Splines in Higher Order TV Regularization

Issue Title: Special Issue: The 5th International Conference on Scale-Space and PDE Methods in Computer Vision Splines play an important role as solutions of various interpolation and approximation problems that minimize special functionals in some smoothness spaces. In this paper, we show in a stri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 70; číslo 3; s. 241 - 255
Hlavní autoři: Steidl, Gabriele, Didas, Stephan, Neumann, Julia
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Heidelberg Springer 01.12.2006
Springer Nature B.V
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Issue Title: Special Issue: The 5th International Conference on Scale-Space and PDE Methods in Computer Vision Splines play an important role as solutions of various interpolation and approximation problems that minimize special functionals in some smoothness spaces. In this paper, we show in a strictly discrete setting that splines of degree m-1 solve also a minimization problem with quadratic data term and m-th order total variation (TV) regularization term. In contrast to problems with quadratic regularization terms involving m-th order derivatives, the spline knots are not known in advance but depend on the input data and the regularization parameter λ. More precisely, the spline knots are determined by the contact points of the m-th discrete antiderivative of the solution with the tube of width 2λ around the m-th discrete antiderivative of the input data. We point out that the dual formulation of our minimization problem can be considered as support vector regression problem in the discrete counterpart of the Sobolev space W ^sub 2,0^ ^sup m^. From this point of view, the solution of our minimization problem has a sparse representation in terms of discrete fundamental splines.[PUBLICATION ABSTRACT]
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-006-8066-7