year: 2013 end-page: 36 ident: b0045 article-title: Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM publication-title: Finite Elem. Anal. Des. – volume: 45 start-page: 601 year: 1999 end-page: 620 ident: b0005 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Int. J. Numer. Meth. Eng. – volume: 7 start-page: 199 year: 2011 end-page: 218 ident: b0105 article-title: XFEM simulation of cracks, holes and inclusions in functionally graded materials publication-title: Int. J. Mech. Mater. Des. – volume: 71 start-page: 1209 year: 2011 end-page: 1216 ident: b0040 article-title: Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites publication-title: Compos. Sci. Technol. – volume: 32 start-page: 473 year: 2015 end-page: 497 ident: b0070 article-title: A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures publication-title: Eng. Comput. – year: 2012 ident: b0285 article-title: XFEM Fracture Analysis of Composites – volume: 191 start-page: 257 year: 2018 end-page: 276 ident: b0265 article-title: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications publication-title: Eng. Fract. Mech. – volume: 54 start-page: 1209 year: 2002 end-page: 1233 ident: b0075 article-title: A hybrid extended finite element/level set method for modeling phase transformations publication-title: Int. J. Numer. Meth. Eng. – volume: 47 start-page: 335 year: 1980 end-page: 341 ident: b0255 article-title: A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity publication-title: J. Appl. Mech. – volume: 66 start-page: 1378 year: 2006 end-page: 1410 ident: b0245 article-title: Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery publication-title: Int. J. Numer. Meth. Eng. – volume: 190 start-page: 6825 year: 2001 end-page: 6846 ident: b0080 article-title: An extended finite element method for modeling crack growth with frictional contact publication-title: Comput. Methods Appl. Mech. Eng. – volume: 191 start-page: 205 year: 2018 ident: 10.1016/j.tafmec.2019.102434_b0270 article-title: Minimum energy multiple crack propagation. Part I: Theory and state of the art review publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.07.028 – volume: 46 start-page: 131 issue: 1 year: 1999 ident: 10.1016/j.tafmec.2019.102434_b0010 article-title: A finite element method for crack growth without remeshing publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J – volume: 86 start-page: 404 issue: 4–5 year: 2011 ident: 10.1016/j.tafmec.2019.102434_b0160 article-title: Hanging nodes and XFEM publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.3024 – volume: 62 start-page: 1087 issue: 5 year: 2018 ident: 10.1016/j.tafmec.2019.102434_b0175 article-title: An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems publication-title: Comput. Mech. doi: 10.1007/s00466-018-1553-1 – volume: 313 start-page: 375 year: 2017 ident: 10.1016/j.tafmec.2019.102434_b0195 article-title: 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.10.011 – volume: 191 start-page: 257 year: 2018 ident: 10.1016/j.tafmec.2019.102434_b0265 article-title: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.08.004 – volume: 75 start-page: 503 issue: 5 year: 2008 ident: 10.1016/j.tafmec.2019.102434_b0020 article-title: A corrected XFEM approximation without problems in blending elements publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.2259 – volume: 91 start-page: 346 year: 2016 ident: 10.1016/j.tafmec.2019.102434_b0055 article-title: A new 3D experimentally consistent XFEM to simulate delamination in FRP-reinforced concrete publication-title: Compos. Part B doi: 10.1016/j.compositesb.2016.01.024 – volume: 52 start-page: 799 issue: 4 year: 2013 ident: 10.1016/j.tafmec.2019.102434_b0120 article-title: Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM publication-title: Comput. Mech. doi: 10.1007/s00466-013-0845-8 – volume: 71 start-page: 1209 year: 2011 ident: 10.1016/j.tafmec.2019.102434_b0040 article-title: Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2011.04.001 – volume: 69 start-page: 19 year: 2013 ident: 10.1016/j.tafmec.2019.102434_b0045 article-title: Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2013.02.001 – volume: 52 start-page: 1023 year: 2013 ident: 10.1016/j.tafmec.2019.102434_b0035 article-title: Strong tangential discontinuity modeling of shear bands using the extended finite element method publication-title: Comput. Mech. doi: 10.1007/s00466-013-0861-8 – volume: 77 start-page: 581 issue: 4 year: 2009 ident: 10.1016/j.tafmec.2019.102434_b0150 article-title: A local multigrid X-FEM strategy for 3-D crack propagation publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.2427 – volume: 205 start-page: 577 year: 2019 ident: 10.1016/j.tafmec.2019.102434_b0180 article-title: A homogenized multigrid XFEM to predict the crack growth behavior of ductile material in the presence of microstructural defects publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2016.03.051 – volume: 139 start-page: 289 issue: 1–4 year: 1996 ident: 10.1016/j.tafmec.2019.102434_b0015 article-title: The partition of unity finite element method: basic theory and applications publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(96)01087-0 – volume: 77 start-page: 2840 year: 2010 ident: 10.1016/j.tafmec.2019.102434_b0230 article-title: Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2010.06.009 – volume: 206 start-page: 89 year: 2019 ident: 10.1016/j.tafmec.2019.102434_b0095 article-title: Thermal-mechanical crack propagation in orthotropic composite materials by the extended four-node consecutive-interpolation element (XCQ4) publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.11.036 – volume: 66 start-page: 1378 issue: 9 year: 2006 ident: 10.1016/j.tafmec.2019.102434_b0245 article-title: Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1601 – volume: 190 start-page: 6825 issue: 51 year: 2001 ident: 10.1016/j.tafmec.2019.102434_b0080 article-title: An extended finite element method for modeling crack growth with frictional contact publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(01)00260-2 – volume: 29 start-page: 427 issue: 4 year: 2013 ident: 10.1016/j.tafmec.2019.102434_b0115 article-title: Fatigue-life estimation of functionally graded materials using XFEM publication-title: Eng. Comput. doi: 10.1007/s00366-012-0261-2 – ident: 10.1016/j.tafmec.2019.102434_b0240 – volume: 48 start-page: 1741 issue: 12 year: 2000 ident: 10.1016/j.tafmec.2019.102434_b0090 article-title: Arbitrary branched and intersecting cracks with the extended finite element method publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L – volume: 34 start-page: 619 year: 2010 ident: 10.1016/j.tafmec.2019.102434_b0030 article-title: Numerical study on deformations in a cracked viscoelastic body with the extended finite element method publication-title: Eng. Anal. Boundary Elem. doi: 10.1016/j.enganabound.2010.02.001 – volume: 36 start-page: 109 issue: 1 year: 2012 ident: 10.1016/j.tafmec.2019.102434_b0100 article-title: The numerical simulation of fatigue crack growth using extended finite element method publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2011.08.010 – volume: 7 start-page: 199 issue: 3 year: 2011 ident: 10.1016/j.tafmec.2019.102434_b0105 article-title: XFEM simulation of cracks, holes and inclusions in functionally graded materials publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-011-9159-1 – volume: 51 start-page: 943 issue: 8 year: 2001 ident: 10.1016/j.tafmec.2019.102434_b0135 article-title: Modelling crack growth by level sets in the extended finite element method publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.201 – volume: 32 start-page: 473 issue: 2 year: 2015 ident: 10.1016/j.tafmec.2019.102434_b0070 article-title: A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures publication-title: Eng. Comput. doi: 10.1108/EC-08-2013-0203 – volume: 51 start-page: 2167 issue: 11–12 year: 2014 ident: 10.1016/j.tafmec.2019.102434_b0060 article-title: Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.02.024 – volume: 102 start-page: 105 year: 2016 ident: 10.1016/j.tafmec.2019.102434_b0190 article-title: Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.09.007 – volume: 43 start-page: 349 issue: 3 year: 2012 ident: 10.1016/j.tafmec.2019.102434_b0200 article-title: Variable-node element families for mesh connection and adaptive mesh computation publication-title: Struct. Eng. Mech. doi: 10.12989/sem.2012.43.3.349 – volume: 85 start-page: 519 issue: 4 year: 1963 ident: 10.1016/j.tafmec.2019.102434_b0250 article-title: On the crack extension in plates under plane loading and transverse shear publication-title: J. Basic Eng. doi: 10.1115/1.3656897 – volume: 115 start-page: 168 year: 2018 ident: 10.1016/j.tafmec.2019.102434_b0215 article-title: Two-dimensional fracture modeling with the generalized/extended finite element method: An object-oriented programming approach publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.09.005 – volume: 190 start-page: 6183 issue: 46–47 year: 2001 ident: 10.1016/j.tafmec.2019.102434_b0085 article-title: Modeling holes and inclusions by level sets in the extended finite-element method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(01)00215-8 – volume: 183 start-page: 81 issue: 1 year: 2013 ident: 10.1016/j.tafmec.2019.102434_b0110 article-title: Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM publication-title: Int. J. Fract. doi: 10.1007/s10704-013-9877-5 – volume: 53 start-page: 1129 issue: 6 year: 2014 ident: 10.1016/j.tafmec.2019.102434_b0165 article-title: An adaptive multiscale method for quasi-static crack growth publication-title: Comput. Mech. doi: 10.1007/s00466-013-0952-6 – volume: 72 start-page: 174 year: 2015 ident: 10.1016/j.tafmec.2019.102434_b0065 article-title: Extended finite element method for strong discontinuity analysis of strain localization of non-associative plasticity materials publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.07.021 – volume: 47 start-page: 335 issue: 2 year: 1980 ident: 10.1016/j.tafmec.2019.102434_b0255 article-title: A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity publication-title: J. Appl. Mech. doi: 10.1115/1.3153665 – volume: 71 start-page: 1466 issue: 12 year: 2007 ident: 10.1016/j.tafmec.2019.102434_b0155 article-title: A multiscale projection method for macro/microcrack simulations publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.2001 – ident: 10.1016/j.tafmec.2019.102434_b0225 doi: 10.1016/j.engfracmech.2008.10.015 – volume: 29 start-page: 1131 issue: 3 year: 2015 ident: 10.1016/j.tafmec.2019.102434_b0125 article-title: A new criterion for modeling multiple discontinuities passing through an element using XIGA publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-015-0225-8 – ident: 10.1016/j.tafmec.2019.102434_b0235 – volume: 54 start-page: 1209 issue: 8 year: 2002 ident: 10.1016/j.tafmec.2019.102434_b0075 article-title: A hybrid extended finite element/level set method for modeling phase transformations publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.468 – volume: 45 start-page: 601 issue: 5 year: 1999 ident: 10.1016/j.tafmec.2019.102434_b0005 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S – volume: 85 start-page: 1360 issue: 17–18 year: 2007 ident: 10.1016/j.tafmec.2019.102434_b0140 article-title: A two-scale approach with homogenization for the computation of cracked structures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.08.085 – volume: 50 start-page: 2793 year: 2011 ident: 10.1016/j.tafmec.2019.102434_b0050 article-title: XFEM fracture analysis of shells: The effect of crack tip enrichments publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.04.034 – volume: 89 start-page: 786 issue: 6 year: 2012 ident: 10.1016/j.tafmec.2019.102434_b0275 article-title: Extended FEM modeling of crack paths near inclusions publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.3268 – volume: 197 start-page: 414 issue: 5 year: 2008 ident: 10.1016/j.tafmec.2019.102434_b0145 article-title: Modeling of failure in composites by X-FEM and level sets within a multiscale framework publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.07.017 – volume: 40 start-page: 7513 year: 2003 ident: 10.1016/j.tafmec.2019.102434_b0220 article-title: Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2003.08.002 – volume: 196 start-page: 112 year: 2018 ident: 10.1016/j.tafmec.2019.102434_b0185 article-title: Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2017.11.007 – volume: 347 start-page: 365 year: 2019 ident: 10.1016/j.tafmec.2019.102434_b0130 article-title: A parallel and efficient multi-split XFEM for 3-D analysis of heterogeneous materials publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.12.023 – volume: 163 start-page: 271 issue: 4 year: 2010 ident: 10.1016/j.tafmec.2019.102434_b0210 article-title: Object-oriented programming and the extended finite-element method publication-title: Proc. Inst. Civil Eng – Eng. Comput. Mech. – volume: 71 start-page: 703 issue: 6 year: 2007 ident: 10.1016/j.tafmec.2019.102434_b0205 article-title: An extended finite element library publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1966 – ident: 10.1016/j.tafmec.2019.102434_b0260 doi: 10.1115/1.801535.ch2 – volume: 122 start-page: 277 year: 2017 ident: 10.1016/j.tafmec.2019.102434_b0170 article-title: A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.01.028 – volume: 51 start-page: 327 year: 2013 ident: 10.1016/j.tafmec.2019.102434_b0025 article-title: An extended finite element method for fluid flow in partially saturated porous media with weak discontinuities; the convergence analysis of local enrichment strategies publication-title: Comput. Mech. doi: 10.1007/s00466-012-0732-8 – volume: 46 start-page: 3710 issue: 20 year: 2009 ident: 10.1016/j.tafmec.2019.102434_b0280 article-title: Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2009.06.019 – year: 2012 ident: 10.1016/j.tafmec.2019.102434_b0285 |
| SSID | ssj0017193 |
| Score | 2.3699903 |
| Snippet | •Numerical simulation for strong and weak discontinuities by local mesh refinement variable-node XFEM is presented.•A novel local mesh refinement scheme is... In this paper, we present a Matlab object-oriented implementation of the variable-node extended finite element method (XFEM), which is enhanced by local mesh... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102434 |
| SubjectTerms | Cracks Discontinuity Finite element method Grid refinement (mathematics) Inclusions Local mesh refinement Mesh generation Nodes Object oriented programming Variable-node elements Voids XFEM |
| Title | Modeling strong/weak discontinuities by local mesh refinement variable-node XFEM with object-oriented implementation |
| URI | https://dx.doi.org/10.1016/j.tafmec.2019.102434 https://www.proquest.com/docview/2427544485 |
| Volume | 106 |
| WOSCitedRecordID | wos000519657500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-7638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017193 issn: 0167-8442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE8xGMgHblVGkzh1fJygFUxiAmlIvUW262jt2nRqk7L9F_uTec920rR8jB24RJHlWG5_v7z38vw-CHkXcQ1mgNGBwkZh2N44SHU_DKSUIAmNSmLNbLMJfnqajkbia6dzU-fCrGe8KNKrK3H5X6GGMQAbU2fvAHezKAzAPYAOV4Adrv8EPHY3mzkvwdLG2w5_GHmBJzEYlj4pKltDFc1Oq8e6c7M674KeBHPTBgas4esZ86mCAhbqjoaDL85Zu1DosgkWWBgZzdTJvA49b7CdNtRrkiNtLVhv6eaYkYUHFnOD-catOPuPvrPKSVXMzKSRRJVjE4AvvYK1iRcTN1ycd79VC932W0S9VriLd2WCiE4Z25bFvbY0DbFcIvutoHc-h-lRKXPYM4boiaPN9O262jv6rolCrAPcpplbJcNVMrfKPbIf8USAnNw__jwYnTQnUzx0hZzr3dfpmDZm8Nfd_Mnc2VH81po5e0we-c8Qeuzo84R0TPGUPGwVp3xGyppI1BHpPdKI7tCIqmtqaUSRRnRDI7pFI4o0okgjukMjuk2j5-T7cHD24VPge3QEOo5ZGSQmMQxM7NTEUshQpiI3sYn7Kk205EYJtNeZipSIhQoTw7XORShlKnk07o9Z_ILsFYvCvCQ04j3BVcIN5yFLYIrQJs3HoJJ0qAyPDkhc_5WZ9gXssY_KLPsbkAckaJ66dAVcbpnPa5Qyb4Q64zID6t3y5GENaublwSqDn48lJlmavLrjRl6TB5vX5pDslcvKvCH39bqcrJZvPS1_AmduuQQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+strong%2Fweak+discontinuities+by+local+mesh+refinement+variable-node+XFEM+with+object-oriented+implementation&rft.jtitle=Theoretical+and+applied+fracture+mechanics&rft.au=Ding%2C+Junlei&rft.au=Yu%2C+Tiantang&rft.au=Bui%2C+Tinh+Quoc&rft.date=2020-04-01&rft.issn=0167-8442&rft.volume=106&rft.spage=102434&rft_id=info:doi/10.1016%2Fj.tafmec.2019.102434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tafmec_2019_102434 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8442&client=summon |