Prediction of Cattaneo–Christov heat flux with thermal slip effects over a lubricated surface using artificial neural network
The lubricated systems containing fluid lubricants have the load-carrying ability. Suitable lubrication permits smooth, incessant operation of machine elements. The significant applications in engineering and industry are drag reduction, cooling of electronic devices and cooling of nuclear reactors,...
Uloženo v:
| Vydáno v: | European physical journal plus Ročník 139; číslo 9; s. 851 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
24.09.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 2190-5444, 2190-5444 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The lubricated systems containing fluid lubricants have the load-carrying ability. Suitable lubrication permits smooth, incessant operation of machine elements. The significant applications in engineering and industry are drag reduction, cooling of electronic devices and cooling of nuclear reactors, and many other hydrodynamic processes. In the industries, lubricants frequently exhibit non-Newtonian properties and conform to various constitutive relations. One prevalent type of lubricant is the power law fluid, which adheres to the Ostwald procedure. The present investigation focuses on the analysis of fluid flow in the purlieu of a lubricated surface, where a thin layer of variable-thickness power law fluid is used for lubrication. The effects of velocity and thermal slip with Cattaneo–Christov heat transfer are taken into account. A conversion from partial to ordinary system of equations is happened utilizing similarities. To acquire a dataset, the shooting method is utilized. An artificial neural network procedure is utilized to envisage the fluid flow by solving the governing system of partial differential equations, and testing, training, and validation procedures are arranged to generate results under different circumstances and cases of Levenberg–Marquardt backpropagation neural network. The precision of the proposed model is established by comparing the outcomes with the reference dataset. The Levenberg–Marquardt backpropagation neural network output is evaluated using mean regression illustrations, analysis of error histograms, mean square error, and dynamics of state transition. The results indicate that developed neural network models can accurately envisage thermal analysis. Furthermore, compared to other numerical performances, the current artificial neural network model can be employed in more complicated scientific models while decreasing the time and processing ability needed to solve the problem.
Graphic abstract |
|---|---|
| AbstractList | The lubricated systems containing fluid lubricants have the load-carrying ability. Suitable lubrication permits smooth, incessant operation of machine elements. The significant applications in engineering and industry are drag reduction, cooling of electronic devices and cooling of nuclear reactors, and many other hydrodynamic processes. In the industries, lubricants frequently exhibit non-Newtonian properties and conform to various constitutive relations. One prevalent type of lubricant is the power law fluid, which adheres to the Ostwald procedure. The present investigation focuses on the analysis of fluid flow in the purlieu of a lubricated surface, where a thin layer of variable-thickness power law fluid is used for lubrication. The effects of velocity and thermal slip with Cattaneo–Christov heat transfer are taken into account. A conversion from partial to ordinary system of equations is happened utilizing similarities. To acquire a dataset, the shooting method is utilized. An artificial neural network procedure is utilized to envisage the fluid flow by solving the governing system of partial differential equations, and testing, training, and validation procedures are arranged to generate results under different circumstances and cases of Levenberg–Marquardt backpropagation neural network. The precision of the proposed model is established by comparing the outcomes with the reference dataset. The Levenberg–Marquardt backpropagation neural network output is evaluated using mean regression illustrations, analysis of error histograms, mean square error, and dynamics of state transition. The results indicate that developed neural network models can accurately envisage thermal analysis. Furthermore, compared to other numerical performances, the current artificial neural network model can be employed in more complicated scientific models while decreasing the time and processing ability needed to solve the problem.Graphic abstract The lubricated systems containing fluid lubricants have the load-carrying ability. Suitable lubrication permits smooth, incessant operation of machine elements. The significant applications in engineering and industry are drag reduction, cooling of electronic devices and cooling of nuclear reactors, and many other hydrodynamic processes. In the industries, lubricants frequently exhibit non-Newtonian properties and conform to various constitutive relations. One prevalent type of lubricant is the power law fluid, which adheres to the Ostwald procedure. The present investigation focuses on the analysis of fluid flow in the purlieu of a lubricated surface, where a thin layer of variable-thickness power law fluid is used for lubrication. The effects of velocity and thermal slip with Cattaneo–Christov heat transfer are taken into account. A conversion from partial to ordinary system of equations is happened utilizing similarities. To acquire a dataset, the shooting method is utilized. An artificial neural network procedure is utilized to envisage the fluid flow by solving the governing system of partial differential equations, and testing, training, and validation procedures are arranged to generate results under different circumstances and cases of Levenberg–Marquardt backpropagation neural network. The precision of the proposed model is established by comparing the outcomes with the reference dataset. The Levenberg–Marquardt backpropagation neural network output is evaluated using mean regression illustrations, analysis of error histograms, mean square error, and dynamics of state transition. The results indicate that developed neural network models can accurately envisage thermal analysis. Furthermore, compared to other numerical performances, the current artificial neural network model can be employed in more complicated scientific models while decreasing the time and processing ability needed to solve the problem. Graphic abstract |
| ArticleNumber | 851 |
| Author | Shahzad, Hasan Irshad, Kashif Tirth, Vineet Algahtani, Ali Al-Mughanam, Tawfiq Sadiq, M. N. Alqahtani, Hassan |
| Author_xml | – sequence: 1 givenname: M. N. surname: Sadiq fullname: Sadiq, M. N. organization: Department of Mathematics and Statistics, International Islamic University Islamabad – sequence: 2 givenname: Hasan orcidid: 0000-0001-9154-5791 surname: Shahzad fullname: Shahzad, Hasan email: hasanshahzad@dgut.edu.cn, hasanshahzad99@hotmail.com organization: Faculty of Energy and Power Engineering, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Department of Chemical Engineering and Energy Technology, University of Science and Technology – sequence: 3 givenname: Hassan surname: Alqahtani fullname: Alqahtani, Hassan organization: Department of Mechanical Engineering, Taibah University – sequence: 4 givenname: Vineet surname: Tirth fullname: Tirth, Vineet organization: Mechanical Engineering Department, College of Engineering, King Khalid University, Research Center for Advanced Materials Science (RCAMS), King Khalid University – sequence: 5 givenname: Ali surname: Algahtani fullname: Algahtani, Ali organization: Mechanical Engineering Department, College of Engineering, King Khalid University, Research Center for Advanced Materials Science (RCAMS), King Khalid University – sequence: 6 givenname: Kashif surname: Irshad fullname: Irshad, Kashif organization: Interdisciplinary Research Center for Sustainable Energy Systems (IRC-SES), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM) – sequence: 7 givenname: Tawfiq surname: Al-Mughanam fullname: Al-Mughanam, Tawfiq organization: Department of Mechanical Engineering, College of Engineering, King Faisal University |
| BookMark | eNqNkM9OGzEQhy1EJWiaZ8BSz9v4XzbrA4cqAooUqT2Us2W8Y-KwrLdjbxJO9B14Q56ETVKpVS8wl98c5psZfR_JcRtbIOSMsy-cKzaBbtVNEpeyZAUTqmDTUkyL7RE5FVyzYqqUOv6nPyHjlFZsKKW50uqUPP1AqIPLIbY0ejq3OdsW4svv5_kSQ8pxTZdgM_VNv6WbkJc0LwEfbENTEzoK3oPLicY1ILW06W8xOJuhpqlHbx3QPoX2jlrMwQcXBq6FHveRNxHvP5EP3jYJxn9yRG4uL37OvxWL71fX86-LwkmpcjHVJddQz5wSNdxKKWqrwemqlCB5XTttQbNZpYEJ6VXpKiu8r4FrpbjT2soR-XzY22H81UPKZhV7bIeTRnJWVaVQgg9T54cphzElBG9cyHYnJ6MNjeHM7LSbnXZz0G4G7Wav3WwHfvYf32F4sPj4DrI6kGkg2jvAv_-9hb4Czz-h3g |
| CitedBy_id | crossref_primary_10_1016_j_csite_2025_106564 crossref_primary_10_1140_epjp_s13360_024_05883_9 |
| Cites_doi | 10.1016/j.flowmeasinst.2016.04.003 10.1088/0256-307X/29/2/024702 10.1016/0017-9310(67)90100-7 10.1016/j.aml.2014.07.013 10.1002/er.5680 10.1016/j.physe.2014.07.013 10.1016/j.powtec.2015.03.005 10.1016/j.apacoust.2021.108022 10.1016/j.csite.2024.104024 10.1016/j.apacoust.2020.107829 10.1007/s40430-018-1560-3 10.1016/j.ijmecsci.2011.07.012 10.1016/j.mechrescom.2008.11.003 10.1016/j.mechrescom.2010.06.002 10.1007/s12046-019-1093-1 10.1016/j.physa.2019.123520 10.1007/s42452-020-3156-7 10.1007/s10973-021-10889-x 10.1016/j.mechrescom.2019.06.003 10.1016/j.applthermaleng.2016.01.063 10.1016/j.molliq.2016.05.051 10.4236/jamp.2019.76092 10.1007/s00707-007-0484-2 10.1038/s41598-021-93790-9 10.1007/s10973-021-10568-x 10.1007/s40819-015-0032-z 10.1140/epjp/i2017-11572-y 10.1016/j.powtec.2014.06.062 10.1016/S1364-0321(01)00006-5 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO HCIFZ P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1140/epjp/s13360-024-05625-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: AAdvanced Technologies & Aerospace Database (subscription) url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Engineering |
| EISSN | 2190-5444 |
| ExternalDocumentID | 10_1140_epjp_s13360_024_05625_x |
| GrantInformation_xml | – fundername: Deanship of Scientific Research at King Khalid University Abha 61421, Asir, Kingdom of Saudi Arabia Small Groups Project under grant number RGP.2/545/44 and Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research at Ki |
| GroupedDBID | -5F -5G -BR -EM -~C 06D 0R~ 203 29~ 2JN 2KG 30V 4.4 406 408 8UJ 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ AXYYD AYJHY BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J P9T PT4 RID RLLFE ROL RSV S27 S3B SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7S Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEUYN AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ BHPHI BKSAR CCPQU CITATION HCIFZ PCBAR PHGZM PHGZT PQGLB 8FE 8FG DWQXO P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c334t-59619ed7c42deb332da9ec9863e31ddc9ae90789e023f46c8a2ffde19441c99a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001319831500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2190-5444 |
| IngestDate | Wed Nov 05 04:07:49 EST 2025 Tue Nov 18 22:45:21 EST 2025 Sat Nov 29 03:58:30 EST 2025 Fri Feb 21 02:42:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c334t-59619ed7c42deb332da9ec9863e31ddc9ae90789e023f46c8a2ffde19441c99a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9154-5791 |
| PQID | 3108862421 |
| PQPubID | 2044220 |
| ParticipantIDs | proquest_journals_3108862421 crossref_citationtrail_10_1140_epjp_s13360_024_05625_x crossref_primary_10_1140_epjp_s13360_024_05625_x springer_journals_10_1140_epjp_s13360_024_05625_x |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-24 |
| PublicationDateYYYYMMDD | 2024-09-24 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | European physical journal plus |
| PublicationTitleAbbrev | Eur. Phys. J. Plus |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Mahmood, Sajid, Ali, Sadiq (CR3) 2017; 132 Tsou, Sparrow, Goldstein (CR6) 1967; 10 Kalogirou (CR35) 2001; 5 Mishra, Kumar (CR12) 2020; 2 Ciarletta (CR17) 2010; 37 Mohyud-Din, Khan, Ahmed, Sikander (CR9) 2015; 1 Mallikarjuna, Bhatta, Ramprasad (CR13) 2021; 10 Santra, Dandapat, Andersson (CR1) 2007; 194 CR14 Shafiq, Çolak, Sindhu, Al-Mdallal, Abdeljawad (CR33) 2021; 11 Sajid, Mahmood, Abbas (CR2) 2012; 29 Rad, Saeedan, Afshari (CR28) 2016; 99 Mahmood, Sadiq, Sajid, Ali (CR4) 2019; 41 Bonakdari, Zaji (CR27) 2016; 49 Christov (CR16) 2009; 36 Turkyilmazoglu (CR7) 2011; 53 Sadiq, Sarwar, Sajid (CR21) 2022; 147 Catteneo (CR15) 1948; 3 Shihao (CR18) 2014; 38 Vaferi, Samimi, Pakgohar, Mowla (CR25) 2014; 267 Shahzad, Sadiq, Li, Algarni, Alqahtani, Irshad (CR34) 2024; 54 Reddy, Das (CR29) 2016; 19 Sajid, Sadiq, Mahmood, Ali (CR11) 2019; 44 Çolak (CR22) 2021; 45 Lighthill (CR5) 1950; 202 Sejunti, Khaleque (CR10) 2019; 7 Taheri, Askari, Mahdavi (CR31) 2020; 6 Jing (CR19) 2016; 221 Alamir (CR24) 2021; 175 Taheri, Abbasi, Jamei (CR30) 2019; 99 Haq, Nadeem, Khan, Akbar (CR8) 2015; 65 Ariana, Vaferi, Karimi (CR26) 2015; 278 Alamir (CR23) 2021; 178 Ramana, Gangadhar, Kannan, Chamkha (CR20) 2022; 147 Rabbi, Sheikholeslami, Karim, Shafee, Li, Tlili (CR32) 2020; 541 M Sajid (5625_CR2) 2012; 29 M Turkyilmazoglu (5625_CR7) 2011; 53 MZ Rad (5625_CR28) 2016; 99 MJ Lighthill (5625_CR5) 1950; 202 RU Haq (5625_CR8) 2015; 65 AB Çolak (5625_CR22) 2021; 45 A Shafiq (5625_CR33) 2021; 11 MI Sejunti (5625_CR10) 2019; 7 A Mishra (5625_CR12) 2020; 2 MH Taheri (5625_CR31) 2020; 6 PBA Reddy (5625_CR29) 2016; 19 ST Mohyud-Din (5625_CR9) 2015; 1 C Catteneo (5625_CR15) 1948; 3 MA Alamir (5625_CR23) 2021; 178 MA Ariana (5625_CR26) 2015; 278 MA Alamir (5625_CR24) 2021; 175 CI Christov (5625_CR16) 2009; 36 KM Rabbi (5625_CR32) 2020; 541 M Sajid (5625_CR11) 2019; 44 5625_CR14 B Vaferi (5625_CR25) 2014; 267 L Jing (5625_CR19) 2016; 221 B Mallikarjuna (5625_CR13) 2021; 10 H Shahzad (5625_CR34) 2024; 54 B Santra (5625_CR1) 2007; 194 H Shihao (5625_CR18) 2014; 38 MN Sadiq (5625_CR21) 2022; 147 SA Kalogirou (5625_CR35) 2001; 5 M Ciarletta (5625_CR17) 2010; 37 FK Tsou (5625_CR6) 1967; 10 KV Ramana (5625_CR20) 2022; 147 K Mahmood (5625_CR4) 2019; 41 H Bonakdari (5625_CR27) 2016; 49 K Mahmood (5625_CR3) 2017; 132 MH Taheri (5625_CR30) 2019; 99 |
| References_xml | – volume: 49 start-page: 46 year: 2016 end-page: 51 ident: CR27 article-title: Open channel junction velocity prediction by using a hybrid self-neuron adjustable artificial neural network publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2016.04.003 – volume: 29 year: 2012 ident: CR2 article-title: Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/29/2/024702 – volume: 10 start-page: 219 year: 1967 end-page: 235 ident: CR6 article-title: Flow and heat transfer in the boundary layer on a continuous moving surface publication-title: Int. J. Heat Mass Trans. doi: 10.1016/0017-9310(67)90100-7 – volume: 38 start-page: 87 year: 2014 end-page: 93 ident: CR18 article-title: Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux, model publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2014.07.013 – ident: CR14 – volume: 45 start-page: 478 year: 2021 end-page: 500 ident: CR22 article-title: An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks publication-title: Int. J. Energy Res. doi: 10.1002/er.5680 – volume: 65 start-page: 17 year: 2015 end-page: 23 ident: CR8 article-title: Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet publication-title: Phy. E doi: 10.1016/j.physe.2014.07.013 – volume: 278 start-page: 1 year: 2015 end-page: 10 ident: CR26 article-title: Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.03.005 – volume: 202 start-page: 359 year: 1950 end-page: 377 ident: CR5 article-title: Contributions to the theory of heat transfer through a laminar boundary layer publication-title: Proc. R. Soc. Lond. – volume: 178 year: 2021 ident: CR23 article-title: An enhanced artificial neural network model using the Harris Hawks optimizer for predicting food liking in the presence of background noise publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108022 – volume: 54 year: 2024 ident: CR34 article-title: Scientific computing of radiative heat transfer with thermal slip effects near stagnation point by artificial neural network publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2024.104024 – volume: 175 year: 2021 ident: CR24 article-title: A novel acoustic scene classification model using the late fusion of convolutional neural networks and different ensemble classifiers publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107829 – volume: 41 start-page: 65 year: 2019 ident: CR4 article-title: Heat transfer in stagnation-point flow of a Jeffrey fluid past a lubricated surface publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-018-1560-3 – volume: 53 start-page: 886 year: 2011 end-page: 896 ident: CR7 article-title: Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2011.07.012 – volume: 36 start-page: 481 year: 2009 end-page: 486 ident: CR16 article-title: On frame indifferent formulation of the Maxwell-Catteneo model of finite speed heat conduction publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2008.11.003 – volume: 37 start-page: 445 year: 2010 end-page: 447 ident: CR17 article-title: Uniqueness and structural stability for the Cattaneo-Christov equations publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2010.06.002 – volume: 44 start-page: 136 year: 2019 ident: CR11 article-title: A Legendre wavelet spectral collocation method for analysis of thermal radiation and slip in the oblique stagnation-point flow of Walters-B liquid towards a stretching surface publication-title: Sadhana doi: 10.1007/s12046-019-1093-1 – volume: 541 year: 2020 ident: CR32 article-title: Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial publication-title: Phys. A doi: 10.1016/j.physa.2019.123520 – volume: 2 start-page: 1350 year: 2020 ident: CR12 article-title: Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-3156-7 – volume: 147 start-page: 5199 year: 2022 end-page: 5209 ident: CR21 article-title: Heat transfer in unsteady separated stagnation point flow of a micro-polar fluid: Cattaneo–Christov model publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-021-10889-x – volume: 99 start-page: 8 year: 2019 end-page: 14 ident: CR30 article-title: Using artificial neural network for computing the development length of MHD channel flows publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2019.06.003 – volume: 99 start-page: 373 year: 2016 end-page: 382 ident: CR28 article-title: Simulation and prediction of MHD dissipative nanofluid flow on a permeable stretching surface using artificial neural network publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.063 – volume: 19 start-page: 1108 year: 2016 end-page: 1116 ident: CR29 article-title: Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical reaction through numerical and artificial neural network modeling. Eng. Sci. Tech publication-title: Int. J. – volume: 10 start-page: 169 year: 2021 end-page: 179 ident: CR13 article-title: Velocity and thermal slip effects on MHD convective radiative two-phase flows in an asymmetric non-uniform channel publication-title: Prop. Power Res. – volume: 3 start-page: 83 year: 1948 end-page: 101 ident: CR15 article-title: O Sulla conduzione del calore publication-title: AttiSemin Mat Fis Univ Modena Reggio Emilia. – volume: 221 start-page: 19 year: 2016 end-page: 25 ident: CR19 article-title: MHD viscoelastic flow and heat transfer over vertical stretching sheet with Catteno–Christov heat flux effects publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.05.051 – volume: 7 start-page: 1369 year: 2019 end-page: 1387 ident: CR10 article-title: Effects of velocity and thermal slip conditions with radiation on heat transfer flow of ferrofluids publication-title: J. Appl. Math. Phys. doi: 10.4236/jamp.2019.76092 – volume: 194 start-page: 1 year: 2007 end-page: 10 ident: CR1 article-title: Axisymmetric stagnation-point flow over a lubricated surface publication-title: Acta Mech. doi: 10.1007/s00707-007-0484-2 – volume: 11 start-page: 14509 year: 2021 ident: CR33 article-title: Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling publication-title: Sci. Rep. doi: 10.1038/s41598-021-93790-9 – volume: 6 start-page: 582 issue: 3 year: 2020 end-page: 592 ident: CR31 article-title: Prediction of entrance length for magnetohydrodynamics channels flow using numerical simulation and artificial neural network publication-title: J. Appl. Comput. Mech. – volume: 147 start-page: 2749 year: 2022 end-page: 2759 ident: CR20 article-title: Cattaneo-Christov heat flux theory on transverse MHD Oldroyd-B liquid over nonlinear stretched flow publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-021-10568-x – volume: 1 start-page: 569 year: 2015 end-page: 587 ident: CR9 article-title: A study of velocity and temperature slip effects on flow of water based nano fluids in converging and diverging channels publication-title: Int. J. Appl. Comput. Math doi: 10.1007/s40819-015-0032-z – volume: 132 start-page: 297 year: 2017 ident: CR3 article-title: Effects of lubricated surface in the oblique stagnation point flow of a micropolar fluid publication-title: Eur. Phys. J. Plus. doi: 10.1140/epjp/i2017-11572-y – volume: 267 start-page: 1 year: 2014 end-page: 10 ident: CR25 article-title: Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.06.062 – volume: 5 start-page: 373 issue: 4 year: 2001 end-page: 401 ident: CR35 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/S1364-0321(01)00006-5 – volume: 2 start-page: 1350 year: 2020 ident: 5625_CR12 publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-3156-7 – volume: 54 year: 2024 ident: 5625_CR34 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2024.104024 – volume: 7 start-page: 1369 year: 2019 ident: 5625_CR10 publication-title: J. Appl. Math. Phys. doi: 10.4236/jamp.2019.76092 – volume: 11 start-page: 14509 year: 2021 ident: 5625_CR33 publication-title: Sci. Rep. doi: 10.1038/s41598-021-93790-9 – volume: 267 start-page: 1 year: 2014 ident: 5625_CR25 publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.06.062 – volume: 3 start-page: 83 year: 1948 ident: 5625_CR15 publication-title: AttiSemin Mat Fis Univ Modena Reggio Emilia. – volume: 132 start-page: 297 year: 2017 ident: 5625_CR3 publication-title: Eur. Phys. J. Plus. doi: 10.1140/epjp/i2017-11572-y – volume: 19 start-page: 1108 year: 2016 ident: 5625_CR29 publication-title: Int. J. – volume: 178 year: 2021 ident: 5625_CR23 publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108022 – volume: 10 start-page: 169 year: 2021 ident: 5625_CR13 publication-title: Prop. Power Res. – volume: 38 start-page: 87 year: 2014 ident: 5625_CR18 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2014.07.013 – volume: 175 year: 2021 ident: 5625_CR24 publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107829 – ident: 5625_CR14 – volume: 53 start-page: 886 year: 2011 ident: 5625_CR7 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2011.07.012 – volume: 45 start-page: 478 year: 2021 ident: 5625_CR22 publication-title: Int. J. Energy Res. doi: 10.1002/er.5680 – volume: 99 start-page: 373 year: 2016 ident: 5625_CR28 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.063 – volume: 194 start-page: 1 year: 2007 ident: 5625_CR1 publication-title: Acta Mech. doi: 10.1007/s00707-007-0484-2 – volume: 278 start-page: 1 year: 2015 ident: 5625_CR26 publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.03.005 – volume: 6 start-page: 582 issue: 3 year: 2020 ident: 5625_CR31 publication-title: J. Appl. Comput. Mech. – volume: 37 start-page: 445 year: 2010 ident: 5625_CR17 publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2010.06.002 – volume: 10 start-page: 219 year: 1967 ident: 5625_CR6 publication-title: Int. J. Heat Mass Trans. doi: 10.1016/0017-9310(67)90100-7 – volume: 65 start-page: 17 year: 2015 ident: 5625_CR8 publication-title: Phy. E doi: 10.1016/j.physe.2014.07.013 – volume: 147 start-page: 5199 year: 2022 ident: 5625_CR21 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-021-10889-x – volume: 44 start-page: 136 year: 2019 ident: 5625_CR11 publication-title: Sadhana doi: 10.1007/s12046-019-1093-1 – volume: 541 year: 2020 ident: 5625_CR32 publication-title: Phys. A doi: 10.1016/j.physa.2019.123520 – volume: 29 year: 2012 ident: 5625_CR2 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/29/2/024702 – volume: 41 start-page: 65 year: 2019 ident: 5625_CR4 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-018-1560-3 – volume: 1 start-page: 569 year: 2015 ident: 5625_CR9 publication-title: Int. J. Appl. Comput. Math doi: 10.1007/s40819-015-0032-z – volume: 221 start-page: 19 year: 2016 ident: 5625_CR19 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.05.051 – volume: 99 start-page: 8 year: 2019 ident: 5625_CR30 publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2019.06.003 – volume: 5 start-page: 373 issue: 4 year: 2001 ident: 5625_CR35 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/S1364-0321(01)00006-5 – volume: 202 start-page: 359 year: 1950 ident: 5625_CR5 publication-title: Proc. R. Soc. Lond. – volume: 36 start-page: 481 year: 2009 ident: 5625_CR16 publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2008.11.003 – volume: 147 start-page: 2749 year: 2022 ident: 5625_CR20 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-021-10568-x – volume: 49 start-page: 46 year: 2016 ident: 5625_CR27 publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2016.04.003 |
| SSID | ssj0000491494 |
| Score | 2.3447895 |
| Snippet | The lubricated systems containing fluid lubricants have the load-carrying ability. Suitable lubrication permits smooth, incessant operation of machine... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 851 |
| SubjectTerms | Accuracy Applied and Technical Physics Artificial neural networks Atomic Back propagation networks Complex Systems Condensed Matter Physics Constitutive relationships Cooling Datasets Differential equations Drag reduction Engineering Error analysis Fluid flow Fluid mechanics Heat conductivity Heat flux Heat transfer Lubricants Lubricants & lubrication Lubrication Mathematical and Computational Physics Molecular Neural networks Nuclear power plants Nuclear reactors Optical and Plasma Physics Optimization techniques Ostwald ripening Partial differential equations Physics Physics and Astronomy Power law Regression models Regular Article Shear stress Temperature Theoretical Thermal analysis Variable thickness Velocity |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07TyMxEB7xlKDgjcjBIRe0VvaZXVfohEBXoRSHhGgsxw8ECsmSTVA6-A_8w_slN-N1CFBAcdUWK1srfbOebx7-BuAkc3kp0O9wnVnN0R9rLnKnuFZxZGIdp0XeDJsoLi_L62vRDQm3OrRVzs5Ef1CboaYceRtpSOkvM8Sn1SOnqVFUXQ0jNBZhmVQSaHRDN795y7Eg-8UAIAttXRhKtG11X7VrjMs6EUfvxMn953z60SnNmean4qj3OReb__u1W7AR2Cb71ZjHNizYwQ6sv9Mg3IFV3wOq61147o6oakNIsaFjZ2qMxNEO_768BgWCJ0YnN3P9yZRR_pYReXzA_ZGrVix0hjDqCWWK9Sc9P4HIGlZPRk5py6jH_paRrTayFYzENP3Dt6LvwdXF-Z-z3zzMZ-A6TbMxzwVGX9YUOksMxuRpYpSwWpQdSqwao0n3m9TsLfICl3V0qRLnjI0FUjAthEr3YWkwHNgDYIWXmu_lThRRpspIWPTdRS9O0MJKa7MWdGYASR3Ey2mGRl82F6sjScjKBlmJyEqPrJy2IHpbWDX6Hd8vOZphKsMPXcs5oC2IZ1Yxf_3Nlj--3vIQ1hJvjVTsOoKl8Whif8KKfhrf1aNjb9P_AB0AArQ priority: 102 providerName: ProQuest |
| Title | Prediction of Cattaneo–Christov heat flux with thermal slip effects over a lubricated surface using artificial neural network |
| URI | https://link.springer.com/article/10.1140/epjp/s13360-024-05625-x https://www.proquest.com/docview/3108862421 |
| Volume | 139 |
| WOSCitedRecordID | wos001319831500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 2190-5444 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: P5Z dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2190-5444 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: PCBAR dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2190-5444 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2190-5444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491494 issn: 2190-5444 databaseCode: RSV dateStart: 20110101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSlzYEWWTD1wtsjbxEapWnKqITYiL5To2ApW2atqKG_wDf8iXMOOkbAeQ4BRZka1oPPF79ozfABxGNk4F4g7XkdEc8VhzEVvFtfK93Nd-mMRlsYmk3U6vr0X2udQXZbtPQ5JupS71bL0jM7gfHBW4pap7HIGFE3LHHOnjPGJeSlUbzs6v3o9XkPgi94-qjK4f-n_Fow-S-S0u6uCmtfKPD12F5YpjsuPSKdZgxvTWYdHleupiA56yIUVnaEZY37KGGiFBNP3X55dKaWDCaIVmtjt-ZHROy4gkPuCIyEkHrMoAYZT7yRTrjjuu0pDJWTEeWqUNo1z6W0Y-WcpTMBLNdA-Xcr4Jl63mReOUV3UYuA7DaMRjgbsskyc6CnLce4dBroTRIq3TAWqea9L3JtV6g_hvo7pOVWBtbnyBVEsLocItmOv1e2YbWOIk5TuxFYkXqdQTBjE66fgBelJqTFSD-nQ2pK5EyqlWRleWF6g9SdaVpXUlWlc668rHGnjvHQelTsfvXfam0y2rH7eQyHZTd2fGr4E_nd6P178MufOHPruwFDg3oUjXHsyNhmOzDwt6Mrorhgcwf9JsZ2cHMJvFN9jKGifH1EJffwOlsP7T |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQQsePQhAgVmActR_BjHngVCqFC1aomyKFLFZpjMA1GFxI2TNl3BP_AffBRfwr1juwEWdNUFKy8sz2J87txzH3MuwHPhs0Ki3-FGOMPRHxsuM6-50XFkYxOneVYPm8j7_eLoSA5W4Ed7F4baKtszMRzUdmIoR95FGlKEywzxq_KE09Qoqq62IzRqWOy78zMM2aqXe2_w_75Ikp23h9u7vJkqwE2aihnPJMYMzuZGJBYjyTSxWjojix6lA601pFZNGuwOvZkXPVPoxHvrMNgXsZFSp7juNbguRBKRFQ2yDxc5HWTbGHCIpo0MQ5euK4_LboVxYC_i6A050Y2ML_50gktm-1cxNvi4nXv_2-7ch7sNm2ava_g_gBU3XoM7v2ksrsHN0ONqqnX4OphSVYqQyCaebesZEmM3-fnte6OwcMrIMzE_mi8Y5acZkeMvuD5y8ZI1nS-Mel6ZZqP5MExYcpZV86nXxjG6Q_CJkS3WshyMxELDI7Tab8D7K9mLTVgdT8buIbA8SOkPMy_zSOgikg65ST6ME7SgwjnRgV4LCGUacXaaETJS9cXxSBGSVI0khUhSAUlq0YHo4sOy1ie5_JOtFkOqObAqtQRQB-IWhcvXlyz56N9LPoNbu4fvDtTBXn__MdxOgiVQYW8LVmfTuXsCN8zp7HM1fRrsicHHq4boLxnjYM4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB6M04Ze0ldKnabtHnpdrMfK0h6LG9PSYgx9kNuy3kdJcGxhyca35j_kH_aXZGYlJbSHBkJPOogRYmak-WZn5huAd8JnhcS4w41whmM8NlxmXnOj48jGJk7zrFk2kU-nxempnPXgpJuFCd3uXUmymWkglqZlPSytb7lto6Erz8thhenVKOIYZDhF8YwjlNwT1E1PSfvXHzdHLQiCMQ8QbXfXP-T_jE23gPOvGmkIPZPH_-mln8BBiz3Z-8ZZnkLPLZ_Bw9ADaqrn8Gu2pqoNWYqtPBvrGoGjW_2-vGoZCLaM_tzMLzY7Rue3jMDjBT4RsWrJ2s4QRj2hTLPFZh42EDnLqs3aa-MY9dj_ZOSrDW0FIzLNcAmt6IfwfXLybfyRt_sZuElTUfNMYvblbG5EYjEnTxOrpTOyGNHBqrWGeL-Jzd4hLvBiZAqdeG9dLBGCGSl1-gL6y9XSvQSWB6r5eeZlHgldRNJh7M7ncYIeVjgnBjDqLKNMS15OOzQWqhmsjhRpVzXaVahdFbSrdgOIbgTLhr_jbpHjzvSq_aArhSi4CLM08QDiztS3t-945NE9ZN7C_uzDRH35NP38Ch4lwWOoGHYM_Xq9ca_hgdnWZ9X6TXD2a2xNBoU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Cattaneo%E2%80%93Christov+heat+flux+with+thermal+slip+effects+over+a+lubricated+surface+using+artificial+neural+network&rft.jtitle=European+physical+journal+plus&rft.au=Sadiq%2C+M.+N.&rft.au=Shahzad%2C+Hasan&rft.au=Alqahtani%2C+Hassan&rft.au=Tirth%2C+Vineet&rft.date=2024-09-24&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2190-5444&rft.volume=139&rft.issue=9&rft_id=info:doi/10.1140%2Fepjp%2Fs13360-024-05625-x&rft.externalDocID=10_1140_epjp_s13360_024_05625_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon |