Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems
This paper proposes a new meta-heuristic algorithm inspired by horses’ herding behavior for high-dimensional optimization problems. This method, called the Horse herd Optimization Algorithm (HOA), imitates the social performances of horses at different ages using six important features: grazing, hie...
Saved in:
| Published in: | Knowledge-based systems Vol. 213; p. 106711 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
15.02.2021
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0950-7051, 1872-7409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a new meta-heuristic algorithm inspired by horses’ herding behavior for high-dimensional optimization problems. This method, called the Horse herd Optimization Algorithm (HOA), imitates the social performances of horses at different ages using six important features: grazing, hierarchy, sociability, imitation, defense mechanism and roam. The HOA algorithm is created based on these behaviors, which has not existed in the history of studies so far. A sensitivity analysis is also performed to obtain the best values of coefficients used in the algorithm. HOA has a very good performance in solving complex problems in high dimensions, due to the large number of control parameters based on the behavior of horses at different ages. The proposed algorithm is compared with popular nature-inspired optimization algorithms, including grasshopper optimization algorithm (GOA), sine cosine algorithm (SCA), multi-verse optimizer (MVO), moth–flame optimizer (MFO), dragonfly algorithm (DA), and grey wolf optimizer (GWO). Solving several high-dimensional benchmark functions (up to 10,000 dimensions) shows that the proposed algorithm is highly efficient for high-dimensional global optimization problems. The HOA algorithm also outperforms the mentioned popular optimization algorithms for the case of accuracy and efficiency with lowest computational cost and complexity. |
|---|---|
| AbstractList | This paper proposes a new meta-heuristic algorithm inspired by horses’ herding behavior for high-dimensional optimization problems. This method, called the Horse herd Optimization Algorithm (HOA), imitates the social performances of horses at different ages using six important features: grazing, hierarchy, sociability, imitation, defense mechanism and roam. The HOA algorithm is created based on these behaviors, which has not existed in the history of studies so far. A sensitivity analysis is also performed to obtain the best values of coefficients used in the algorithm. HOA has a very good performance in solving complex problems in high dimensions, due to the large number of control parameters based on the behavior of horses at different ages. The proposed algorithm is compared with popular nature-inspired optimization algorithms, including grasshopper optimization algorithm (GOA), sine cosine algorithm (SCA), multi-verse optimizer (MVO), moth–flame optimizer (MFO), dragonfly algorithm (DA), and grey wolf optimizer (GWO). Solving several high-dimensional benchmark functions (up to 10,000 dimensions) shows that the proposed algorithm is highly efficient for high-dimensional global optimization problems. The HOA algorithm also outperforms the mentioned popular optimization algorithms for the case of accuracy and efficiency with lowest computational cost and complexity. |
| ArticleNumber | 106711 |
| Author | Azizyan, Gholamreza MiarNaeimi, Farid Rashki, Mohsen |
| Author_xml | – sequence: 1 givenname: Farid surname: MiarNaeimi fullname: MiarNaeimi, Farid email: Farid.Naeimi@pgs.usb.ac.ir organization: Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran – sequence: 2 givenname: Gholamreza surname: Azizyan fullname: Azizyan, Gholamreza email: g.azizyan@eng.usb.ac.ir organization: Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran – sequence: 3 givenname: Mohsen surname: Rashki fullname: Rashki, Mohsen email: mrashki@eng.usb.ac.ir organization: Department of Architecture Engineering, University of Sistan and Baluchestan, Zahedan, Iran |
| BookMark | eNqFkM9LwzAUx4NMcJv-Bx4KnjuT9EfaHYQx1AkDL3oOafK6prbNTDJh_vW2VhA96Cnw8j7f995nhiad6QChS4IXBJP0ul68dMYd3YJiOpRSRsgJmpKM0ZDFOJ-gKc4THDKckDM0c67GGFNKsinSG2MdBBVYFZi9161-F16bLhDNzljtq3YZrIJO-IOFUHdury2o78-gNDao9K4KlW6hcz0pmp9Be2uKBlp3jk5L0Ti4-Hrn6Pnu9mm9CbeP9w_r1TaUURT7MEmgYEVURElKRZwoiPsKLkSGiVBlnNMSRKxULHICaYSLnGYsSwuSEyYpkySao6sxtx_8egDneW0Otl_LcZr0V9OM4qFrOXZJa5yzUHKp_efC3grdcIL5oJbXfFTLB7V8VNvD8S94b3Ur7PE_7GbEoD__TYPlTmroJKheqvRcGf13wAdsrpmS |
| CitedBy_id | crossref_primary_10_3390_pr9122276 crossref_primary_10_1016_j_eswa_2024_126207 crossref_primary_10_1007_s10462_022_10340_z crossref_primary_10_1007_s42235_024_00493_8 crossref_primary_10_1080_1062936X_2023_2261855 crossref_primary_10_1371_journal_pone_0275346 crossref_primary_10_1007_s00158_025_04080_1 crossref_primary_10_1007_s11831_022_09800_0 crossref_primary_10_1016_j_eswa_2023_119992 crossref_primary_10_1007_s11831_023_09912_1 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1007_s00500_021_06404_x crossref_primary_10_1016_j_istruc_2024_105872 crossref_primary_10_1007_s00500_021_06109_1 crossref_primary_10_1007_s10462_025_11269_9 crossref_primary_10_1038_s41598_024_66450_x crossref_primary_10_1007_s10064_024_03819_2 crossref_primary_10_1515_mt_2022_0119 crossref_primary_10_1016_j_eswa_2023_120186 crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_3390_sym16070795 crossref_primary_10_1016_j_jestch_2023_101453 crossref_primary_10_1111_exsy_13306 crossref_primary_10_1016_j_knosys_2023_110368 crossref_primary_10_3103_S1060992X22020072 crossref_primary_10_1038_s41598_024_78977_0 crossref_primary_10_1016_j_infrared_2024_105584 crossref_primary_10_3233_WEB_220081 crossref_primary_10_3390_jrfm18050281 crossref_primary_10_7717_peerj_cs_910 crossref_primary_10_1007_s12065_023_00898_0 crossref_primary_10_1007_s40435_021_00892_3 crossref_primary_10_1093_jcde_qwae004 crossref_primary_10_1016_j_energy_2024_130395 crossref_primary_10_1016_j_rineng_2024_102766 crossref_primary_10_1038_s41598_024_84632_5 crossref_primary_10_3390_math10193466 crossref_primary_10_1109_ACCESS_2022_3156593 crossref_primary_10_1016_j_eswa_2022_119211 crossref_primary_10_1088_2631_8695_ad5f16 crossref_primary_10_1007_s43452_022_00415_7 crossref_primary_10_1016_j_egyr_2022_05_161 crossref_primary_10_1149_2162_8777_ad5588 crossref_primary_10_1007_s13042_022_01670_z crossref_primary_10_1016_j_array_2025_100492 crossref_primary_10_1038_s41598_024_68239_4 crossref_primary_10_1007_s00500_021_06522_6 crossref_primary_10_1007_s11831_023_10034_x crossref_primary_10_1016_j_knosys_2024_111850 crossref_primary_10_1007_s10462_024_10986_x crossref_primary_10_1007_s42044_024_00174_z crossref_primary_10_1108_EC_10_2024_0904 crossref_primary_10_1007_s10586_024_04447_x crossref_primary_10_1016_j_eswa_2024_123189 crossref_primary_10_1111_exsy_12913 crossref_primary_10_1016_j_ast_2024_108953 crossref_primary_10_1080_0952813X_2023_2196986 crossref_primary_10_1007_s12083_024_01666_2 crossref_primary_10_32604_cmc_2024_051336 crossref_primary_10_1080_01496395_2025_2537712 crossref_primary_10_1016_j_knosys_2022_108664 crossref_primary_10_3390_math11040862 crossref_primary_10_1002_ima_22747 crossref_primary_10_1016_j_compbiomed_2022_106123 crossref_primary_10_1016_j_compeleceng_2022_107862 crossref_primary_10_1109_ACCESS_2022_3144431 crossref_primary_10_1007_s10278_023_00962_2 crossref_primary_10_2139_ssrn_5261204 crossref_primary_10_3390_math9141661 crossref_primary_10_1007_s11227_022_04880_y crossref_primary_10_3389_fbioe_2022_1018895 crossref_primary_10_1002_ett_4541 crossref_primary_10_1007_s10489_022_04446_8 crossref_primary_10_1007_s10462_024_10829_9 crossref_primary_10_1007_s42235_022_00323_9 crossref_primary_10_1002_dac_5817 crossref_primary_10_1007_s00521_025_11564_0 crossref_primary_10_1016_j_est_2024_112635 crossref_primary_10_1016_j_eswa_2023_119672 crossref_primary_10_1080_01969722_2022_2122004 crossref_primary_10_1080_13682199_2023_2211890 crossref_primary_10_1016_j_asoc_2023_110483 crossref_primary_10_1007_s11831_025_10228_5 crossref_primary_10_1007_s12597_024_00785_x crossref_primary_10_1007_s10489_022_03762_3 crossref_primary_10_1049_cit2_12316 crossref_primary_10_1007_s11831_025_10281_0 crossref_primary_10_1109_ACCESS_2023_3236023 crossref_primary_10_1155_2024_1444493 crossref_primary_10_1007_s12065_024_00997_6 crossref_primary_10_1016_j_bspc_2024_106269 crossref_primary_10_3233_AIS_220369 crossref_primary_10_3233_THC_220254 crossref_primary_10_3390_app12178392 crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_1007_s10462_024_10747_w crossref_primary_10_1016_j_engappai_2022_105075 crossref_primary_10_3390_su16093788 crossref_primary_10_1016_j_engappai_2021_104324 crossref_primary_10_1007_s00477_024_02736_w crossref_primary_10_1007_s10661_024_12357_z crossref_primary_10_1007_s10462_023_10446_y crossref_primary_10_48084_etasr_11864 crossref_primary_10_1002_oca_3316 crossref_primary_10_1016_j_bspc_2022_103840 crossref_primary_10_1016_j_bspc_2023_104696 crossref_primary_10_1016_j_bspc_2022_103833 crossref_primary_10_1007_s11227_025_07219_5 crossref_primary_10_1016_j_jenvman_2025_125600 crossref_primary_10_1016_j_eswa_2023_123115 crossref_primary_10_1016_j_knosys_2023_111257 crossref_primary_10_1002_ett_4797 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_3390_buildings12081280 crossref_primary_10_1016_j_advengsoft_2022_103353 crossref_primary_10_1016_j_advengsoft_2022_103351 crossref_primary_10_1016_j_cie_2022_107974 crossref_primary_10_1007_s10586_024_04713_y crossref_primary_10_1007_s10489_023_04817_9 crossref_primary_10_1109_ACCESS_2024_3350336 crossref_primary_10_1016_j_eswa_2022_116895 crossref_primary_10_1007_s00521_024_10346_4 crossref_primary_10_1016_j_eswa_2022_117629 crossref_primary_10_3390_a16030134 crossref_primary_10_3390_app142311116 crossref_primary_10_1155_2022_1535957 crossref_primary_10_1007_s10462_025_11351_2 crossref_primary_10_1007_s11831_023_09928_7 crossref_primary_10_1155_2022_2748215 crossref_primary_10_1080_0305215X_2022_2035378 crossref_primary_10_1016_j_bspc_2023_104707 crossref_primary_10_1007_s12652_022_03765_5 crossref_primary_10_1109_ACCESS_2022_3172789 crossref_primary_10_1007_s12559_024_10300_5 crossref_primary_10_3390_su151411160 crossref_primary_10_1016_j_cie_2022_108361 crossref_primary_10_1080_1062936X_2024_2404853 crossref_primary_10_1007_s11042_023_15416_8 crossref_primary_10_1007_s12597_024_00869_8 crossref_primary_10_1142_S0219649223500582 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1038_s41598_025_85481_6 crossref_primary_10_1007_s11227_025_07410_8 crossref_primary_10_1080_02286203_2025_2479003 crossref_primary_10_1007_s12145_023_01110_8 crossref_primary_10_1080_0952813X_2023_2183269 crossref_primary_10_1007_s00530_023_01168_w crossref_primary_10_1016_j_compbiomed_2021_105152 crossref_primary_10_1007_s00521_022_07148_x crossref_primary_10_1002_ese3_1550 crossref_primary_10_1109_ACCESS_2023_3279416 crossref_primary_10_3390_math12040594 crossref_primary_10_1002_widm_1548 crossref_primary_10_1007_s10479_024_06389_4 crossref_primary_10_1016_j_jocs_2023_102205 crossref_primary_10_1016_j_paerosci_2024_101046 crossref_primary_10_1155_2023_2777505 crossref_primary_10_1007_s12065_023_00884_6 crossref_primary_10_1515_mt_2024_0188 crossref_primary_10_1007_s10696_023_09502_0 crossref_primary_10_1016_j_aej_2025_02_046 crossref_primary_10_1016_j_compag_2022_107217 crossref_primary_10_1515_mt_2024_0515 crossref_primary_10_1515_mt_2022_0048 crossref_primary_10_1049_ccs2_12094 crossref_primary_10_1016_j_knosys_2021_107955 crossref_primary_10_1016_j_asoc_2025_112691 crossref_primary_10_1007_s11042_023_18084_w crossref_primary_10_1016_j_asoc_2024_112271 crossref_primary_10_1016_j_jnca_2023_103617 crossref_primary_10_1007_s12065_024_00945_4 crossref_primary_10_1007_s11269_022_03163_8 crossref_primary_10_1080_0954898X_2024_2316080 crossref_primary_10_1007_s11277_024_11184_2 crossref_primary_10_1016_j_eswa_2023_122638 crossref_primary_10_1007_s12652_023_04571_3 crossref_primary_10_1016_j_knosys_2022_109591 crossref_primary_10_1016_j_asoc_2024_111734 crossref_primary_10_3390_a17050172 crossref_primary_10_1016_j_swevo_2022_101127 crossref_primary_10_1016_j_energy_2024_132278 crossref_primary_10_1080_13682199_2023_2180140 crossref_primary_10_1109_ACCESS_2023_3329069 crossref_primary_10_1007_s12652_022_04098_z crossref_primary_10_1002_dac_5656 crossref_primary_10_1016_j_conbuildmat_2022_128334 crossref_primary_10_1007_s00500_023_08577_z crossref_primary_10_1109_TCYB_2025_3554532 crossref_primary_10_1080_01496395_2023_2261076 crossref_primary_10_1016_j_matcom_2022_02_030 crossref_primary_10_1155_2023_3988288 crossref_primary_10_1016_j_energy_2022_123396 crossref_primary_10_1007_s11042_022_14001_9 crossref_primary_10_1016_j_eswa_2023_122200 crossref_primary_10_3390_s22218242 crossref_primary_10_1016_j_cma_2024_117411 crossref_primary_10_3390_a14040122 crossref_primary_10_1007_s10489_022_04201_z crossref_primary_10_1016_j_renene_2023_119718 crossref_primary_10_3390_w17060878 crossref_primary_10_1007_s40996_021_00805_6 crossref_primary_10_1007_s11042_023_15023_7 crossref_primary_10_1016_j_knosys_2025_113168 crossref_primary_10_1016_j_eswa_2022_119303 crossref_primary_10_1016_j_eswa_2022_117127 crossref_primary_10_1007_s10586_025_05358_1 crossref_primary_10_1016_j_knosys_2023_110454 crossref_primary_10_1186_s44147_024_00396_9 crossref_primary_10_1007_s00521_022_07146_z crossref_primary_10_1016_j_cma_2025_117825 crossref_primary_10_2478_pead_2024_0006 crossref_primary_10_1515_mt_2022_0013 crossref_primary_10_1515_mt_2022_0012 crossref_primary_10_1007_s42235_022_00223_y crossref_primary_10_1142_S0219649223500570 crossref_primary_10_3390_a15050156 crossref_primary_10_3390_w17131842 crossref_primary_10_1007_s10462_025_11291_x crossref_primary_10_1007_s10586_025_05460_4 crossref_primary_10_1007_s11063_023_11394_y crossref_primary_10_1038_s41598_025_92983_w crossref_primary_10_1080_01969722_2022_2157601 crossref_primary_10_1016_j_compbiomed_2023_107389 crossref_primary_10_1007_s00202_024_02645_9 crossref_primary_10_3390_s24227161 crossref_primary_10_3390_en14217115 crossref_primary_10_1016_j_advengsoft_2022_103198 crossref_primary_10_1016_j_advengsoft_2024_103671 crossref_primary_10_1016_j_fluid_2022_113682 crossref_primary_10_1007_s10115_023_01890_x crossref_primary_10_1007_s00202_023_02165_y crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1007_s10115_024_02105_7 crossref_primary_10_3390_electronics13132471 crossref_primary_10_1016_j_eswa_2023_122316 crossref_primary_10_1134_S1810232824010107 crossref_primary_10_1016_j_knosys_2022_110011 crossref_primary_10_1016_j_cma_2023_116238 crossref_primary_10_1007_s00521_024_10694_1 crossref_primary_10_1080_00051144_2023_2288489 |
| Cites_doi | 10.1109/TEVC.2009.2033580 10.1023/A:1008202821328 10.1016/j.advengsoft.2017.01.004 10.1115/1.2912596 10.1016/j.knosys.2015.12.022 10.1016/j.future.2019.02.028 10.1016/j.swevo.2014.02.002 10.1007/s00366-017-0569-z 10.1109/MCI.2006.329691 10.1016/j.ins.2012.08.023 10.1109/TNNLS.2015.2496658 10.1007/s10489-013-0458-0 10.1080/03052150500384759 10.1287/ijoc.1.3.190 10.1016/j.cnsns.2012.05.010 10.1023/A:1026568011013 10.1109/4235.771163 10.1126/science.220.4598.671 10.1016/j.ins.2009.03.004 10.1016/j.advengsoft.2017.07.002 10.1016/j.compstruc.2016.01.008 10.1002/nme.1620210904 10.1007/s00366-016-0457-y 10.1007/s10071-007-0133-0 10.1007/s00521-015-1870-7 10.1016/j.knosys.2015.07.006 10.1109/TEVC.2008.919004 10.1007/s00707-009-0270-4 10.1002/er.2915 10.1016/j.advengsoft.2013.12.007 10.1016/j.advengsoft.2015.01.010 10.1016/j.knosys.2011.07.001 10.1023/A:1022602019183 10.1109/TNNLS.2017.2691760 10.1007/s11432-012-4548-0 10.1007/s00521-015-1920-1 10.1016/j.advengsoft.2016.01.008 10.1016/S0045-7825(99)00389-8 10.1007/s00366-011-0241-y |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Feb 15, 2021 |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Feb 15, 2021 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2020.106711 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2020_106711 S0950705120308406 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-55eb7b3b3562a45de455e0ba801adf492fea4dd4a91e630b928786b1917c27c13 |
| ISICitedReferencesCount | 272 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614642900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 18:42:59 EST 2025 Sat Nov 29 07:08:37 EST 2025 Tue Nov 18 22:11:22 EST 2025 Fri Feb 23 02:41:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | High dimension Global optimization Horse’s life Swarm intelligence Meta-heuristic |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-55eb7b3b3562a45de455e0ba801adf492fea4dd4a91e630b928786b1917c27c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2502228201 |
| PQPubID | 2035257 |
| ParticipantIDs | proquest_journals_2502228201 crossref_citationtrail_10_1016_j_knosys_2020_106711 crossref_primary_10_1016_j_knosys_2020_106711 elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106711 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-15 |
| PublicationDateYYYYMMDD | 2021-02-15 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Mirjalili (b27) 2016; 96 Kim, Kim, Kim (b22) 2000; 13 Rechenberg, Zurada, Marks II, Goldberg (b17) 1994 Bogner (b70) 2011 Li, Yu, Huang, He (b65) 2017; 29 Kaveh, Ghazaan (b40) 2017; 24 Yang (b48) 2010 Li (b41) 2003 Askarzadeh, Rezazadeh (b49) 2013; 37 Jamil, Yang (b72) 2013 Mirjalili, Mirjalili, Lewis (b53) 2014; 69 Deb (b3) 2000; 186 Sandgren (b6) 1990; 112 Pan (b50) 2012; 26 Eusuff, Lansey, Pasha (b44) 2006; 38 MiarNaeimi, Azizyan, Rashki (b28) 2018; 34 Lam, Li (b34) 2010; 14 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b60) 2017; 114 Reynolds (b19) 1994 Abbattista, Abbattista, Caponetti (b4) 1995 Gandomi, Yang, Alavi (b54) 2013; 29 Mirjalili (b57) 2016; 27 Storn, Price (b20) 1997; 11 Karaboga (b42) 2005 Das, Suganthan (b73) 2010 Yang (b71) 2010 Mirjalili (b56) 2015; 83 Levine (b68) 2005 McDonnell (b67) 2003 Radcliffe, Surry (b18) 1994 Dorigo, Birattari, Stutzle (b8) 2006; 1 Karaboga, Basturk (b9) 2007 Saremi, Mirjalili, Lewis (b61) 2017; 105 Cuevas, Echavarría, Ramírez-Ortegón (b26) 2014; 40 Glover (b15) 1989; 1 Holland (b13) 1992 Hatamlou (b35) 2013; 222 Mirjalili, Mirjalili, Hatamlou (b39) 2016; 27 Yang (b47) 2010 Belegundu, Arora (b5) 1985; 21 Moosavian, Roodsari (b55) 2014; 17 Moghaddam, Moghaddam, Cheriet (b36) 2012 Niu, Wang (b11) 2012 Yao, Liu, Lin (b21) 1999; 3 Eberhart, Kennedy (b10) 1995 Hedayatzadeh, Salmassi, Keshtgari, Akbari, Ziarati (b7) 2010 Mucherino, Seref (b45) 2007 Sinha, Goldberg (b23) 2003 Goldberg, Holland (b1) 1988; 3 Tayarani-N, Akbarzadeh-T (b31) 2008 Krueger, Heinze (b69) 2008; 11 Atashpaz-Gargari, Lucas (b24) 2007 Mirjalili, Lewis (b59) 2016; 95 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b62) 2019; 97 Azizyan, Miarnaeimi, Rashki, Shabakhty (b63) 2019; 11 Kaveh, Talatahari (b33) 2010; 213 Talbi (b12) 2009 Roth (b43) 2005 Shiqin, Jianjun, Guangxing (b46) 2009 Li, Yu, Huang, Chen, He (b64) 2015; 27 Mirjalili (b58) 2015; 89 Waring (b66) 1983 Simon (b25) 2008; 12 Formato (b30) 2007 Du, Wu, Zhuang (b29) 2006 Kaveh, Bakhshpoori (b37) 2016; 167 Darwin (b2) 2004 Wang, Jin, Cheng (b51) 2012; 55 Kirkpatrick, Gelatt, Vecchi (b14) 1983; 220 Koza (b16) 1992 Varaee, Ghasemi (b38) 2017; 33 Gandomi, Alavi (b52) 2012; 17 Rashedi, Nezamabadi-Pour, Saryazdi (b32) 2009; 179 Waring (10.1016/j.knosys.2020.106711_b66) 1983 Yao (10.1016/j.knosys.2020.106711_b21) 1999; 3 Varaee (10.1016/j.knosys.2020.106711_b38) 2017; 33 Pan (10.1016/j.knosys.2020.106711_b50) 2012; 26 Belegundu (10.1016/j.knosys.2020.106711_b5) 1985; 21 Li (10.1016/j.knosys.2020.106711_b65) 2017; 29 Eberhart (10.1016/j.knosys.2020.106711_b10) 1995 Cuevas (10.1016/j.knosys.2020.106711_b26) 2014; 40 Mucherino (10.1016/j.knosys.2020.106711_b45) 2007 Karaboga (10.1016/j.knosys.2020.106711_b9) 2007 Holland (10.1016/j.knosys.2020.106711_b13) 1992 Saremi (10.1016/j.knosys.2020.106711_b61) 2017; 105 Mirjalili (10.1016/j.knosys.2020.106711_b27) 2016; 96 Roth (10.1016/j.knosys.2020.106711_b43) 2005 Hedayatzadeh (10.1016/j.knosys.2020.106711_b7) 2010 Dorigo (10.1016/j.knosys.2020.106711_b8) 2006; 1 Askarzadeh (10.1016/j.knosys.2020.106711_b49) 2013; 37 Rashedi (10.1016/j.knosys.2020.106711_b32) 2009; 179 Mirjalili (10.1016/j.knosys.2020.106711_b56) 2015; 83 MiarNaeimi (10.1016/j.knosys.2020.106711_b28) 2018; 34 Yang (10.1016/j.knosys.2020.106711_b71) 2010 Goldberg (10.1016/j.knosys.2020.106711_b1) 1988; 3 Deb (10.1016/j.knosys.2020.106711_b3) 2000; 186 Eusuff (10.1016/j.knosys.2020.106711_b44) 2006; 38 Yang (10.1016/j.knosys.2020.106711_b48) 2010 Sandgren (10.1016/j.knosys.2020.106711_b6) 1990; 112 Jamil (10.1016/j.knosys.2020.106711_b72) 2013 Niu (10.1016/j.knosys.2020.106711_b11) 2012 Du (10.1016/j.knosys.2020.106711_b29) 2006 Lam (10.1016/j.knosys.2020.106711_b34) 2010; 14 Gandomi (10.1016/j.knosys.2020.106711_b52) 2012; 17 Gandomi (10.1016/j.knosys.2020.106711_b54) 2013; 29 Mirjalili (10.1016/j.knosys.2020.106711_b57) 2016; 27 Storn (10.1016/j.knosys.2020.106711_b20) 1997; 11 Atashpaz-Gargari (10.1016/j.knosys.2020.106711_b24) 2007 Glover (10.1016/j.knosys.2020.106711_b15) 1989; 1 Sinha (10.1016/j.knosys.2020.106711_b23) 2003 Reynolds (10.1016/j.knosys.2020.106711_b19) 1994 Li (10.1016/j.knosys.2020.106711_b41) 2003 Mirjalili (10.1016/j.knosys.2020.106711_b60) 2017; 114 Moghaddam (10.1016/j.knosys.2020.106711_b36) 2012 Koza (10.1016/j.knosys.2020.106711_b16) 1992 Li (10.1016/j.knosys.2020.106711_b64) 2015; 27 Bogner (10.1016/j.knosys.2020.106711_b70) 2011 Wang (10.1016/j.knosys.2020.106711_b51) 2012; 55 Hatamlou (10.1016/j.knosys.2020.106711_b35) 2013; 222 Rechenberg (10.1016/j.knosys.2020.106711_b17) 1994 Heidari (10.1016/j.knosys.2020.106711_b62) 2019; 97 Mirjalili (10.1016/j.knosys.2020.106711_b59) 2016; 95 Kirkpatrick (10.1016/j.knosys.2020.106711_b14) 1983; 220 Formato (10.1016/j.knosys.2020.106711_b30) 2007 Mirjalili (10.1016/j.knosys.2020.106711_b53) 2014; 69 Kaveh (10.1016/j.knosys.2020.106711_b37) 2016; 167 Mirjalili (10.1016/j.knosys.2020.106711_b58) 2015; 89 Kaveh (10.1016/j.knosys.2020.106711_b40) 2017; 24 Simon (10.1016/j.knosys.2020.106711_b25) 2008; 12 Azizyan (10.1016/j.knosys.2020.106711_b63) 2019; 11 Radcliffe (10.1016/j.knosys.2020.106711_b18) 1994 Mirjalili (10.1016/j.knosys.2020.106711_b39) 2016; 27 Levine (10.1016/j.knosys.2020.106711_b68) 2005 Kim (10.1016/j.knosys.2020.106711_b22) 2000; 13 McDonnell (10.1016/j.knosys.2020.106711_b67) 2003 Kaveh (10.1016/j.knosys.2020.106711_b33) 2010; 213 Yang (10.1016/j.knosys.2020.106711_b47) 2010 Krueger (10.1016/j.knosys.2020.106711_b69) 2008; 11 Darwin (10.1016/j.knosys.2020.106711_b2) 2004 Tayarani-N (10.1016/j.knosys.2020.106711_b31) 2008 Talbi (10.1016/j.knosys.2020.106711_b12) 2009 Karaboga (10.1016/j.knosys.2020.106711_b42) 2005 Abbattista (10.1016/j.knosys.2020.106711_b4) 1995 Moosavian (10.1016/j.knosys.2020.106711_b55) 2014; 17 Das (10.1016/j.knosys.2020.106711_b73) 2010 Shiqin (10.1016/j.knosys.2020.106711_b46) 2009 |
| References_xml | – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b57 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. – volume: 213 start-page: 267 year: 2010 end-page: 289 ident: b33 article-title: A novel heuristic optimization method: Charged system search publication-title: Acta Mech. – volume: 34 year: 2018 ident: b28 article-title: Multi-level cross entropy optimizer (MCEO): An evolutionary optimization algorithm for engineering problems publication-title: Eng. Comput. – year: 2003 ident: b67 article-title: The Equid Ethogram: A Practical Field Guide to Horse Behavior – start-page: 162 year: 2007 end-page: 173 ident: b45 article-title: Monkey search: A novel metaheuristic search for global optimization publication-title: AIP Conference Proceedings – volume: 27 start-page: 308 year: 2015 end-page: 321 ident: b64 article-title: A generalized hopfield network for nonsmooth constrained convex optimization: Lie derivative approach publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b61 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Adv. Eng. Softw. – year: 2009 ident: b12 article-title: Metaheuristics: From Design to Implementation – year: 2004 ident: b2 article-title: On the Origin of Species, Vol. 1859 – volume: 167 start-page: 69 year: 2016 end-page: 85 ident: b37 article-title: Water evaporation optimization: A novel physically inspired optimization algorithm publication-title: Comput. Struct. – year: 2013 ident: b72 article-title: A literature survey of benchmark functions for global optimization problems – start-page: 2659 year: 2008 end-page: 2664 ident: b31 article-title: Magnetic optimization algorithms a new synthesis publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) – start-page: 5 year: 2005 end-page: 22 ident: b68 article-title: Domestication and early history of the horse publication-title: The Domestic Horse: The Origins, Development and Management of Its Behaviour – volume: 33 start-page: 71 year: 2017 end-page: 93 ident: b38 article-title: Engineering optimization based on ideal gas molecular movement algorithm publication-title: Eng. Comput. – year: 1992 ident: b13 article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence – volume: 38 start-page: 129 year: 2006 end-page: 154 ident: b44 article-title: Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. – volume: 21 start-page: 1583 year: 1985 end-page: 1599 ident: b5 article-title: A study of mathematical programming methods for structural optimization. Part I: Theory publication-title: Internat. J. Numer. Methods Engrg. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b53 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 222 start-page: 175 year: 2013 end-page: 184 ident: b35 article-title: Black hole: A new heuristic optimization approach for data clustering publication-title: Inf. Sci. – start-page: 553 year: 2010 end-page: 558 ident: b7 article-title: Termite colony optimization: A novel approach for optimizing continuous problems publication-title: 2010 18th Iranian Conference on Electrical Engineering – volume: 14 start-page: 381 year: 2010 end-page: 399 ident: b34 article-title: Chemical-reaction-inspired metaheuristic for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b59 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b25 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. – year: 2010 ident: b71 article-title: Nature-Inspired Metaheuristic Algorithms – start-page: 425 year: 2007 end-page: 491 ident: b30 article-title: Central force optimization: A new metaheuristic with applications in applied electromagnetics publication-title: Progress in Electromagnetics Research – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: b3 article-title: An efficient constraint handling method for genetic algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 3 start-page: 95 year: 1988 end-page: 99 ident: b1 article-title: Genetic algorithms and machine learning publication-title: Mach. Learn. – year: 2007 ident: b9 publication-title: Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization – start-page: 39 year: 1995 end-page: 43 ident: b10 article-title: A new optimizer using particle swarm theory publication-title: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science – volume: 11 start-page: 177 year: 2019 end-page: 205 ident: b63 article-title: Flying squirrel optimizer (FSO): A novel SI-based optimization algorithm for engineering problems publication-title: Iran. J. Optim. – volume: 26 start-page: 69 year: 2012 end-page: 74 ident: b50 article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example publication-title: Knowl.-Based Syst. – year: 2003 ident: b23 article-title: A Survey of Hybrid Genetic and Evolutionary Algorithms, Vol. 2003004 – volume: 37 start-page: 1196 year: 2013 end-page: 1204 ident: b49 article-title: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: Bird mating optimizer publication-title: Int. J. Energy Res. – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b8 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. – year: 1994 ident: b17 article-title: Evolution strategy, in computational intelligence: Imitating life publication-title: Computational Intelligence Imitating Life – volume: 29 start-page: 17 year: 2013 end-page: 35 ident: b54 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. – start-page: 4661 year: 2007 end-page: 4667 ident: b24 article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition publication-title: 2007 IEEE Congress on Evolutionary Computation – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: b21 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. – year: 1983 ident: b66 article-title: Horse behavior publication-title: The Behavioral Traits and Adaptations of Domestic and Wild Horses, Including Ponies – year: 2003 ident: b41 article-title: A New Intelligent Optimization-Artificial Fish Swarm Algorithm – start-page: 1 year: 1994 end-page: 16 ident: b18 publication-title: Formal Memetic Algorithms – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b60 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – start-page: 341 year: 2010 end-page: 359 ident: b73 article-title: Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems – year: 1992 ident: b16 article-title: Genetic Programming: On the Programming of Computers By Means of Natural Selection – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b27 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – start-page: 668 year: 1995 end-page: 671 ident: b4 article-title: An evolutionary and cooperative agents model for optimization publication-title: Proceedings of 1995 IEEE International Conference on Evolutionary Computation – start-page: 131 year: 1994 end-page: 139 ident: b19 article-title: An introduction to cultural algorithms publication-title: Proceedings of the Third Annual Conference on Evolutionary Programming – volume: 17 start-page: 14 year: 2014 end-page: 24 ident: b55 article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks publication-title: Swarm Evol. Comput. – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: b52 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul. – year: 2005 ident: b42 article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization – volume: 29 start-page: 2407 year: 2017 end-page: 2418 ident: b65 article-title: Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2011 ident: b70 article-title: A comprehensive summary of the scientific literature on horse assisted education in Germany – year: 2012 ident: b11 article-title: Bacterial Colony Optimization, Vol. 2012 – volume: 55 start-page: 2369 year: 2012 end-page: 2389 ident: b51 article-title: Lion pride optimizer: An optimization algorithm inspired by lion pride behavior publication-title: Sci. China Inf. Sci. – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b14 article-title: Optimization by simulated annealing publication-title: Science – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b62 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – year: 2005 ident: b43 article-title: Termite: A swarm intelligent routing algorithm for mobile wireless ad-hoc networks – start-page: 124 year: 2009 end-page: 128 ident: b46 article-title: A dolphin partner optimization publication-title: Intelligent Systems, 2009. GCIS’09. WRI Global Congress On – volume: 40 start-page: 256 year: 2014 end-page: 272 ident: b26 article-title: An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation publication-title: Appl. Intell. – start-page: 264 year: 2006 end-page: 273 ident: b29 article-title: Small-world optimization algorithm for function optimization publication-title: International Conference on Natural Computation – volume: 11 start-page: 431 year: 2008 end-page: 439 ident: b69 article-title: Horse sense: Social status of horses (Equus Caballus) affects their likelihood of copying other horses’ behavior publication-title: Anim. Cogn. – year: 2010 ident: b47 article-title: Firefly algorithm, stochastic test functions and design optimisation – year: 2012 ident: b36 article-title: Curved space optimization: A random search based on general relativity theory – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b56 article-title: The Ant Lion optimizer publication-title: Adv. Eng. Softw. – volume: 24 start-page: 551 year: 2017 ident: b40 article-title: A new meta-heuristic algorithm: Vibrating particles system publication-title: Sci. Iran. Trans. A Civ. Eng. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b20 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b32 article-title: GSA: A gravitational search algorithm publication-title: Inf. Sci. – start-page: 65 year: 2010 end-page: 74 ident: b48 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) – volume: 1 start-page: 190 year: 1989 end-page: 206 ident: b15 article-title: Tabu search—Part I publication-title: ORSA J. Comput. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b58 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b39 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 13 start-page: 247 year: 2000 end-page: 258 ident: b22 article-title: A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines publication-title: Appl. Intell. – volume: 112 start-page: 223 year: 1990 end-page: 229 ident: b6 article-title: Nonlinear integer and discrete programming in mechanical design optimization publication-title: J. Mech. Des. – volume: 14 start-page: 381 issue: 3 year: 2010 ident: 10.1016/j.knosys.2020.106711_b34 article-title: Chemical-reaction-inspired metaheuristic for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2033580 – year: 2005 ident: 10.1016/j.knosys.2020.106711_b42 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.knosys.2020.106711_b20 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – start-page: 131 year: 1994 ident: 10.1016/j.knosys.2020.106711_b19 article-title: An introduction to cultural algorithms – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.knosys.2020.106711_b61 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – year: 2009 ident: 10.1016/j.knosys.2020.106711_b12 – volume: 112 start-page: 223 issue: 2 year: 1990 ident: 10.1016/j.knosys.2020.106711_b6 article-title: Nonlinear integer and discrete programming in mechanical design optimization publication-title: J. Mech. Des. doi: 10.1115/1.2912596 – start-page: 65 year: 2010 ident: 10.1016/j.knosys.2020.106711_b48 article-title: A new metaheuristic bat-inspired algorithm – volume: 24 start-page: 551 issue: 2 year: 2017 ident: 10.1016/j.knosys.2020.106711_b40 article-title: A new meta-heuristic algorithm: Vibrating particles system publication-title: Sci. Iran. Trans. A Civ. Eng. – year: 2011 ident: 10.1016/j.knosys.2020.106711_b70 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.knosys.2020.106711_b27 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – year: 2003 ident: 10.1016/j.knosys.2020.106711_b41 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.knosys.2020.106711_b62 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – year: 1992 ident: 10.1016/j.knosys.2020.106711_b16 – year: 2007 ident: 10.1016/j.knosys.2020.106711_b9 – volume: 17 start-page: 14 year: 2014 ident: 10.1016/j.knosys.2020.106711_b55 article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.02.002 – volume: 34 issue: 4 year: 2018 ident: 10.1016/j.knosys.2020.106711_b28 article-title: Multi-level cross entropy optimizer (MCEO): An evolutionary optimization algorithm for engineering problems publication-title: Eng. Comput. doi: 10.1007/s00366-017-0569-z – year: 1994 ident: 10.1016/j.knosys.2020.106711_b17 article-title: Evolution strategy, in computational intelligence: Imitating life – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.knosys.2020.106711_b8 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – volume: 222 start-page: 175 year: 2013 ident: 10.1016/j.knosys.2020.106711_b35 article-title: Black hole: A new heuristic optimization approach for data clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.08.023 – volume: 27 start-page: 308 issue: 2 year: 2015 ident: 10.1016/j.knosys.2020.106711_b64 article-title: A generalized hopfield network for nonsmooth constrained convex optimization: Lie derivative approach publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2496658 – volume: 40 start-page: 256 issue: 2 year: 2014 ident: 10.1016/j.knosys.2020.106711_b26 article-title: An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation publication-title: Appl. Intell. doi: 10.1007/s10489-013-0458-0 – volume: 38 start-page: 129 issue: 2 year: 2006 ident: 10.1016/j.knosys.2020.106711_b44 article-title: Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. doi: 10.1080/03052150500384759 – year: 2010 ident: 10.1016/j.knosys.2020.106711_b47 – volume: 1 start-page: 190 issue: 3 year: 1989 ident: 10.1016/j.knosys.2020.106711_b15 article-title: Tabu search—Part I publication-title: ORSA J. Comput. doi: 10.1287/ijoc.1.3.190 – start-page: 553 year: 2010 ident: 10.1016/j.knosys.2020.106711_b7 article-title: Termite colony optimization: A novel approach for optimizing continuous problems – start-page: 341 year: 2010 ident: 10.1016/j.knosys.2020.106711_b73 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 10.1016/j.knosys.2020.106711_b52 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.05.010 – volume: 13 start-page: 247 issue: 3 year: 2000 ident: 10.1016/j.knosys.2020.106711_b22 article-title: A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines publication-title: Appl. Intell. doi: 10.1023/A:1026568011013 – year: 2013 ident: 10.1016/j.knosys.2020.106711_b72 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 10.1016/j.knosys.2020.106711_b21 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 11 start-page: 177 issue: 2 year: 2019 ident: 10.1016/j.knosys.2020.106711_b63 article-title: Flying squirrel optimizer (FSO): A novel SI-based optimization algorithm for engineering problems publication-title: Iran. J. Optim. – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.knosys.2020.106711_b14 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.knosys.2020.106711_b32 article-title: GSA: A gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.knosys.2020.106711_b60 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 167 start-page: 69 year: 2016 ident: 10.1016/j.knosys.2020.106711_b37 article-title: Water evaporation optimization: A novel physically inspired optimization algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.01.008 – volume: 21 start-page: 1583 issue: 9 year: 1985 ident: 10.1016/j.knosys.2020.106711_b5 article-title: A study of mathematical programming methods for structural optimization. Part I: Theory publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1620210904 – volume: 33 start-page: 71 issue: 1 year: 2017 ident: 10.1016/j.knosys.2020.106711_b38 article-title: Engineering optimization based on ideal gas molecular movement algorithm publication-title: Eng. Comput. doi: 10.1007/s00366-016-0457-y – volume: 11 start-page: 431 issue: 3 year: 2008 ident: 10.1016/j.knosys.2020.106711_b69 article-title: Horse sense: Social status of horses (Equus Caballus) affects their likelihood of copying other horses’ behavior publication-title: Anim. Cogn. doi: 10.1007/s10071-007-0133-0 – year: 2003 ident: 10.1016/j.knosys.2020.106711_b23 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.knosys.2020.106711_b39 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – year: 1983 ident: 10.1016/j.knosys.2020.106711_b66 article-title: Horse behavior – start-page: 1 year: 1994 ident: 10.1016/j.knosys.2020.106711_b18 – start-page: 39 year: 1995 ident: 10.1016/j.knosys.2020.106711_b10 article-title: A new optimizer using particle swarm theory – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.knosys.2020.106711_b58 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – start-page: 162 year: 2007 ident: 10.1016/j.knosys.2020.106711_b45 article-title: Monkey search: A novel metaheuristic search for global optimization – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.knosys.2020.106711_b25 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – start-page: 668 year: 1995 ident: 10.1016/j.knosys.2020.106711_b4 article-title: An evolutionary and cooperative agents model for optimization – start-page: 425 year: 2007 ident: 10.1016/j.knosys.2020.106711_b30 article-title: Central force optimization: A new metaheuristic with applications in applied electromagnetics – volume: 213 start-page: 267 issue: 3–4 year: 2010 ident: 10.1016/j.knosys.2020.106711_b33 article-title: A novel heuristic optimization method: Charged system search publication-title: Acta Mech. doi: 10.1007/s00707-009-0270-4 – year: 2010 ident: 10.1016/j.knosys.2020.106711_b71 – year: 2005 ident: 10.1016/j.knosys.2020.106711_b43 – start-page: 264 year: 2006 ident: 10.1016/j.knosys.2020.106711_b29 article-title: Small-world optimization algorithm for function optimization – year: 2004 ident: 10.1016/j.knosys.2020.106711_b2 – volume: 37 start-page: 1196 issue: 10 year: 2013 ident: 10.1016/j.knosys.2020.106711_b49 article-title: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: Bird mating optimizer publication-title: Int. J. Energy Res. doi: 10.1002/er.2915 – start-page: 124 year: 2009 ident: 10.1016/j.knosys.2020.106711_b46 article-title: A dolphin partner optimization – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.knosys.2020.106711_b53 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – year: 1992 ident: 10.1016/j.knosys.2020.106711_b13 – start-page: 4661 year: 2007 ident: 10.1016/j.knosys.2020.106711_b24 article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition – year: 2003 ident: 10.1016/j.knosys.2020.106711_b67 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.knosys.2020.106711_b56 article-title: The Ant Lion optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – start-page: 5 year: 2005 ident: 10.1016/j.knosys.2020.106711_b68 article-title: Domestication and early history of the horse – volume: 26 start-page: 69 year: 2012 ident: 10.1016/j.knosys.2020.106711_b50 article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.07.001 – year: 2012 ident: 10.1016/j.knosys.2020.106711_b36 – volume: 3 start-page: 95 issue: 2 year: 1988 ident: 10.1016/j.knosys.2020.106711_b1 article-title: Genetic algorithms and machine learning publication-title: Mach. Learn. doi: 10.1023/A:1022602019183 – volume: 29 start-page: 2407 issue: 6 year: 2017 ident: 10.1016/j.knosys.2020.106711_b65 article-title: Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2691760 – year: 2012 ident: 10.1016/j.knosys.2020.106711_b11 – start-page: 2659 year: 2008 ident: 10.1016/j.knosys.2020.106711_b31 article-title: Magnetic optimization algorithms a new synthesis – volume: 55 start-page: 2369 issue: 10 year: 2012 ident: 10.1016/j.knosys.2020.106711_b51 article-title: Lion pride optimizer: An optimization algorithm inspired by lion pride behavior publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-012-4548-0 – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 10.1016/j.knosys.2020.106711_b57 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.knosys.2020.106711_b59 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 186 start-page: 311 issue: 2–4 year: 2000 ident: 10.1016/j.knosys.2020.106711_b3 article-title: An efficient constraint handling method for genetic algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00389-8 – volume: 29 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.knosys.2020.106711_b54 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y |
| SSID | ssj0002218 |
| Score | 2.6790202 |
| Snippet | This paper proposes a new meta-heuristic algorithm inspired by horses’ herding behavior for high-dimensional optimization problems. This method, called the... This paper proposes a new meta-heuristic algorithm inspired by horses' herding behavior for high-dimensional optimization problems. This method, called the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106711 |
| SubjectTerms | Algorithms Behavior Behavior problems Complexity Defense mechanisms Global optimization Grazing Heuristic Heuristic methods High dimension Horses Horse’s life Imitation Meta-heuristic Optimization Optimization algorithms Pastoralism Sensitivity analysis Sociability Swarm intelligence Trigonometric functions Wolves |
| Title | Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems |
| URI | https://dx.doi.org/10.1016/j.knosys.2020.106711 https://www.proquest.com/docview/2502228201 |
| Volume | 213 |
| WOSCitedRecordID | wos000614642900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQy4ELb0ShRT5wWxllbSfecFtVLeXRFYIi7S2KY4dNH0mVLKjdX89M7KT7ECogcYlW9sbe9UzG30w83xDyWuQ80LBPsNhEAZMaHFYdZYplUZ7Z0HAd6bZqySc1mYym0_izj-k2bTkBVZajq6v48r-KGtpA2Jg6-xfi7geFBvgMQocriB2ufyT4o6pGHmFbm0EF9uDCJ1oO0vPvVV3MZy4yP3CMnqwo8VU7oM6-uz14iCzGzCDzv2PtWB3KV6FplpHtxy44x3BjNJ4iukfsx0VaT1ILY7RwGTx00-vaolhcuzjsO_S0L2q76DeLL2kzc5W1j6tZ4_PWfJSCD_Fgs8vTdKGzjfQZH4MMmAo846x1FnikAPLLIF420dzlq26Yexd5OH1zVlbwr8Db59gYKW-_V4m0v-J0OBtHjh6JPO3bXIUx2MLt8fuD6Yd-B-e8jQv3P69LuWzPBW7O9TtIs7a5t4jl5CG5710NOnYq8ojcseVj8qAr40G9VX9CilZjKGoMXRYz7VXiLR3TNX256aSgL3RdX1YH6vTlKfl2eHCyf8R8BQ6WCSHnLAytVlpoASg5laGxEloCnQKsSU0uY57bVBoj03hoIxHoGPzvUaQxBpBxlQ3FM7JVVqV9TqjB97kiNoobLkOVaxjW6CjgNjOByMMdIrpFTDJPT49VUs6T7hziaeKWPsGlT9zS7xDW33Xp6Flu-b7q5JN4iOmgYwIqdcudu504E_-0Q3-I8RIE0S_-eeCX5N7NA7NLtub1D7tH7mY_50VTv_Kq-QsFbrJF |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Horse+herd+optimization+algorithm%3A+A+nature-inspired+algorithm+for+high-dimensional+optimization+problems&rft.jtitle=Knowledge-based+systems&rft.au=MiarNaeimi%2C+Farid&rft.au=Azizyan%2C+Gholamreza&rft.au=Rashki%2C+Mohsen&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=213&rft_id=info:doi/10.1016%2Fj.knosys.2020.106711&rft.externalDocID=S0950705120308406 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |