Prediction of Cattaneo–Christov heat flux with thermal slip effects over a lubricated surface using artificial neural network

The lubricated systems containing fluid lubricants have the load-carrying ability. Suitable lubrication permits smooth, incessant operation of machine elements. The significant applications in engineering and industry are drag reduction, cooling of electronic devices and cooling of nuclear reactors,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European physical journal plus Ročník 139; číslo 9; s. 851
Hlavní autoři: Sadiq, M. N., Shahzad, Hasan, Alqahtani, Hassan, Tirth, Vineet, Algahtani, Ali, Irshad, Kashif, Al-Mughanam, Tawfiq
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 24.09.2024
Springer Nature B.V
Témata:
ISSN:2190-5444, 2190-5444
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The lubricated systems containing fluid lubricants have the load-carrying ability. Suitable lubrication permits smooth, incessant operation of machine elements. The significant applications in engineering and industry are drag reduction, cooling of electronic devices and cooling of nuclear reactors, and many other hydrodynamic processes. In the industries, lubricants frequently exhibit non-Newtonian properties and conform to various constitutive relations. One prevalent type of lubricant is the power law fluid, which adheres to the Ostwald procedure. The present investigation focuses on the analysis of fluid flow in the purlieu of a lubricated surface, where a thin layer of variable-thickness power law fluid is used for lubrication. The effects of velocity and thermal slip with Cattaneo–Christov heat transfer are taken into account. A conversion from partial to ordinary system of equations is happened utilizing similarities. To acquire a dataset, the shooting method is utilized. An artificial neural network procedure is utilized to envisage the fluid flow by solving the governing system of partial differential equations, and testing, training, and validation procedures are arranged to generate results under different circumstances and cases of Levenberg–Marquardt backpropagation neural network. The precision of the proposed model is established by comparing the outcomes with the reference dataset. The Levenberg–Marquardt backpropagation neural network output is evaluated using mean regression illustrations, analysis of error histograms, mean square error, and dynamics of state transition. The results indicate that developed neural network models can accurately envisage thermal analysis. Furthermore, compared to other numerical performances, the current artificial neural network model can be employed in more complicated scientific models while decreasing the time and processing ability needed to solve the problem. Graphic abstract
AbstractList The lubricated systems containing fluid lubricants have the load-carrying ability. Suitable lubrication permits smooth, incessant operation of machine elements. The significant applications in engineering and industry are drag reduction, cooling of electronic devices and cooling of nuclear reactors, and many other hydrodynamic processes. In the industries, lubricants frequently exhibit non-Newtonian properties and conform to various constitutive relations. One prevalent type of lubricant is the power law fluid, which adheres to the Ostwald procedure. The present investigation focuses on the analysis of fluid flow in the purlieu of a lubricated surface, where a thin layer of variable-thickness power law fluid is used for lubrication. The effects of velocity and thermal slip with Cattaneo–Christov heat transfer are taken into account. A conversion from partial to ordinary system of equations is happened utilizing similarities. To acquire a dataset, the shooting method is utilized. An artificial neural network procedure is utilized to envisage the fluid flow by solving the governing system of partial differential equations, and testing, training, and validation procedures are arranged to generate results under different circumstances and cases of Levenberg–Marquardt backpropagation neural network. The precision of the proposed model is established by comparing the outcomes with the reference dataset. The Levenberg–Marquardt backpropagation neural network output is evaluated using mean regression illustrations, analysis of error histograms, mean square error, and dynamics of state transition. The results indicate that developed neural network models can accurately envisage thermal analysis. Furthermore, compared to other numerical performances, the current artificial neural network model can be employed in more complicated scientific models while decreasing the time and processing ability needed to solve the problem.Graphic abstract
The lubricated systems containing fluid lubricants have the load-carrying ability. Suitable lubrication permits smooth, incessant operation of machine elements. The significant applications in engineering and industry are drag reduction, cooling of electronic devices and cooling of nuclear reactors, and many other hydrodynamic processes. In the industries, lubricants frequently exhibit non-Newtonian properties and conform to various constitutive relations. One prevalent type of lubricant is the power law fluid, which adheres to the Ostwald procedure. The present investigation focuses on the analysis of fluid flow in the purlieu of a lubricated surface, where a thin layer of variable-thickness power law fluid is used for lubrication. The effects of velocity and thermal slip with Cattaneo–Christov heat transfer are taken into account. A conversion from partial to ordinary system of equations is happened utilizing similarities. To acquire a dataset, the shooting method is utilized. An artificial neural network procedure is utilized to envisage the fluid flow by solving the governing system of partial differential equations, and testing, training, and validation procedures are arranged to generate results under different circumstances and cases of Levenberg–Marquardt backpropagation neural network. The precision of the proposed model is established by comparing the outcomes with the reference dataset. The Levenberg–Marquardt backpropagation neural network output is evaluated using mean regression illustrations, analysis of error histograms, mean square error, and dynamics of state transition. The results indicate that developed neural network models can accurately envisage thermal analysis. Furthermore, compared to other numerical performances, the current artificial neural network model can be employed in more complicated scientific models while decreasing the time and processing ability needed to solve the problem. Graphic abstract
ArticleNumber 851
Author Shahzad, Hasan
Irshad, Kashif
Tirth, Vineet
Algahtani, Ali
Al-Mughanam, Tawfiq
Sadiq, M. N.
Alqahtani, Hassan
Author_xml – sequence: 1
  givenname: M. N.
  surname: Sadiq
  fullname: Sadiq, M. N.
  organization: Department of Mathematics and Statistics, International Islamic University Islamabad
– sequence: 2
  givenname: Hasan
  orcidid: 0000-0001-9154-5791
  surname: Shahzad
  fullname: Shahzad, Hasan
  email: hasanshahzad@dgut.edu.cn, hasanshahzad99@hotmail.com
  organization: Faculty of Energy and Power Engineering, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Department of Chemical Engineering and Energy Technology, University of Science and Technology
– sequence: 3
  givenname: Hassan
  surname: Alqahtani
  fullname: Alqahtani, Hassan
  organization: Department of Mechanical Engineering, Taibah University
– sequence: 4
  givenname: Vineet
  surname: Tirth
  fullname: Tirth, Vineet
  organization: Mechanical Engineering Department, College of Engineering, King Khalid University, Research Center for Advanced Materials Science (RCAMS), King Khalid University
– sequence: 5
  givenname: Ali
  surname: Algahtani
  fullname: Algahtani, Ali
  organization: Mechanical Engineering Department, College of Engineering, King Khalid University, Research Center for Advanced Materials Science (RCAMS), King Khalid University
– sequence: 6
  givenname: Kashif
  surname: Irshad
  fullname: Irshad, Kashif
  organization: Interdisciplinary Research Center for Sustainable Energy Systems (IRC-SES), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM)
– sequence: 7
  givenname: Tawfiq
  surname: Al-Mughanam
  fullname: Al-Mughanam, Tawfiq
  organization: Department of Mechanical Engineering, College of Engineering, King Faisal University
BookMark eNqNkM9OGzEQhy1EJWiaZ8BSz9v4XzbrA4cqAooUqT2Us2W8Y-KwrLdjbxJO9B14Q56ETVKpVS8wl98c5psZfR_JcRtbIOSMsy-cKzaBbtVNEpeyZAUTqmDTUkyL7RE5FVyzYqqUOv6nPyHjlFZsKKW50uqUPP1AqIPLIbY0ejq3OdsW4svv5_kSQ8pxTZdgM_VNv6WbkJc0LwEfbENTEzoK3oPLicY1ILW06W8xOJuhpqlHbx3QPoX2jlrMwQcXBq6FHveRNxHvP5EP3jYJxn9yRG4uL37OvxWL71fX86-LwkmpcjHVJddQz5wSNdxKKWqrwemqlCB5XTttQbNZpYEJ6VXpKiu8r4FrpbjT2soR-XzY22H81UPKZhV7bIeTRnJWVaVQgg9T54cphzElBG9cyHYnJ6MNjeHM7LSbnXZz0G4G7Wav3WwHfvYf32F4sPj4DrI6kGkg2jvAv_-9hb4Czz-h3g
CitedBy_id crossref_primary_10_1016_j_csite_2025_106564
crossref_primary_10_1140_epjp_s13360_024_05883_9
Cites_doi 10.1016/j.flowmeasinst.2016.04.003
10.1088/0256-307X/29/2/024702
10.1016/0017-9310(67)90100-7
10.1016/j.aml.2014.07.013
10.1002/er.5680
10.1016/j.physe.2014.07.013
10.1016/j.powtec.2015.03.005
10.1016/j.apacoust.2021.108022
10.1016/j.csite.2024.104024
10.1016/j.apacoust.2020.107829
10.1007/s40430-018-1560-3
10.1016/j.ijmecsci.2011.07.012
10.1016/j.mechrescom.2008.11.003
10.1016/j.mechrescom.2010.06.002
10.1007/s12046-019-1093-1
10.1016/j.physa.2019.123520
10.1007/s42452-020-3156-7
10.1007/s10973-021-10889-x
10.1016/j.mechrescom.2019.06.003
10.1016/j.applthermaleng.2016.01.063
10.1016/j.molliq.2016.05.051
10.4236/jamp.2019.76092
10.1007/s00707-007-0484-2
10.1038/s41598-021-93790-9
10.1007/s10973-021-10568-x
10.1007/s40819-015-0032-z
10.1140/epjp/i2017-11572-y
10.1016/j.powtec.2014.06.062
10.1016/S1364-0321(01)00006-5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/s13360-024-05625-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: AAdvanced Technologies & Aerospace Database (subscription)
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Engineering
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_s13360_024_05625_x
GrantInformation_xml – fundername: Deanship of Scientific Research at King Khalid University Abha 61421, Asir, Kingdom of Saudi Arabia Small Groups Project under grant number RGP.2/545/44 and Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research at Ki
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
AXYYD
AYJHY
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
HCIFZ
PCBAR
PHGZM
PHGZT
PQGLB
8FE
8FG
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c334t-59619ed7c42deb332da9ec9863e31ddc9ae90789e023f46c8a2ffde19441c99a3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001319831500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-5444
IngestDate Wed Nov 05 04:07:49 EST 2025
Tue Nov 18 22:45:21 EST 2025
Sat Nov 29 03:58:30 EST 2025
Fri Feb 21 02:42:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-59619ed7c42deb332da9ec9863e31ddc9ae90789e023f46c8a2ffde19441c99a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9154-5791
PQID 3108862421
PQPubID 2044220
ParticipantIDs proquest_journals_3108862421
crossref_citationtrail_10_1140_epjp_s13360_024_05625_x
crossref_primary_10_1140_epjp_s13360_024_05625_x
springer_journals_10_1140_epjp_s13360_024_05625_x
PublicationCentury 2000
PublicationDate 2024-09-24
PublicationDateYYYYMMDD 2024-09-24
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-24
  day: 24
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Mahmood, Sajid, Ali, Sadiq (CR3) 2017; 132
Tsou, Sparrow, Goldstein (CR6) 1967; 10
Kalogirou (CR35) 2001; 5
Mishra, Kumar (CR12) 2020; 2
Ciarletta (CR17) 2010; 37
Mohyud-Din, Khan, Ahmed, Sikander (CR9) 2015; 1
Mallikarjuna, Bhatta, Ramprasad (CR13) 2021; 10
Santra, Dandapat, Andersson (CR1) 2007; 194
CR14
Shafiq, Çolak, Sindhu, Al-Mdallal, Abdeljawad (CR33) 2021; 11
Sajid, Mahmood, Abbas (CR2) 2012; 29
Rad, Saeedan, Afshari (CR28) 2016; 99
Mahmood, Sadiq, Sajid, Ali (CR4) 2019; 41
Bonakdari, Zaji (CR27) 2016; 49
Christov (CR16) 2009; 36
Turkyilmazoglu (CR7) 2011; 53
Sadiq, Sarwar, Sajid (CR21) 2022; 147
Catteneo (CR15) 1948; 3
Shihao (CR18) 2014; 38
Vaferi, Samimi, Pakgohar, Mowla (CR25) 2014; 267
Shahzad, Sadiq, Li, Algarni, Alqahtani, Irshad (CR34) 2024; 54
Reddy, Das (CR29) 2016; 19
Sajid, Sadiq, Mahmood, Ali (CR11) 2019; 44
Çolak (CR22) 2021; 45
Lighthill (CR5) 1950; 202
Sejunti, Khaleque (CR10) 2019; 7
Taheri, Askari, Mahdavi (CR31) 2020; 6
Jing (CR19) 2016; 221
Alamir (CR24) 2021; 175
Taheri, Abbasi, Jamei (CR30) 2019; 99
Haq, Nadeem, Khan, Akbar (CR8) 2015; 65
Ariana, Vaferi, Karimi (CR26) 2015; 278
Alamir (CR23) 2021; 178
Ramana, Gangadhar, Kannan, Chamkha (CR20) 2022; 147
Rabbi, Sheikholeslami, Karim, Shafee, Li, Tlili (CR32) 2020; 541
M Sajid (5625_CR2) 2012; 29
M Turkyilmazoglu (5625_CR7) 2011; 53
MZ Rad (5625_CR28) 2016; 99
MJ Lighthill (5625_CR5) 1950; 202
RU Haq (5625_CR8) 2015; 65
AB Çolak (5625_CR22) 2021; 45
A Shafiq (5625_CR33) 2021; 11
MI Sejunti (5625_CR10) 2019; 7
A Mishra (5625_CR12) 2020; 2
MH Taheri (5625_CR31) 2020; 6
PBA Reddy (5625_CR29) 2016; 19
ST Mohyud-Din (5625_CR9) 2015; 1
C Catteneo (5625_CR15) 1948; 3
MA Alamir (5625_CR23) 2021; 178
MA Ariana (5625_CR26) 2015; 278
MA Alamir (5625_CR24) 2021; 175
CI Christov (5625_CR16) 2009; 36
KM Rabbi (5625_CR32) 2020; 541
M Sajid (5625_CR11) 2019; 44
5625_CR14
B Vaferi (5625_CR25) 2014; 267
L Jing (5625_CR19) 2016; 221
B Mallikarjuna (5625_CR13) 2021; 10
H Shahzad (5625_CR34) 2024; 54
B Santra (5625_CR1) 2007; 194
H Shihao (5625_CR18) 2014; 38
MN Sadiq (5625_CR21) 2022; 147
SA Kalogirou (5625_CR35) 2001; 5
M Ciarletta (5625_CR17) 2010; 37
FK Tsou (5625_CR6) 1967; 10
KV Ramana (5625_CR20) 2022; 147
K Mahmood (5625_CR4) 2019; 41
H Bonakdari (5625_CR27) 2016; 49
K Mahmood (5625_CR3) 2017; 132
MH Taheri (5625_CR30) 2019; 99
References_xml – volume: 49
  start-page: 46
  year: 2016
  end-page: 51
  ident: CR27
  article-title: Open channel junction velocity prediction by using a hybrid self-neuron adjustable artificial neural network
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2016.04.003
– volume: 29
  year: 2012
  ident: CR2
  article-title: Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/29/2/024702
– volume: 10
  start-page: 219
  year: 1967
  end-page: 235
  ident: CR6
  article-title: Flow and heat transfer in the boundary layer on a continuous moving surface
  publication-title: Int. J. Heat Mass Trans.
  doi: 10.1016/0017-9310(67)90100-7
– volume: 38
  start-page: 87
  year: 2014
  end-page: 93
  ident: CR18
  article-title: Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux, model
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2014.07.013
– ident: CR14
– volume: 45
  start-page: 478
  year: 2021
  end-page: 500
  ident: CR22
  article-title: An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5680
– volume: 65
  start-page: 17
  year: 2015
  end-page: 23
  ident: CR8
  article-title: Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet
  publication-title: Phy. E
  doi: 10.1016/j.physe.2014.07.013
– volume: 278
  start-page: 1
  year: 2015
  end-page: 10
  ident: CR26
  article-title: Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.03.005
– volume: 202
  start-page: 359
  year: 1950
  end-page: 377
  ident: CR5
  article-title: Contributions to the theory of heat transfer through a laminar boundary layer
  publication-title: Proc. R. Soc. Lond.
– volume: 178
  year: 2021
  ident: CR23
  article-title: An enhanced artificial neural network model using the Harris Hawks optimizer for predicting food liking in the presence of background noise
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108022
– volume: 54
  year: 2024
  ident: CR34
  article-title: Scientific computing of radiative heat transfer with thermal slip effects near stagnation point by artificial neural network
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2024.104024
– volume: 175
  year: 2021
  ident: CR24
  article-title: A novel acoustic scene classification model using the late fusion of convolutional neural networks and different ensemble classifiers
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107829
– volume: 41
  start-page: 65
  year: 2019
  ident: CR4
  article-title: Heat transfer in stagnation-point flow of a Jeffrey fluid past a lubricated surface
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-018-1560-3
– volume: 53
  start-page: 886
  year: 2011
  end-page: 896
  ident: CR7
  article-title: Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2011.07.012
– volume: 36
  start-page: 481
  year: 2009
  end-page: 486
  ident: CR16
  article-title: On frame indifferent formulation of the Maxwell-Catteneo model of finite speed heat conduction
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2008.11.003
– volume: 37
  start-page: 445
  year: 2010
  end-page: 447
  ident: CR17
  article-title: Uniqueness and structural stability for the Cattaneo-Christov equations
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2010.06.002
– volume: 44
  start-page: 136
  year: 2019
  ident: CR11
  article-title: A Legendre wavelet spectral collocation method for analysis of thermal radiation and slip in the oblique stagnation-point flow of Walters-B liquid towards a stretching surface
  publication-title: Sadhana
  doi: 10.1007/s12046-019-1093-1
– volume: 541
  year: 2020
  ident: CR32
  article-title: Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial
  publication-title: Phys. A
  doi: 10.1016/j.physa.2019.123520
– volume: 2
  start-page: 1350
  year: 2020
  ident: CR12
  article-title: Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-3156-7
– volume: 147
  start-page: 5199
  year: 2022
  end-page: 5209
  ident: CR21
  article-title: Heat transfer in unsteady separated stagnation point flow of a micro-polar fluid: Cattaneo–Christov model
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-021-10889-x
– volume: 99
  start-page: 8
  year: 2019
  end-page: 14
  ident: CR30
  article-title: Using artificial neural network for computing the development length of MHD channel flows
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2019.06.003
– volume: 99
  start-page: 373
  year: 2016
  end-page: 382
  ident: CR28
  article-title: Simulation and prediction of MHD dissipative nanofluid flow on a permeable stretching surface using artificial neural network
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.063
– volume: 19
  start-page: 1108
  year: 2016
  end-page: 1116
  ident: CR29
  article-title: Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical reaction through numerical and artificial neural network modeling. Eng. Sci. Tech
  publication-title: Int. J.
– volume: 10
  start-page: 169
  year: 2021
  end-page: 179
  ident: CR13
  article-title: Velocity and thermal slip effects on MHD convective radiative two-phase flows in an asymmetric non-uniform channel
  publication-title: Prop. Power Res.
– volume: 3
  start-page: 83
  year: 1948
  end-page: 101
  ident: CR15
  article-title: O Sulla conduzione del calore
  publication-title: AttiSemin Mat Fis Univ Modena Reggio Emilia.
– volume: 221
  start-page: 19
  year: 2016
  end-page: 25
  ident: CR19
  article-title: MHD viscoelastic flow and heat transfer over vertical stretching sheet with Catteno–Christov heat flux effects
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.05.051
– volume: 7
  start-page: 1369
  year: 2019
  end-page: 1387
  ident: CR10
  article-title: Effects of velocity and thermal slip conditions with radiation on heat transfer flow of ferrofluids
  publication-title: J. Appl. Math. Phys.
  doi: 10.4236/jamp.2019.76092
– volume: 194
  start-page: 1
  year: 2007
  end-page: 10
  ident: CR1
  article-title: Axisymmetric stagnation-point flow over a lubricated surface
  publication-title: Acta Mech.
  doi: 10.1007/s00707-007-0484-2
– volume: 11
  start-page: 14509
  year: 2021
  ident: CR33
  article-title: Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93790-9
– volume: 6
  start-page: 582
  issue: 3
  year: 2020
  end-page: 592
  ident: CR31
  article-title: Prediction of entrance length for magnetohydrodynamics channels flow using numerical simulation and artificial neural network
  publication-title: J. Appl. Comput. Mech.
– volume: 147
  start-page: 2749
  year: 2022
  end-page: 2759
  ident: CR20
  article-title: Cattaneo-Christov heat flux theory on transverse MHD Oldroyd-B liquid over nonlinear stretched flow
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-021-10568-x
– volume: 1
  start-page: 569
  year: 2015
  end-page: 587
  ident: CR9
  article-title: A study of velocity and temperature slip effects on flow of water based nano fluids in converging and diverging channels
  publication-title: Int. J. Appl. Comput. Math
  doi: 10.1007/s40819-015-0032-z
– volume: 132
  start-page: 297
  year: 2017
  ident: CR3
  article-title: Effects of lubricated surface in the oblique stagnation point flow of a micropolar fluid
  publication-title: Eur. Phys. J. Plus.
  doi: 10.1140/epjp/i2017-11572-y
– volume: 267
  start-page: 1
  year: 2014
  end-page: 10
  ident: CR25
  article-title: Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.06.062
– volume: 5
  start-page: 373
  issue: 4
  year: 2001
  end-page: 401
  ident: CR35
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/S1364-0321(01)00006-5
– volume: 2
  start-page: 1350
  year: 2020
  ident: 5625_CR12
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-3156-7
– volume: 54
  year: 2024
  ident: 5625_CR34
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2024.104024
– volume: 7
  start-page: 1369
  year: 2019
  ident: 5625_CR10
  publication-title: J. Appl. Math. Phys.
  doi: 10.4236/jamp.2019.76092
– volume: 11
  start-page: 14509
  year: 2021
  ident: 5625_CR33
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93790-9
– volume: 267
  start-page: 1
  year: 2014
  ident: 5625_CR25
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.06.062
– volume: 3
  start-page: 83
  year: 1948
  ident: 5625_CR15
  publication-title: AttiSemin Mat Fis Univ Modena Reggio Emilia.
– volume: 132
  start-page: 297
  year: 2017
  ident: 5625_CR3
  publication-title: Eur. Phys. J. Plus.
  doi: 10.1140/epjp/i2017-11572-y
– volume: 19
  start-page: 1108
  year: 2016
  ident: 5625_CR29
  publication-title: Int. J.
– volume: 178
  year: 2021
  ident: 5625_CR23
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108022
– volume: 10
  start-page: 169
  year: 2021
  ident: 5625_CR13
  publication-title: Prop. Power Res.
– volume: 38
  start-page: 87
  year: 2014
  ident: 5625_CR18
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2014.07.013
– volume: 175
  year: 2021
  ident: 5625_CR24
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107829
– ident: 5625_CR14
– volume: 53
  start-page: 886
  year: 2011
  ident: 5625_CR7
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2011.07.012
– volume: 45
  start-page: 478
  year: 2021
  ident: 5625_CR22
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5680
– volume: 99
  start-page: 373
  year: 2016
  ident: 5625_CR28
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.063
– volume: 194
  start-page: 1
  year: 2007
  ident: 5625_CR1
  publication-title: Acta Mech.
  doi: 10.1007/s00707-007-0484-2
– volume: 278
  start-page: 1
  year: 2015
  ident: 5625_CR26
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.03.005
– volume: 6
  start-page: 582
  issue: 3
  year: 2020
  ident: 5625_CR31
  publication-title: J. Appl. Comput. Mech.
– volume: 37
  start-page: 445
  year: 2010
  ident: 5625_CR17
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2010.06.002
– volume: 10
  start-page: 219
  year: 1967
  ident: 5625_CR6
  publication-title: Int. J. Heat Mass Trans.
  doi: 10.1016/0017-9310(67)90100-7
– volume: 65
  start-page: 17
  year: 2015
  ident: 5625_CR8
  publication-title: Phy. E
  doi: 10.1016/j.physe.2014.07.013
– volume: 147
  start-page: 5199
  year: 2022
  ident: 5625_CR21
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-021-10889-x
– volume: 44
  start-page: 136
  year: 2019
  ident: 5625_CR11
  publication-title: Sadhana
  doi: 10.1007/s12046-019-1093-1
– volume: 541
  year: 2020
  ident: 5625_CR32
  publication-title: Phys. A
  doi: 10.1016/j.physa.2019.123520
– volume: 29
  year: 2012
  ident: 5625_CR2
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/29/2/024702
– volume: 41
  start-page: 65
  year: 2019
  ident: 5625_CR4
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-018-1560-3
– volume: 1
  start-page: 569
  year: 2015
  ident: 5625_CR9
  publication-title: Int. J. Appl. Comput. Math
  doi: 10.1007/s40819-015-0032-z
– volume: 221
  start-page: 19
  year: 2016
  ident: 5625_CR19
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.05.051
– volume: 99
  start-page: 8
  year: 2019
  ident: 5625_CR30
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2019.06.003
– volume: 5
  start-page: 373
  issue: 4
  year: 2001
  ident: 5625_CR35
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/S1364-0321(01)00006-5
– volume: 202
  start-page: 359
  year: 1950
  ident: 5625_CR5
  publication-title: Proc. R. Soc. Lond.
– volume: 36
  start-page: 481
  year: 2009
  ident: 5625_CR16
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2008.11.003
– volume: 147
  start-page: 2749
  year: 2022
  ident: 5625_CR20
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-021-10568-x
– volume: 49
  start-page: 46
  year: 2016
  ident: 5625_CR27
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2016.04.003
SSID ssj0000491494
Score 2.3447895
Snippet The lubricated systems containing fluid lubricants have the load-carrying ability. Suitable lubrication permits smooth, incessant operation of machine...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 851
SubjectTerms Accuracy
Applied and Technical Physics
Artificial neural networks
Atomic
Back propagation networks
Complex Systems
Condensed Matter Physics
Constitutive relationships
Cooling
Datasets
Differential equations
Drag reduction
Engineering
Error analysis
Fluid flow
Fluid mechanics
Heat conductivity
Heat flux
Heat transfer
Lubricants
Lubricants & lubrication
Lubrication
Mathematical and Computational Physics
Molecular
Neural networks
Nuclear power plants
Nuclear reactors
Optical and Plasma Physics
Optimization techniques
Ostwald ripening
Partial differential equations
Physics
Physics and Astronomy
Power law
Regression models
Regular Article
Shear stress
Temperature
Theoretical
Thermal analysis
Variable thickness
Velocity
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07TyMxEB7xlKDgjcjBIRe0VvaZXVfohEBXoRSHhGgsxw8ECsmSTVA6-A_8w_slN-N1CFBAcdUWK1srfbOebx7-BuAkc3kp0O9wnVnN0R9rLnKnuFZxZGIdp0XeDJsoLi_L62vRDQm3OrRVzs5Ef1CboaYceRtpSOkvM8Sn1SOnqVFUXQ0jNBZhmVQSaHRDN795y7Eg-8UAIAttXRhKtG11X7VrjMs6EUfvxMn953z60SnNmean4qj3OReb__u1W7AR2Cb71ZjHNizYwQ6sv9Mg3IFV3wOq61147o6oakNIsaFjZ2qMxNEO_768BgWCJ0YnN3P9yZRR_pYReXzA_ZGrVix0hjDqCWWK9Sc9P4HIGlZPRk5py6jH_paRrTayFYzENP3Dt6LvwdXF-Z-z3zzMZ-A6TbMxzwVGX9YUOksMxuRpYpSwWpQdSqwao0n3m9TsLfICl3V0qRLnjI0FUjAthEr3YWkwHNgDYIWXmu_lThRRpspIWPTdRS9O0MJKa7MWdGYASR3Ey2mGRl82F6sjScjKBlmJyEqPrJy2IHpbWDX6Hd8vOZphKsMPXcs5oC2IZ1Yxf_3Nlj--3vIQ1hJvjVTsOoKl8Whif8KKfhrf1aNjb9P_AB0AArQ
  priority: 102
  providerName: ProQuest
Title Prediction of Cattaneo–Christov heat flux with thermal slip effects over a lubricated surface using artificial neural network
URI https://link.springer.com/article/10.1140/epjp/s13360-024-05625-x
https://www.proquest.com/docview/3108862421
Volume 139
WOSCitedRecordID wos001319831500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: P5Z
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: PCBAR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2190-5444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491494
  issn: 2190-5444
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSlzYEWWTD1wtsjbxEapWnKqITYiL5To2ApW2atqKG_wDf8iXMOOkbAeQ4BRZka1oPPF79ozfABxGNk4F4g7XkdEc8VhzEVvFtfK93Nd-mMRlsYmk3U6vr0X2udQXZbtPQ5JupS71bL0jM7gfHBW4pap7HIGFE3LHHOnjPGJeSlUbzs6v3o9XkPgi94-qjK4f-n_Fow-S-S0u6uCmtfKPD12F5YpjsuPSKdZgxvTWYdHleupiA56yIUVnaEZY37KGGiFBNP3X55dKaWDCaIVmtjt-ZHROy4gkPuCIyEkHrMoAYZT7yRTrjjuu0pDJWTEeWqUNo1z6W0Y-WcpTMBLNdA-Xcr4Jl63mReOUV3UYuA7DaMRjgbsskyc6CnLce4dBroTRIq3TAWqea9L3JtV6g_hvo7pOVWBtbnyBVEsLocItmOv1e2YbWOIk5TuxFYkXqdQTBjE66fgBelJqTFSD-nQ2pK5EyqlWRleWF6g9SdaVpXUlWlc668rHGnjvHQelTsfvXfam0y2rH7eQyHZTd2fGr4E_nd6P178MufOHPruwFDg3oUjXHsyNhmOzDwt6Mrorhgcwf9JsZ2cHMJvFN9jKGifH1EJffwOlsP7T
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQQsePQhAgVmActR_BjHngVCqFC1aomyKFLFZpjMA1GFxI2TNl3BP_AffBRfwr1juwEWdNUFKy8sz2J87txzH3MuwHPhs0Ki3-FGOMPRHxsuM6-50XFkYxOneVYPm8j7_eLoSA5W4Ed7F4baKtszMRzUdmIoR95FGlKEywzxq_KE09Qoqq62IzRqWOy78zMM2aqXe2_w_75Ikp23h9u7vJkqwE2aihnPJMYMzuZGJBYjyTSxWjojix6lA601pFZNGuwOvZkXPVPoxHvrMNgXsZFSp7juNbguRBKRFQ2yDxc5HWTbGHCIpo0MQ5euK4_LboVxYC_i6A050Y2ML_50gktm-1cxNvi4nXv_2-7ch7sNm2ava_g_gBU3XoM7v2ksrsHN0ONqqnX4OphSVYqQyCaebesZEmM3-fnte6OwcMrIMzE_mi8Y5acZkeMvuD5y8ZI1nS-Mel6ZZqP5MExYcpZV86nXxjG6Q_CJkS3WshyMxELDI7Tab8D7K9mLTVgdT8buIbA8SOkPMy_zSOgikg65ST6ME7SgwjnRgV4LCGUacXaaETJS9cXxSBGSVI0khUhSAUlq0YHo4sOy1ie5_JOtFkOqObAqtQRQB-IWhcvXlyz56N9LPoNbu4fvDtTBXn__MdxOgiVQYW8LVmfTuXsCN8zp7HM1fRrsicHHq4boLxnjYM4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB6M04Ze0ldKnabtHnpdrMfK0h6LG9PSYgx9kNuy3kdJcGxhyca35j_kH_aXZGYlJbSHBkJPOogRYmak-WZn5huAd8JnhcS4w41whmM8NlxmXnOj48jGJk7zrFk2kU-nxempnPXgpJuFCd3uXUmymWkglqZlPSytb7lto6Erz8thhenVKOIYZDhF8YwjlNwT1E1PSfvXHzdHLQiCMQ8QbXfXP-T_jE23gPOvGmkIPZPH_-mln8BBiz3Z-8ZZnkLPLZ_Bw9ADaqrn8Gu2pqoNWYqtPBvrGoGjW_2-vGoZCLaM_tzMLzY7Rue3jMDjBT4RsWrJ2s4QRj2hTLPFZh42EDnLqs3aa-MY9dj_ZOSrDW0FIzLNcAmt6IfwfXLybfyRt_sZuElTUfNMYvblbG5EYjEnTxOrpTOyGNHBqrWGeL-Jzd4hLvBiZAqdeG9dLBGCGSl1-gL6y9XSvQSWB6r5eeZlHgldRNJh7M7ncYIeVjgnBjDqLKNMS15OOzQWqhmsjhRpVzXaVahdFbSrdgOIbgTLhr_jbpHjzvSq_aArhSi4CLM08QDiztS3t-945NE9ZN7C_uzDRH35NP38Ch4lwWOoGHYM_Xq9ca_hgdnWZ9X6TXD2a2xNBoU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Cattaneo%E2%80%93Christov+heat+flux+with+thermal+slip+effects+over+a+lubricated+surface+using+artificial+neural+network&rft.jtitle=European+physical+journal+plus&rft.au=Sadiq%2C+M.+N.&rft.au=Shahzad%2C+Hasan&rft.au=Alqahtani%2C+Hassan&rft.au=Tirth%2C+Vineet&rft.date=2024-09-24&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=139&rft.issue=9&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-024-05625-x&rft.externalDocID=10_1140_epjp_s13360_024_05625_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon