An online portfolio strategy based on trend promote price tracing ensemble learning algorithm

How to carry out an investment portfolio efficiently and reasonably has become a hot issue. This study mainly addresses the problem of the instability of forecasting stock price investment and the difficulty in determining investment proportion by proposing the trend peak price tracing (TPPT). First...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 239; s. 107957
Hlavní autoři: Dai, Hong-Liang, Liang, Chu-Xin, Dai, Hong-Ming, Huang, Cui-Yin, Adnan, Rana Muhammad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 05.03.2022
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract How to carry out an investment portfolio efficiently and reasonably has become a hot issue. This study mainly addresses the problem of the instability of forecasting stock price investment and the difficulty in determining investment proportion by proposing the trend peak price tracing (TPPT). First of all, because of the influence of stock price anomaly, TPPT strategy sets adjustable historical window width. It uses slope value to judge prediction direction to track price change, which uses exponential moving average and peak equal weight slope value three-state price prediction method. Secondly, the accumulated wealth target is refined, and the fast error Back Propagation based on gradient projection algorithm (BP) is added. The algorithm solves investment proportion and feedbacks the increasing ability of assets to the investment proportion in order to maximize the accumulated wealth. Finally, comparison of eight empirical strategies in five typical data and statistical tests show that TPPT strategy has great advantages in balancing risk and return, and it is a robust and effective online portfolio strategy.
AbstractList How to carry out an investment portfolio efficiently and reasonably has become a hot issue. This study mainly addresses the problem of the instability of forecasting stock price investment and the difficulty in determining investment proportion by proposing the trend peak price tracing (TPPT). First of all, because of the influence of stock price anomaly, TPPT strategy sets adjustable historical window width. It uses slope value to judge prediction direction to track price change, which uses exponential moving average and peak equal weight slope value three-state price prediction method. Secondly, the accumulated wealth target is refined, and the fast error Back Propagation based on gradient projection algorithm (BP) is added. The algorithm solves investment proportion and feedbacks the increasing ability of assets to the investment proportion in order to maximize the accumulated wealth. Finally, comparison of eight empirical strategies in five typical data and statistical tests show that TPPT strategy has great advantages in balancing risk and return, and it is a robust and effective online portfolio strategy.
ArticleNumber 107957
Author Liang, Chu-Xin
Dai, Hong-Ming
Adnan, Rana Muhammad
Huang, Cui-Yin
Dai, Hong-Liang
Author_xml – sequence: 1
  givenname: Hong-Liang
  surname: Dai
  fullname: Dai, Hong-Liang
  email: hldai618@gzhu.edu.cn
  organization: School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
– sequence: 2
  givenname: Chu-Xin
  surname: Liang
  fullname: Liang, Chu-Xin
  organization: School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
– sequence: 3
  givenname: Hong-Ming
  surname: Dai
  fullname: Dai, Hong-Ming
  organization: School of Information and Automation, Guangdong Polytechnic of Science and Trade, Guangzhou 510430, China
– sequence: 4
  givenname: Cui-Yin
  surname: Huang
  fullname: Huang, Cui-Yin
  organization: School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
– sequence: 5
  givenname: Rana Muhammad
  surname: Adnan
  fullname: Adnan, Rana Muhammad
  organization: School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
BookMark eNqFkEtLAzEUhYNUsK3-AxcDrqcmmclk4kIoxRcU3OhSQiZzp2acJjVJhf57U8aVC11dOPec-_hmaGKdBYQuCV4QTKrrfvFhXTiEBcWUJIkLxk_QlNSc5rzEYoKmWDCcc8zIGZqF0GOMKSX1FL0tbebsYCxkO-dj5wbjshC9irA5ZI0K0KZ-Fj3YNtt5t3UxOb3RkDSljd1kYANsmwGyAZS3R0UNG-dNfN-eo9NODQEufuocvd7fvawe8_Xzw9Nquc51UZQxZ7oQigDFQrOWdE1R8bqrSoC2LRkXTcOBtSVhSS4qUGXNGipUJRrAwIpaFXN0Nc5NF37uIUTZu723aaWkVVHzSvCKJtfN6NLeheChk9pEFY2z6RUzSILlEafs5YhTHnHKEWcKl7_CicJW-cN_sdsxBun9LwNeBm3AamiNBx1l68zfA74Bz5qVAQ
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124299
crossref_primary_10_1016_j_knosys_2024_111739
crossref_primary_10_1016_j_sigpro_2023_108957
crossref_primary_10_1016_j_dajour_2023_100256
crossref_primary_10_1016_j_eswa_2024_124565
crossref_primary_10_1007_s11081_022_09776_7
crossref_primary_10_3390_math12070956
crossref_primary_10_1016_j_matcom_2023_07_012
crossref_primary_10_1007_s10614_023_10430_2
crossref_primary_10_1016_j_eswa_2023_121404
crossref_primary_10_1142_S0217595923500410
crossref_primary_10_1016_j_eswa_2023_121472
crossref_primary_10_1016_j_eswa_2025_126430
Cites_doi 10.1007/s00521-017-3014-8
10.1109/TKDE.2016.2563433
10.1109/TSP.2019.2941067
10.1016/j.patcog.2017.10.024
10.1007/s00500-019-04039-7
10.1016/j.ejor.2021.03.023
10.1016/j.ejor.2019.01.012
10.1016/j.procs.2017.11.491
10.1007/s10614-019-09890-2
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 5, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 5, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.107957
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_107957
S095070512101087X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-5c39a1e209c5d1fb3678f64eedd4579bb7e5d41567836ea485b29a69be0e538a3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788633300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:43:52 EST 2025
Sat Nov 29 07:12:10 EST 2025
Tue Nov 18 22:18:31 EST 2025
Fri Feb 23 02:39:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ensemble learning algorithm
Online portfolio investment
Three-state price
Gradient projection
Price anomaly
Investment ratio
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-5c39a1e209c5d1fb3678f64eedd4579bb7e5d41567836ea485b29a69be0e538a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2638769762
PQPubID 2035257
ParticipantIDs proquest_journals_2638769762
crossref_citationtrail_10_1016_j_knosys_2021_107957
crossref_primary_10_1016_j_knosys_2021_107957
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_107957
PublicationCentury 2000
PublicationDate 2022-03-05
PublicationDateYYYYMMDD 2022-03-05
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Nyikosa, Osborne, Roberts (b13) 2021
Yang, Lai, Wu (b38) 2018; 76
Gao, Zhang (b6) 2013
Yu, Huang (b15) 2008; 38
Zhang, Zhang, Yang (b14) 2012; 218
Stella, Ventura (b30) 2011; 2
Xian, Yang, He (b26) 2020; 24
Yang, Li, Yang (b27) 2018
Rao, Deng, Jiang (b31) 2017; 44
Aifan, Jie, Meihua (b18) 2020; 285
Chen, Chen, Chen (b37) 2020; 145
Cai, Ye (b7) 2019; 21
Puja, Nicholas, Arindam (b24) 2013
Pascal, Imed, Gunter (b35) 2019; 3
Moghaddam, Moghaddam, Esfandyari (b1) 2016; 21
Lai, Dai, Ren (b4) 2018; 29
Han, Li (b12) 2017; 122
Das, Johnson, Banerjee (b25) 2014
Huang, Zhou, Li (b5) 2016; 28
Yang, He, Lin (b29) 2020; 55
Moura, Andre, Ruiz (b23) 2020; 118
Tavana, Shiraz, Caprio (b10) 2019; 31
Thierry, Mattea, Erick (b28) 2020; 2
Yang, Gao (b11) 2019
Wei, Yang, Jiang (b34) 2021; 177
Lin, Zhang, Zhang (b8) 2017
Skrinjaric (b16) 2020; 147
Guan, An (b9) 2019; 186
Li, Hoi (b2) 2014; 46
Wu, Zhu, Huang (b21) 2019; 39
Yao, Du, Li (b3) 2013; 40
Bean, Singer (b17) 2011
Zhou, Gao, Xiao (b33) 2021
Zhu, Zheng, Wang (b20) 2020
Guo, Gu, Ching (b32) 2021
Janez (b39) 2006; 7
Akbay, Kalayci, Polat (b19) 2020; 198
Qu, Yu, Huang (b22) 2019; 4
Koyano, Ikeda (b36) 2017
Stella (10.1016/j.knosys.2021.107957_b30) 2011; 2
Pascal (10.1016/j.knosys.2021.107957_b35) 2019; 3
Lai (10.1016/j.knosys.2021.107957_b4) 2018; 29
Skrinjaric (10.1016/j.knosys.2021.107957_b16) 2020; 147
Zhu (10.1016/j.knosys.2021.107957_b20) 2020
Moura (10.1016/j.knosys.2021.107957_b23) 2020; 118
Thierry (10.1016/j.knosys.2021.107957_b28) 2020; 2
Yang (10.1016/j.knosys.2021.107957_b27) 2018
Koyano (10.1016/j.knosys.2021.107957_b36) 2017
Qu (10.1016/j.knosys.2021.107957_b22) 2019; 4
Puja (10.1016/j.knosys.2021.107957_b24) 2013
Lin (10.1016/j.knosys.2021.107957_b8) 2017
Rao (10.1016/j.knosys.2021.107957_b31) 2017; 44
Huang (10.1016/j.knosys.2021.107957_b5) 2016; 28
Xian (10.1016/j.knosys.2021.107957_b26) 2020; 24
Yao (10.1016/j.knosys.2021.107957_b3) 2013; 40
Nyikosa (10.1016/j.knosys.2021.107957_b13) 2021
Zhang (10.1016/j.knosys.2021.107957_b14) 2012; 218
Wei (10.1016/j.knosys.2021.107957_b34) 2021; 177
Gao (10.1016/j.knosys.2021.107957_b6) 2013
Aifan (10.1016/j.knosys.2021.107957_b18) 2020; 285
Janez (10.1016/j.knosys.2021.107957_b39) 2006; 7
Moghaddam (10.1016/j.knosys.2021.107957_b1) 2016; 21
Guo (10.1016/j.knosys.2021.107957_b32) 2021
Zhou (10.1016/j.knosys.2021.107957_b33) 2021
Li (10.1016/j.knosys.2021.107957_b2) 2014; 46
Cai (10.1016/j.knosys.2021.107957_b7) 2019; 21
Han (10.1016/j.knosys.2021.107957_b12) 2017; 122
Tavana (10.1016/j.knosys.2021.107957_b10) 2019; 31
Akbay (10.1016/j.knosys.2021.107957_b19) 2020; 198
Chen (10.1016/j.knosys.2021.107957_b37) 2020; 145
Das (10.1016/j.knosys.2021.107957_b25) 2014
Bean (10.1016/j.knosys.2021.107957_b17) 2011
Yu (10.1016/j.knosys.2021.107957_b15) 2008; 38
Yang (10.1016/j.knosys.2021.107957_b38) 2018; 76
Wu (10.1016/j.knosys.2021.107957_b21) 2019; 39
Guan (10.1016/j.knosys.2021.107957_b9) 2019; 186
Yang (10.1016/j.knosys.2021.107957_b11) 2019
Yang (10.1016/j.knosys.2021.107957_b29) 2020; 55
References_xml – year: 2021
  ident: b32
  article-title: Adaptive online portfolio selection with transaction costs
  publication-title: European J. Oper. Res.
– volume: 177
  start-page: 1
  year: 2021
  end-page: 18
  ident: b34
  article-title: Dynamic multi-period sparse portfolio selection model with asymmetric investors’ sentiments
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 2462
  year: 2019
  end-page: 2467
  ident: b21
  article-title: Semi-exponential gradient strategy for online portfolio selection and empirical analysis
  publication-title: J. Comput. Appl.
– year: 2021
  ident: b13
  article-title: BayesIan optimization for dynamic problems. [eb/ol]
– volume: 198
  start-page: 1
  year: 2020
  end-page: 15
  ident: b19
  article-title: A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization
  publication-title: Knowl.-Based Syst.
– volume: 147
  start-page: 1
  year: 2020
  end-page: 15
  ident: b16
  article-title: Dynamic portfolio optimization based on grey relational analysis approach
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 2823
  year: 2018
  end-page: 2832
  ident: b4
  article-title: A peak price tracking-based learning system for portfolio selection
  publication-title: IEEE Trans. Neural Netw.
– volume: 285
  start-page: 81
  year: 2020
  end-page: 95
  ident: b18
  article-title: Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set
  publication-title: European J. Oper. Res.
– year: 2021
  ident: b33
  article-title: Big data and portfolio optimization: A novel approach integrating DEA with multiple data sources
  publication-title: Omega
– volume: 3
  start-page: 559
  year: 2019
  end-page: 576
  ident: b35
  article-title: Optimal online algorithms for the portfolio selection problem, bi-directional trading and search with interrelated prices
  publication-title: RAIRO Oper. Res.
– volume: 28
  start-page: 2480
  year: 2016
  end-page: 2493
  ident: b5
  article-title: Robust median reversion strategy for online portfolio selection
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 4
  start-page: 72
  year: 2019
  end-page: 82
  ident: b22
  article-title: Second-order online portfolio selection strategy with transaction costs
  publication-title: J. East China Norm. Univ. (Natl. Sci. Ed.)
– volume: 218
  start-page: 11832
  year: 2012
  end-page: 11841
  ident: b14
  article-title: A class of on-line portfolio selection algorithms based on linear learning
  publication-title: Appl. Math. Comput.
– start-page: 4682
  year: 2020
  end-page: 4689
  ident: b20
  article-title: Online portfolio selection with cardinality constraint and transaction costs based on contextual bandit
  publication-title: Proc of the 29th International Joint Conference on Artificial Intelligence
– volume: 31
  start-page: 931
  year: 2019
  end-page: 945
  ident: b10
  article-title: A chance-constrained portfolio selection model with random-rough variables
  publication-title: Neural Comput. Appl.
– volume: 38
  start-page: 1505
  year: 2008
  end-page: 1511
  ident: b15
  article-title: Online portfolio selection based on autoregressive moving average inversion
  publication-title: Comput. Appl.
– volume: 145
  start-page: 1
  year: 2020
  end-page: 11
  ident: b37
  article-title: A hybrid approach for portfolio selection with higher-order moments: Empirical evidence from shanghai stock exchange
  publication-title: Expert Syst. Appl.
– volume: 55
  start-page: 231
  year: 2020
  end-page: 251
  ident: b29
  article-title: Boosting exponential gradient strategy for online portfolio selection: An aggregating experts advice method
  publication-title: Comput. Econ.
– year: 2017
  ident: b8
  article-title: Boosting moving average reversion strategy for online portfolio selection: A meta-learning approach
  publication-title: Proc of International Conference on Database Systems for Advanced Applications
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b39
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 89
  year: 2016
  end-page: 93
  ident: b1
  article-title: Stock market index prediction using artificial neural network
  publication-title: J. Econ. Financ. Adm. Sci.
– volume: 186
  start-page: 1
  year: 2019
  end-page: 10
  ident: b9
  article-title: A local adaptive learning system for online portfolio selection
  publication-title: Knowl. Based Syst.
– start-page: 345
  year: 2019
  end-page: 349
  ident: b11
  article-title: Sparse online portfolio selection based on proximal gradient
  publication-title: Proc of IEEE MLBDBI
– start-page: 37
  year: 2011
  end-page: 40
  ident: b17
  article-title: Portfolio selection via constrained stochastic gradients
  publication-title: Proc of IEEE SSP
– start-page: 1
  year: 2013
  end-page: 7
  ident: b24
  article-title: Online lazy updates for portfolio selection with transaction costs
  publication-title: Proc of the 27th AAAI Conference on Artificial Intelligence
– volume: 21
  start-page: 5558
  year: 2019
  end-page: 5570
  ident: b7
  article-title: Gaussian weighting reversion strategy for accurate online portfolio selection
  publication-title: IEEE Trans. Signal Process.
– volume: 2
  start-page: 88
  year: 2011
  end-page: 105
  ident: b30
  article-title: Defensive online portfolio selection
  publication-title: Int. J. Financ. Mark. Deriv.
– start-page: 327
  year: 2013
  end-page: 330
  ident: b6
  article-title: Weighted moving average passive aggressive algorithm for online portfolio selection
  publication-title: Proc of the 5th International Conference on Intelligent Human-Machine Systems & Cybernetics
– volume: 118
  start-page: 1
  year: 2020
  end-page: 13
  ident: b23
  article-title: Comparing high dimensional conditional covariance matrices: Implications for portfolio selection
  publication-title: J. Bank. Financ.
– volume: 40
  start-page: 45
  year: 2013
  end-page: 51
  ident: b3
  article-title: Stock market tracking prediction algorithm based on stream feature model
  publication-title: Comput. Sci.
– start-page: 1
  year: 2017
  end-page: 4
  ident: b36
  article-title: Online portfolio selection based on the posts of winners and losers in stock microblogs
  publication-title: Proc of IEEE SSCI
– start-page: 869
  year: 2018
  end-page: 873
  ident: b27
  article-title: Online Newton step for portfolio selection with side information
  publication-title: Proc of the 5th International Conference on Information Science and Control Engineering
– volume: 122
  start-page: 1189
  year: 2017
  end-page: 1195
  ident: b12
  article-title: An empirical study of chance constrained portfolio selection model
  publication-title: Procedia Comput. Sci.
– volume: 44
  start-page: 193
  year: 2017
  end-page: 202
  ident: b31
  article-title: Stock price movements prediction based on multi-sources
  publication-title: Comput. Sci.
– volume: 2
  start-page: 374
  year: 2020
  end-page: 401
  ident: b28
  article-title: Generalization bounds for regularized portfolio selection with market side information
  publication-title: Inf. Syst. Oper. Res.
– start-page: 1185
  year: 2014
  end-page: 1191
  ident: b25
  article-title: Online portfolio selection with group sparsity
  publication-title: Proc of the 28th AAAIConference on Artificial Intelligence
– volume: 76
  start-page: 14
  year: 2018
  end-page: 24
  ident: b38
  article-title: Trend representation based log-density regularization system for portfolio optimization
  publication-title: Pattern Recognit.
– volume: 24
  start-page: 2067
  year: 2020
  end-page: 2081
  ident: b26
  article-title: Aggregating expert advice strategy for online portfolio selection with side information
  publication-title: Soft Comput.
– volume: 46
  start-page: 1
  year: 2014
  end-page: 36
  ident: b2
  article-title: Online portfolio selection: A survey
  publication-title: ACM Comput. Surv.
– start-page: 1185
  year: 2014
  ident: 10.1016/j.knosys.2021.107957_b25
  article-title: Online portfolio selection with group sparsity
– volume: 177
  start-page: 1
  issue: 114945
  year: 2021
  ident: 10.1016/j.knosys.2021.107957_b34
  article-title: Dynamic multi-period sparse portfolio selection model with asymmetric investors’ sentiments
  publication-title: Expert Syst. Appl.
– volume: 31
  start-page: 931
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2021.107957_b10
  article-title: A chance-constrained portfolio selection model with random-rough variables
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3014-8
– volume: 40
  start-page: 45
  issue: 12
  year: 2013
  ident: 10.1016/j.knosys.2021.107957_b3
  article-title: Stock market tracking prediction algorithm based on stream feature model
  publication-title: Comput. Sci.
– start-page: 327
  year: 2013
  ident: 10.1016/j.knosys.2021.107957_b6
  article-title: Weighted moving average passive aggressive algorithm for online portfolio selection
– start-page: 1
  year: 2013
  ident: 10.1016/j.knosys.2021.107957_b24
  article-title: Online lazy updates for portfolio selection with transaction costs
– year: 2017
  ident: 10.1016/j.knosys.2021.107957_b8
  article-title: Boosting moving average reversion strategy for online portfolio selection: A meta-learning approach
– volume: 147
  start-page: 1
  issue: 113207
  year: 2020
  ident: 10.1016/j.knosys.2021.107957_b16
  article-title: Dynamic portfolio optimization based on grey relational analysis approach
  publication-title: Expert Syst. Appl.
– volume: 28
  start-page: 2480
  issue: 9
  year: 2016
  ident: 10.1016/j.knosys.2021.107957_b5
  article-title: Robust median reversion strategy for online portfolio selection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2563433
– volume: 2
  start-page: 374
  issue: 58
  year: 2020
  ident: 10.1016/j.knosys.2021.107957_b28
  article-title: Generalization bounds for regularized portfolio selection with market side information
  publication-title: Inf. Syst. Oper. Res.
– volume: 21
  start-page: 5558
  issue: 67
  year: 2019
  ident: 10.1016/j.knosys.2021.107957_b7
  article-title: Gaussian weighting reversion strategy for accurate online portfolio selection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2941067
– volume: 118
  start-page: 1
  issue: 105882
  year: 2020
  ident: 10.1016/j.knosys.2021.107957_b23
  article-title: Comparing high dimensional conditional covariance matrices: Implications for portfolio selection
  publication-title: J. Bank. Financ.
– volume: 29
  start-page: 2823
  issue: 7
  year: 2018
  ident: 10.1016/j.knosys.2021.107957_b4
  article-title: A peak price tracking-based learning system for portfolio selection
  publication-title: IEEE Trans. Neural Netw.
– volume: 21
  start-page: 89
  year: 2016
  ident: 10.1016/j.knosys.2021.107957_b1
  article-title: Stock market index prediction using artificial neural network
  publication-title: J. Econ. Financ. Adm. Sci.
– volume: 186
  start-page: 1
  issue: 104958
  year: 2019
  ident: 10.1016/j.knosys.2021.107957_b9
  article-title: A local adaptive learning system for online portfolio selection
  publication-title: Knowl. Based Syst.
– volume: 76
  start-page: 14
  year: 2018
  ident: 10.1016/j.knosys.2021.107957_b38
  article-title: Trend representation based log-density regularization system for portfolio optimization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.024
– year: 2021
  ident: 10.1016/j.knosys.2021.107957_b13
– volume: 4
  start-page: 72
  year: 2019
  ident: 10.1016/j.knosys.2021.107957_b22
  article-title: Second-order online portfolio selection strategy with transaction costs
  publication-title: J. East China Norm. Univ. (Natl. Sci. Ed.)
– volume: 24
  start-page: 2067
  year: 2020
  ident: 10.1016/j.knosys.2021.107957_b26
  article-title: Aggregating expert advice strategy for online portfolio selection with side information
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04039-7
– volume: 2
  start-page: 88
  year: 2011
  ident: 10.1016/j.knosys.2021.107957_b30
  article-title: Defensive online portfolio selection
  publication-title: Int. J. Financ. Mark. Deriv.
– year: 2021
  ident: 10.1016/j.knosys.2021.107957_b32
  article-title: Adaptive online portfolio selection with transaction costs
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2021.03.023
– volume: 198
  start-page: 1
  issue: 105944
  year: 2020
  ident: 10.1016/j.knosys.2021.107957_b19
  article-title: A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization
  publication-title: Knowl.-Based Syst.
– volume: 145
  start-page: 1
  issue: 113104
  year: 2020
  ident: 10.1016/j.knosys.2021.107957_b37
  article-title: A hybrid approach for portfolio selection with higher-order moments: Empirical evidence from shanghai stock exchange
  publication-title: Expert Syst. Appl.
– volume: 218
  start-page: 11832
  issue: 24
  year: 2012
  ident: 10.1016/j.knosys.2021.107957_b14
  article-title: A class of on-line portfolio selection algorithms based on linear learning
  publication-title: Appl. Math. Comput.
– volume: 285
  start-page: 81
  year: 2020
  ident: 10.1016/j.knosys.2021.107957_b18
  article-title: Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2019.01.012
– start-page: 869
  year: 2018
  ident: 10.1016/j.knosys.2021.107957_b27
  article-title: Online Newton step for portfolio selection with side information
– start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2021.107957_b36
  article-title: Online portfolio selection based on the posts of winners and losers in stock microblogs
– year: 2021
  ident: 10.1016/j.knosys.2021.107957_b33
  article-title: Big data and portfolio optimization: A novel approach integrating DEA with multiple data sources
  publication-title: Omega
– volume: 122
  start-page: 1189
  year: 2017
  ident: 10.1016/j.knosys.2021.107957_b12
  article-title: An empirical study of chance constrained portfolio selection model
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.491
– volume: 38
  start-page: 1505
  issue: 05
  year: 2008
  ident: 10.1016/j.knosys.2021.107957_b15
  article-title: Online portfolio selection based on autoregressive moving average inversion
  publication-title: Comput. Appl.
– start-page: 4682
  year: 2020
  ident: 10.1016/j.knosys.2021.107957_b20
  article-title: Online portfolio selection with cardinality constraint and transaction costs based on contextual bandit
– volume: 44
  start-page: 193
  issue: 10
  year: 2017
  ident: 10.1016/j.knosys.2021.107957_b31
  article-title: Stock price movements prediction based on multi-sources
  publication-title: Comput. Sci.
– start-page: 345
  year: 2019
  ident: 10.1016/j.knosys.2021.107957_b11
  article-title: Sparse online portfolio selection based on proximal gradient
– volume: 55
  start-page: 231
  year: 2020
  ident: 10.1016/j.knosys.2021.107957_b29
  article-title: Boosting exponential gradient strategy for online portfolio selection: An aggregating experts advice method
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-019-09890-2
– volume: 3
  start-page: 559
  year: 2019
  ident: 10.1016/j.knosys.2021.107957_b35
  article-title: Optimal online algorithms for the portfolio selection problem, bi-directional trading and search with interrelated prices
  publication-title: RAIRO Oper. Res.
– volume: 46
  start-page: 1
  issue: 3
  year: 2014
  ident: 10.1016/j.knosys.2021.107957_b2
  article-title: Online portfolio selection: A survey
  publication-title: ACM Comput. Surv.
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.knosys.2021.107957_b39
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– start-page: 37
  year: 2011
  ident: 10.1016/j.knosys.2021.107957_b17
  article-title: Portfolio selection via constrained stochastic gradients
– volume: 39
  start-page: 2462
  issue: 8
  year: 2019
  ident: 10.1016/j.knosys.2021.107957_b21
  article-title: Semi-exponential gradient strategy for online portfolio selection and empirical analysis
  publication-title: J. Comput. Appl.
SSID ssj0002218
Score 2.4401572
Snippet How to carry out an investment portfolio efficiently and reasonably has become a hot issue. This study mainly addresses the problem of the instability of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107957
SubjectTerms Algorithms
Averages
Ensemble learning
Ensemble learning algorithm
Forecasting
Gradient projection
Investment ratio
Investments
Machine learning
Online portfolio investment
Portfolios
Price anomaly
Prices
Statistical tests
Stock prices
Strategies
Strategy
Three-state price
Tracing
Value
Wealth
Width
Title An online portfolio strategy based on trend promote price tracing ensemble learning algorithm
URI https://dx.doi.org/10.1016/j.knosys.2021.107957
https://www.proquest.com/docview/2638769762
Volume 239
WOSCitedRecordID wos000788633300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGKQcu7IhCQT5wGxklcRzHx1FVVLYKiSKFA4qS2JmmTZNqllL-Pc9bZtQBFZC4RKPEy4zfF_t7b96C0Ku0ZBVoAZJUpaIEQMFIwQpGuExKIOh1ULPaFJvgR0dplolPo9F3Hwtz2fKuS6-uxMV_FTXcA2Hr0Nm_EPcwKNyAzyB0uILY4fpHgp8CATTpLyaaWtd92_SThc1B-2OiDy1p_iDQvrDaOwtEpWOlYL_Q5SIqbTkAzVad64iq1ttNinbWz5vlyfkml33vzXHEjrrYSH5ubN-2IHbfzcgHAOFs8P1pnI16_2RFsqb7VYePzbr94cq3XzXkq2vvDBWg42pPLba2nm1F0DgzZEB44JLOKrsJpxxYfxyIzV06sjmPtnZ8a3w4fX3W9fAzQeGPQrjJhU17fS2X9mc9nZ4NFN0wSHl2C-1EnIl0jHambw-yd8MhHkXGNDx8PR91aVwDt-f6Hau5dr4b0nJ8H9112gaeWpQ8QCPVPUT3fCUP7Db2R-jbtMMWNHgADfagwUa88Bwb0GAHGmxAgx1osAcN9qDBA2geoy9vDo73D4krvEEqSuMlYRUVRaiiQFRMhnVJgdHUSQx0SsaMi7Lkikmt-esQIFXEKSsjUSSiVIGCA7SgT9C46zv1FGEmKVMqjWuRqjgJZEljGFrWUkaiCoXcRdQvXF65rPS6OEqbe_fD09wud66XO7fLvYvI0OvCZmW5oT33Mskds7SMMQcY3dBzz4swdy85PIdDiydA5KNn_zzwc3Rn_ZLsofFyvlIv0O3qctks5i8dHH8CR6es8Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+online+portfolio+strategy+based+on+trend+promote+price+tracing+ensemble+learning+algorithm&rft.jtitle=Knowledge-based+systems&rft.au=Dai%2C+Hong-Liang&rft.au=Liang%2C+Chu-Xin&rft.au=Dai%2C+Hong-Ming&rft.au=Huang%2C+Cui-Yin&rft.date=2022-03-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=239&rft_id=info:doi/10.1016%2Fj.knosys.2021.107957&rft.externalDocID=S095070512101087X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon