Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems

This paper proposes a new meta-heuristic algorithm inspired by horses’ herding behavior for high-dimensional optimization problems. This method, called the Horse herd Optimization Algorithm (HOA), imitates the social performances of horses at different ages using six important features: grazing, hie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 213; S. 106711
Hauptverfasser: MiarNaeimi, Farid, Azizyan, Gholamreza, Rashki, Mohsen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 15.02.2021
Elsevier Science Ltd
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes a new meta-heuristic algorithm inspired by horses’ herding behavior for high-dimensional optimization problems. This method, called the Horse herd Optimization Algorithm (HOA), imitates the social performances of horses at different ages using six important features: grazing, hierarchy, sociability, imitation, defense mechanism and roam. The HOA algorithm is created based on these behaviors, which has not existed in the history of studies so far. A sensitivity analysis is also performed to obtain the best values of coefficients used in the algorithm. HOA has a very good performance in solving complex problems in high dimensions, due to the large number of control parameters based on the behavior of horses at different ages. The proposed algorithm is compared with popular nature-inspired optimization algorithms, including grasshopper optimization algorithm (GOA), sine cosine algorithm (SCA), multi-verse optimizer (MVO), moth–flame optimizer (MFO), dragonfly algorithm (DA), and grey​ wolf optimizer (GWO). Solving several high-dimensional benchmark functions (up to 10,000 dimensions) shows that the proposed algorithm is highly efficient for high-dimensional global optimization problems. The HOA algorithm also outperforms the mentioned popular optimization algorithms for the case of accuracy and efficiency with lowest computational cost and complexity.
AbstractList This paper proposes a new meta-heuristic algorithm inspired by horses’ herding behavior for high-dimensional optimization problems. This method, called the Horse herd Optimization Algorithm (HOA), imitates the social performances of horses at different ages using six important features: grazing, hierarchy, sociability, imitation, defense mechanism and roam. The HOA algorithm is created based on these behaviors, which has not existed in the history of studies so far. A sensitivity analysis is also performed to obtain the best values of coefficients used in the algorithm. HOA has a very good performance in solving complex problems in high dimensions, due to the large number of control parameters based on the behavior of horses at different ages. The proposed algorithm is compared with popular nature-inspired optimization algorithms, including grasshopper optimization algorithm (GOA), sine cosine algorithm (SCA), multi-verse optimizer (MVO), moth–flame optimizer (MFO), dragonfly algorithm (DA), and grey​ wolf optimizer (GWO). Solving several high-dimensional benchmark functions (up to 10,000 dimensions) shows that the proposed algorithm is highly efficient for high-dimensional global optimization problems. The HOA algorithm also outperforms the mentioned popular optimization algorithms for the case of accuracy and efficiency with lowest computational cost and complexity.
ArticleNumber 106711
Author Azizyan, Gholamreza
MiarNaeimi, Farid
Rashki, Mohsen
Author_xml – sequence: 1
  givenname: Farid
  surname: MiarNaeimi
  fullname: MiarNaeimi, Farid
  email: Farid.Naeimi@pgs.usb.ac.ir
  organization: Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran
– sequence: 2
  givenname: Gholamreza
  surname: Azizyan
  fullname: Azizyan, Gholamreza
  email: g.azizyan@eng.usb.ac.ir
  organization: Civil Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran
– sequence: 3
  givenname: Mohsen
  surname: Rashki
  fullname: Rashki, Mohsen
  email: mrashki@eng.usb.ac.ir
  organization: Department of Architecture Engineering, University of Sistan and Baluchestan, Zahedan, Iran
BookMark eNqFkM9LwzAUx4NMcJv-Bx4KnjuT9EfaHYQx1AkDL3oOafK6prbNTDJh_vW2VhA96Cnw8j7f995nhiad6QChS4IXBJP0ul68dMYd3YJiOpRSRsgJmpKM0ZDFOJ-gKc4THDKckDM0c67GGFNKsinSG2MdBBVYFZi9161-F16bLhDNzljtq3YZrIJO-IOFUHdury2o78-gNDao9K4KlW6hcz0pmp9Be2uKBlp3jk5L0Ti4-Hrn6Pnu9mm9CbeP9w_r1TaUURT7MEmgYEVURElKRZwoiPsKLkSGiVBlnNMSRKxULHICaYSLnGYsSwuSEyYpkySao6sxtx_8egDneW0Otl_LcZr0V9OM4qFrOXZJa5yzUHKp_efC3grdcIL5oJbXfFTLB7V8VNvD8S94b3Ur7PE_7GbEoD__TYPlTmroJKheqvRcGf13wAdsrpmS
CitedBy_id crossref_primary_10_3390_pr9122276
crossref_primary_10_1016_j_eswa_2024_126207
crossref_primary_10_1007_s10462_022_10340_z
crossref_primary_10_1007_s42235_024_00493_8
crossref_primary_10_1080_1062936X_2023_2261855
crossref_primary_10_1371_journal_pone_0275346
crossref_primary_10_1007_s00158_025_04080_1
crossref_primary_10_1007_s11831_022_09800_0
crossref_primary_10_1016_j_eswa_2023_119992
crossref_primary_10_1007_s11831_023_09912_1
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_1007_s00500_021_06404_x
crossref_primary_10_1016_j_istruc_2024_105872
crossref_primary_10_1007_s00500_021_06109_1
crossref_primary_10_1007_s10462_025_11269_9
crossref_primary_10_1038_s41598_024_66450_x
crossref_primary_10_1007_s10064_024_03819_2
crossref_primary_10_1515_mt_2022_0119
crossref_primary_10_1016_j_eswa_2023_120186
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_3390_sym16070795
crossref_primary_10_1016_j_jestch_2023_101453
crossref_primary_10_1111_exsy_13306
crossref_primary_10_1016_j_knosys_2023_110368
crossref_primary_10_3103_S1060992X22020072
crossref_primary_10_1038_s41598_024_78977_0
crossref_primary_10_1016_j_infrared_2024_105584
crossref_primary_10_3233_WEB_220081
crossref_primary_10_3390_jrfm18050281
crossref_primary_10_7717_peerj_cs_910
crossref_primary_10_1007_s12065_023_00898_0
crossref_primary_10_1007_s40435_021_00892_3
crossref_primary_10_1093_jcde_qwae004
crossref_primary_10_1016_j_energy_2024_130395
crossref_primary_10_1016_j_rineng_2024_102766
crossref_primary_10_1038_s41598_024_84632_5
crossref_primary_10_3390_math10193466
crossref_primary_10_1109_ACCESS_2022_3156593
crossref_primary_10_1016_j_eswa_2022_119211
crossref_primary_10_1088_2631_8695_ad5f16
crossref_primary_10_1007_s43452_022_00415_7
crossref_primary_10_1016_j_egyr_2022_05_161
crossref_primary_10_1149_2162_8777_ad5588
crossref_primary_10_1007_s13042_022_01670_z
crossref_primary_10_1016_j_array_2025_100492
crossref_primary_10_1038_s41598_024_68239_4
crossref_primary_10_1007_s00500_021_06522_6
crossref_primary_10_1007_s11831_023_10034_x
crossref_primary_10_1016_j_knosys_2024_111850
crossref_primary_10_1007_s10462_024_10986_x
crossref_primary_10_1007_s42044_024_00174_z
crossref_primary_10_1108_EC_10_2024_0904
crossref_primary_10_1007_s10586_024_04447_x
crossref_primary_10_1016_j_eswa_2024_123189
crossref_primary_10_1111_exsy_12913
crossref_primary_10_1016_j_ast_2024_108953
crossref_primary_10_1080_0952813X_2023_2196986
crossref_primary_10_1007_s12083_024_01666_2
crossref_primary_10_32604_cmc_2024_051336
crossref_primary_10_1080_01496395_2025_2537712
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_3390_math11040862
crossref_primary_10_1002_ima_22747
crossref_primary_10_1016_j_compbiomed_2022_106123
crossref_primary_10_1016_j_compeleceng_2022_107862
crossref_primary_10_1109_ACCESS_2022_3144431
crossref_primary_10_1007_s10278_023_00962_2
crossref_primary_10_2139_ssrn_5261204
crossref_primary_10_3390_math9141661
crossref_primary_10_1007_s11227_022_04880_y
crossref_primary_10_3389_fbioe_2022_1018895
crossref_primary_10_1002_ett_4541
crossref_primary_10_1007_s10489_022_04446_8
crossref_primary_10_1007_s10462_024_10829_9
crossref_primary_10_1007_s42235_022_00323_9
crossref_primary_10_1002_dac_5817
crossref_primary_10_1007_s00521_025_11564_0
crossref_primary_10_1016_j_est_2024_112635
crossref_primary_10_1016_j_eswa_2023_119672
crossref_primary_10_1080_01969722_2022_2122004
crossref_primary_10_1080_13682199_2023_2211890
crossref_primary_10_1016_j_asoc_2023_110483
crossref_primary_10_1007_s11831_025_10228_5
crossref_primary_10_1007_s12597_024_00785_x
crossref_primary_10_1007_s10489_022_03762_3
crossref_primary_10_1049_cit2_12316
crossref_primary_10_1007_s11831_025_10281_0
crossref_primary_10_1109_ACCESS_2023_3236023
crossref_primary_10_1155_2024_1444493
crossref_primary_10_1007_s12065_024_00997_6
crossref_primary_10_1016_j_bspc_2024_106269
crossref_primary_10_3233_AIS_220369
crossref_primary_10_3233_THC_220254
crossref_primary_10_3390_app12178392
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_1016_j_engappai_2022_105075
crossref_primary_10_3390_su16093788
crossref_primary_10_1016_j_engappai_2021_104324
crossref_primary_10_1007_s00477_024_02736_w
crossref_primary_10_1007_s10661_024_12357_z
crossref_primary_10_1007_s10462_023_10446_y
crossref_primary_10_48084_etasr_11864
crossref_primary_10_1002_oca_3316
crossref_primary_10_1016_j_bspc_2022_103840
crossref_primary_10_1016_j_bspc_2023_104696
crossref_primary_10_1016_j_bspc_2022_103833
crossref_primary_10_1007_s11227_025_07219_5
crossref_primary_10_1016_j_jenvman_2025_125600
crossref_primary_10_1016_j_eswa_2023_123115
crossref_primary_10_1016_j_knosys_2023_111257
crossref_primary_10_1002_ett_4797
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_3390_buildings12081280
crossref_primary_10_1016_j_advengsoft_2022_103353
crossref_primary_10_1016_j_advengsoft_2022_103351
crossref_primary_10_1016_j_cie_2022_107974
crossref_primary_10_1007_s10586_024_04713_y
crossref_primary_10_1007_s10489_023_04817_9
crossref_primary_10_1109_ACCESS_2024_3350336
crossref_primary_10_1016_j_eswa_2022_116895
crossref_primary_10_1007_s00521_024_10346_4
crossref_primary_10_1016_j_eswa_2022_117629
crossref_primary_10_3390_a16030134
crossref_primary_10_3390_app142311116
crossref_primary_10_1155_2022_1535957
crossref_primary_10_1007_s10462_025_11351_2
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_1155_2022_2748215
crossref_primary_10_1080_0305215X_2022_2035378
crossref_primary_10_1016_j_bspc_2023_104707
crossref_primary_10_1007_s12652_022_03765_5
crossref_primary_10_1109_ACCESS_2022_3172789
crossref_primary_10_1007_s12559_024_10300_5
crossref_primary_10_3390_su151411160
crossref_primary_10_1016_j_cie_2022_108361
crossref_primary_10_1080_1062936X_2024_2404853
crossref_primary_10_1007_s11042_023_15416_8
crossref_primary_10_1007_s12597_024_00869_8
crossref_primary_10_1142_S0219649223500582
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1038_s41598_025_85481_6
crossref_primary_10_1007_s11227_025_07410_8
crossref_primary_10_1080_02286203_2025_2479003
crossref_primary_10_1007_s12145_023_01110_8
crossref_primary_10_1080_0952813X_2023_2183269
crossref_primary_10_1007_s00530_023_01168_w
crossref_primary_10_1016_j_compbiomed_2021_105152
crossref_primary_10_1007_s00521_022_07148_x
crossref_primary_10_1002_ese3_1550
crossref_primary_10_1109_ACCESS_2023_3279416
crossref_primary_10_3390_math12040594
crossref_primary_10_1002_widm_1548
crossref_primary_10_1007_s10479_024_06389_4
crossref_primary_10_1016_j_jocs_2023_102205
crossref_primary_10_1016_j_paerosci_2024_101046
crossref_primary_10_1155_2023_2777505
crossref_primary_10_1007_s12065_023_00884_6
crossref_primary_10_1515_mt_2024_0188
crossref_primary_10_1007_s10696_023_09502_0
crossref_primary_10_1016_j_aej_2025_02_046
crossref_primary_10_1016_j_compag_2022_107217
crossref_primary_10_1515_mt_2024_0515
crossref_primary_10_1515_mt_2022_0048
crossref_primary_10_1049_ccs2_12094
crossref_primary_10_1016_j_knosys_2021_107955
crossref_primary_10_1016_j_asoc_2025_112691
crossref_primary_10_1007_s11042_023_18084_w
crossref_primary_10_1016_j_asoc_2024_112271
crossref_primary_10_1016_j_jnca_2023_103617
crossref_primary_10_1007_s12065_024_00945_4
crossref_primary_10_1007_s11269_022_03163_8
crossref_primary_10_1080_0954898X_2024_2316080
crossref_primary_10_1007_s11277_024_11184_2
crossref_primary_10_1016_j_eswa_2023_122638
crossref_primary_10_1007_s12652_023_04571_3
crossref_primary_10_1016_j_knosys_2022_109591
crossref_primary_10_1016_j_asoc_2024_111734
crossref_primary_10_3390_a17050172
crossref_primary_10_1016_j_swevo_2022_101127
crossref_primary_10_1016_j_energy_2024_132278
crossref_primary_10_1080_13682199_2023_2180140
crossref_primary_10_1109_ACCESS_2023_3329069
crossref_primary_10_1007_s12652_022_04098_z
crossref_primary_10_1002_dac_5656
crossref_primary_10_1016_j_conbuildmat_2022_128334
crossref_primary_10_1007_s00500_023_08577_z
crossref_primary_10_1109_TCYB_2025_3554532
crossref_primary_10_1080_01496395_2023_2261076
crossref_primary_10_1016_j_matcom_2022_02_030
crossref_primary_10_1155_2023_3988288
crossref_primary_10_1016_j_energy_2022_123396
crossref_primary_10_1007_s11042_022_14001_9
crossref_primary_10_1016_j_eswa_2023_122200
crossref_primary_10_3390_s22218242
crossref_primary_10_1016_j_cma_2024_117411
crossref_primary_10_3390_a14040122
crossref_primary_10_1007_s10489_022_04201_z
crossref_primary_10_1016_j_renene_2023_119718
crossref_primary_10_3390_w17060878
crossref_primary_10_1007_s40996_021_00805_6
crossref_primary_10_1007_s11042_023_15023_7
crossref_primary_10_1016_j_knosys_2025_113168
crossref_primary_10_1016_j_eswa_2022_119303
crossref_primary_10_1016_j_eswa_2022_117127
crossref_primary_10_1007_s10586_025_05358_1
crossref_primary_10_1016_j_knosys_2023_110454
crossref_primary_10_1186_s44147_024_00396_9
crossref_primary_10_1007_s00521_022_07146_z
crossref_primary_10_1016_j_cma_2025_117825
crossref_primary_10_2478_pead_2024_0006
crossref_primary_10_1515_mt_2022_0013
crossref_primary_10_1515_mt_2022_0012
crossref_primary_10_1007_s42235_022_00223_y
crossref_primary_10_1142_S0219649223500570
crossref_primary_10_3390_a15050156
crossref_primary_10_3390_w17131842
crossref_primary_10_1007_s10462_025_11291_x
crossref_primary_10_1007_s10586_025_05460_4
crossref_primary_10_1007_s11063_023_11394_y
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_1080_01969722_2022_2157601
crossref_primary_10_1016_j_compbiomed_2023_107389
crossref_primary_10_1007_s00202_024_02645_9
crossref_primary_10_3390_s24227161
crossref_primary_10_3390_en14217115
crossref_primary_10_1016_j_advengsoft_2022_103198
crossref_primary_10_1016_j_advengsoft_2024_103671
crossref_primary_10_1016_j_fluid_2022_113682
crossref_primary_10_1007_s10115_023_01890_x
crossref_primary_10_1007_s00202_023_02165_y
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1007_s10115_024_02105_7
crossref_primary_10_3390_electronics13132471
crossref_primary_10_1016_j_eswa_2023_122316
crossref_primary_10_1134_S1810232824010107
crossref_primary_10_1016_j_knosys_2022_110011
crossref_primary_10_1016_j_cma_2023_116238
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1080_00051144_2023_2288489
Cites_doi 10.1109/TEVC.2009.2033580
10.1023/A:1008202821328
10.1016/j.advengsoft.2017.01.004
10.1115/1.2912596
10.1016/j.knosys.2015.12.022
10.1016/j.future.2019.02.028
10.1016/j.swevo.2014.02.002
10.1007/s00366-017-0569-z
10.1109/MCI.2006.329691
10.1016/j.ins.2012.08.023
10.1109/TNNLS.2015.2496658
10.1007/s10489-013-0458-0
10.1080/03052150500384759
10.1287/ijoc.1.3.190
10.1016/j.cnsns.2012.05.010
10.1023/A:1026568011013
10.1109/4235.771163
10.1126/science.220.4598.671
10.1016/j.ins.2009.03.004
10.1016/j.advengsoft.2017.07.002
10.1016/j.compstruc.2016.01.008
10.1002/nme.1620210904
10.1007/s00366-016-0457-y
10.1007/s10071-007-0133-0
10.1007/s00521-015-1870-7
10.1016/j.knosys.2015.07.006
10.1109/TEVC.2008.919004
10.1007/s00707-009-0270-4
10.1002/er.2915
10.1016/j.advengsoft.2013.12.007
10.1016/j.advengsoft.2015.01.010
10.1016/j.knosys.2011.07.001
10.1023/A:1022602019183
10.1109/TNNLS.2017.2691760
10.1007/s11432-012-4548-0
10.1007/s00521-015-1920-1
10.1016/j.advengsoft.2016.01.008
10.1016/S0045-7825(99)00389-8
10.1007/s00366-011-0241-y
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Feb 15, 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Feb 15, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2020.106711
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2020_106711
S0950705120308406
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-55eb7b3b3562a45de455e0ba801adf492fea4dd4a91e630b928786b1917c27c13
ISICitedReferencesCount 272
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614642900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:42:59 EST 2025
Sat Nov 29 07:08:37 EST 2025
Tue Nov 18 22:11:22 EST 2025
Fri Feb 23 02:41:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High dimension
Global optimization
Horse’s life
Swarm intelligence
Meta-heuristic
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-55eb7b3b3562a45de455e0ba801adf492fea4dd4a91e630b928786b1917c27c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2502228201
PQPubID 2035257
ParticipantIDs proquest_journals_2502228201
crossref_citationtrail_10_1016_j_knosys_2020_106711
crossref_primary_10_1016_j_knosys_2020_106711
elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106711
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Mirjalili (b27) 2016; 96
Kim, Kim, Kim (b22) 2000; 13
Rechenberg, Zurada, Marks II, Goldberg (b17) 1994
Bogner (b70) 2011
Li, Yu, Huang, He (b65) 2017; 29
Kaveh, Ghazaan (b40) 2017; 24
Yang (b48) 2010
Li (b41) 2003
Askarzadeh, Rezazadeh (b49) 2013; 37
Jamil, Yang (b72) 2013
Mirjalili, Mirjalili, Lewis (b53) 2014; 69
Deb (b3) 2000; 186
Sandgren (b6) 1990; 112
Pan (b50) 2012; 26
Eusuff, Lansey, Pasha (b44) 2006; 38
MiarNaeimi, Azizyan, Rashki (b28) 2018; 34
Lam, Li (b34) 2010; 14
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b60) 2017; 114
Reynolds (b19) 1994
Abbattista, Abbattista, Caponetti (b4) 1995
Gandomi, Yang, Alavi (b54) 2013; 29
Mirjalili (b57) 2016; 27
Storn, Price (b20) 1997; 11
Karaboga (b42) 2005
Das, Suganthan (b73) 2010
Yang (b71) 2010
Mirjalili (b56) 2015; 83
Levine (b68) 2005
McDonnell (b67) 2003
Radcliffe, Surry (b18) 1994
Dorigo, Birattari, Stutzle (b8) 2006; 1
Karaboga, Basturk (b9) 2007
Saremi, Mirjalili, Lewis (b61) 2017; 105
Cuevas, Echavarría, Ramírez-Ortegón (b26) 2014; 40
Glover (b15) 1989; 1
Holland (b13) 1992
Hatamlou (b35) 2013; 222
Mirjalili, Mirjalili, Hatamlou (b39) 2016; 27
Yang (b47) 2010
Belegundu, Arora (b5) 1985; 21
Moosavian, Roodsari (b55) 2014; 17
Moghaddam, Moghaddam, Cheriet (b36) 2012
Niu, Wang (b11) 2012
Yao, Liu, Lin (b21) 1999; 3
Eberhart, Kennedy (b10) 1995
Hedayatzadeh, Salmassi, Keshtgari, Akbari, Ziarati (b7) 2010
Mucherino, Seref (b45) 2007
Sinha, Goldberg (b23) 2003
Goldberg, Holland (b1) 1988; 3
Tayarani-N, Akbarzadeh-T (b31) 2008
Krueger, Heinze (b69) 2008; 11
Atashpaz-Gargari, Lucas (b24) 2007
Mirjalili, Lewis (b59) 2016; 95
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b62) 2019; 97
Azizyan, Miarnaeimi, Rashki, Shabakhty (b63) 2019; 11
Kaveh, Talatahari (b33) 2010; 213
Talbi (b12) 2009
Roth (b43) 2005
Shiqin, Jianjun, Guangxing (b46) 2009
Li, Yu, Huang, Chen, He (b64) 2015; 27
Mirjalili (b58) 2015; 89
Waring (b66) 1983
Simon (b25) 2008; 12
Formato (b30) 2007
Du, Wu, Zhuang (b29) 2006
Kaveh, Bakhshpoori (b37) 2016; 167
Darwin (b2) 2004
Wang, Jin, Cheng (b51) 2012; 55
Kirkpatrick, Gelatt, Vecchi (b14) 1983; 220
Koza (b16) 1992
Varaee, Ghasemi (b38) 2017; 33
Gandomi, Alavi (b52) 2012; 17
Rashedi, Nezamabadi-Pour, Saryazdi (b32) 2009; 179
Waring (10.1016/j.knosys.2020.106711_b66) 1983
Yao (10.1016/j.knosys.2020.106711_b21) 1999; 3
Varaee (10.1016/j.knosys.2020.106711_b38) 2017; 33
Pan (10.1016/j.knosys.2020.106711_b50) 2012; 26
Belegundu (10.1016/j.knosys.2020.106711_b5) 1985; 21
Li (10.1016/j.knosys.2020.106711_b65) 2017; 29
Eberhart (10.1016/j.knosys.2020.106711_b10) 1995
Cuevas (10.1016/j.knosys.2020.106711_b26) 2014; 40
Mucherino (10.1016/j.knosys.2020.106711_b45) 2007
Karaboga (10.1016/j.knosys.2020.106711_b9) 2007
Holland (10.1016/j.knosys.2020.106711_b13) 1992
Saremi (10.1016/j.knosys.2020.106711_b61) 2017; 105
Mirjalili (10.1016/j.knosys.2020.106711_b27) 2016; 96
Roth (10.1016/j.knosys.2020.106711_b43) 2005
Hedayatzadeh (10.1016/j.knosys.2020.106711_b7) 2010
Dorigo (10.1016/j.knosys.2020.106711_b8) 2006; 1
Askarzadeh (10.1016/j.knosys.2020.106711_b49) 2013; 37
Rashedi (10.1016/j.knosys.2020.106711_b32) 2009; 179
Mirjalili (10.1016/j.knosys.2020.106711_b56) 2015; 83
MiarNaeimi (10.1016/j.knosys.2020.106711_b28) 2018; 34
Yang (10.1016/j.knosys.2020.106711_b71) 2010
Goldberg (10.1016/j.knosys.2020.106711_b1) 1988; 3
Deb (10.1016/j.knosys.2020.106711_b3) 2000; 186
Eusuff (10.1016/j.knosys.2020.106711_b44) 2006; 38
Yang (10.1016/j.knosys.2020.106711_b48) 2010
Sandgren (10.1016/j.knosys.2020.106711_b6) 1990; 112
Jamil (10.1016/j.knosys.2020.106711_b72) 2013
Niu (10.1016/j.knosys.2020.106711_b11) 2012
Du (10.1016/j.knosys.2020.106711_b29) 2006
Lam (10.1016/j.knosys.2020.106711_b34) 2010; 14
Gandomi (10.1016/j.knosys.2020.106711_b52) 2012; 17
Gandomi (10.1016/j.knosys.2020.106711_b54) 2013; 29
Mirjalili (10.1016/j.knosys.2020.106711_b57) 2016; 27
Storn (10.1016/j.knosys.2020.106711_b20) 1997; 11
Atashpaz-Gargari (10.1016/j.knosys.2020.106711_b24) 2007
Glover (10.1016/j.knosys.2020.106711_b15) 1989; 1
Sinha (10.1016/j.knosys.2020.106711_b23) 2003
Reynolds (10.1016/j.knosys.2020.106711_b19) 1994
Li (10.1016/j.knosys.2020.106711_b41) 2003
Mirjalili (10.1016/j.knosys.2020.106711_b60) 2017; 114
Moghaddam (10.1016/j.knosys.2020.106711_b36) 2012
Koza (10.1016/j.knosys.2020.106711_b16) 1992
Li (10.1016/j.knosys.2020.106711_b64) 2015; 27
Bogner (10.1016/j.knosys.2020.106711_b70) 2011
Wang (10.1016/j.knosys.2020.106711_b51) 2012; 55
Hatamlou (10.1016/j.knosys.2020.106711_b35) 2013; 222
Rechenberg (10.1016/j.knosys.2020.106711_b17) 1994
Heidari (10.1016/j.knosys.2020.106711_b62) 2019; 97
Mirjalili (10.1016/j.knosys.2020.106711_b59) 2016; 95
Kirkpatrick (10.1016/j.knosys.2020.106711_b14) 1983; 220
Formato (10.1016/j.knosys.2020.106711_b30) 2007
Mirjalili (10.1016/j.knosys.2020.106711_b53) 2014; 69
Kaveh (10.1016/j.knosys.2020.106711_b37) 2016; 167
Mirjalili (10.1016/j.knosys.2020.106711_b58) 2015; 89
Kaveh (10.1016/j.knosys.2020.106711_b40) 2017; 24
Simon (10.1016/j.knosys.2020.106711_b25) 2008; 12
Azizyan (10.1016/j.knosys.2020.106711_b63) 2019; 11
Radcliffe (10.1016/j.knosys.2020.106711_b18) 1994
Mirjalili (10.1016/j.knosys.2020.106711_b39) 2016; 27
Levine (10.1016/j.knosys.2020.106711_b68) 2005
Kim (10.1016/j.knosys.2020.106711_b22) 2000; 13
McDonnell (10.1016/j.knosys.2020.106711_b67) 2003
Kaveh (10.1016/j.knosys.2020.106711_b33) 2010; 213
Yang (10.1016/j.knosys.2020.106711_b47) 2010
Krueger (10.1016/j.knosys.2020.106711_b69) 2008; 11
Darwin (10.1016/j.knosys.2020.106711_b2) 2004
Tayarani-N (10.1016/j.knosys.2020.106711_b31) 2008
Talbi (10.1016/j.knosys.2020.106711_b12) 2009
Karaboga (10.1016/j.knosys.2020.106711_b42) 2005
Abbattista (10.1016/j.knosys.2020.106711_b4) 1995
Moosavian (10.1016/j.knosys.2020.106711_b55) 2014; 17
Das (10.1016/j.knosys.2020.106711_b73) 2010
Shiqin (10.1016/j.knosys.2020.106711_b46) 2009
References_xml – volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b57
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
– volume: 213
  start-page: 267
  year: 2010
  end-page: 289
  ident: b33
  article-title: A novel heuristic optimization method: Charged system search
  publication-title: Acta Mech.
– volume: 34
  year: 2018
  ident: b28
  article-title: Multi-level cross entropy optimizer (MCEO): An evolutionary optimization algorithm for engineering problems
  publication-title: Eng. Comput.
– year: 2003
  ident: b67
  article-title: The Equid Ethogram: A Practical Field Guide to Horse Behavior
– start-page: 162
  year: 2007
  end-page: 173
  ident: b45
  article-title: Monkey search: A novel metaheuristic search for global optimization
  publication-title: AIP Conference Proceedings
– volume: 27
  start-page: 308
  year: 2015
  end-page: 321
  ident: b64
  article-title: A generalized hopfield network for nonsmooth constrained convex optimization: Lie derivative approach
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b61
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Adv. Eng. Softw.
– year: 2009
  ident: b12
  article-title: Metaheuristics: From Design to Implementation
– year: 2004
  ident: b2
  article-title: On the Origin of Species, Vol. 1859
– volume: 167
  start-page: 69
  year: 2016
  end-page: 85
  ident: b37
  article-title: Water evaporation optimization: A novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
– year: 2013
  ident: b72
  article-title: A literature survey of benchmark functions for global optimization problems
– start-page: 2659
  year: 2008
  end-page: 2664
  ident: b31
  article-title: Magnetic optimization algorithms a new synthesis
  publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
– start-page: 5
  year: 2005
  end-page: 22
  ident: b68
  article-title: Domestication and early history of the horse
  publication-title: The Domestic Horse: The Origins, Development and Management of Its Behaviour
– volume: 33
  start-page: 71
  year: 2017
  end-page: 93
  ident: b38
  article-title: Engineering optimization based on ideal gas molecular movement algorithm
  publication-title: Eng. Comput.
– year: 1992
  ident: b13
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– volume: 38
  start-page: 129
  year: 2006
  end-page: 154
  ident: b44
  article-title: Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization
  publication-title: Eng. Optim.
– volume: 21
  start-page: 1583
  year: 1985
  end-page: 1599
  ident: b5
  article-title: A study of mathematical programming methods for structural optimization. Part I: Theory
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b53
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 222
  start-page: 175
  year: 2013
  end-page: 184
  ident: b35
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Inf. Sci.
– start-page: 553
  year: 2010
  end-page: 558
  ident: b7
  article-title: Termite colony optimization: A novel approach for optimizing continuous problems
  publication-title: 2010 18th Iranian Conference on Electrical Engineering
– volume: 14
  start-page: 381
  year: 2010
  end-page: 399
  ident: b34
  article-title: Chemical-reaction-inspired metaheuristic for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b59
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b25
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2010
  ident: b71
  article-title: Nature-Inspired Metaheuristic Algorithms
– start-page: 425
  year: 2007
  end-page: 491
  ident: b30
  article-title: Central force optimization: A new metaheuristic with applications in applied electromagnetics
  publication-title: Progress in Electromagnetics Research
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: b3
  article-title: An efficient constraint handling method for genetic algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  ident: b1
  article-title: Genetic algorithms and machine learning
  publication-title: Mach. Learn.
– year: 2007
  ident: b9
  publication-title: Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization
– start-page: 39
  year: 1995
  end-page: 43
  ident: b10
  article-title: A new optimizer using particle swarm theory
  publication-title: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
– volume: 11
  start-page: 177
  year: 2019
  end-page: 205
  ident: b63
  article-title: Flying squirrel optimizer (FSO): A novel SI-based optimization algorithm for engineering problems
  publication-title: Iran. J. Optim.
– volume: 26
  start-page: 69
  year: 2012
  end-page: 74
  ident: b50
  article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
– year: 2003
  ident: b23
  article-title: A Survey of Hybrid Genetic and Evolutionary Algorithms, Vol. 2003004
– volume: 37
  start-page: 1196
  year: 2013
  end-page: 1204
  ident: b49
  article-title: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: Bird mating optimizer
  publication-title: Int. J. Energy Res.
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b8
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
– year: 1994
  ident: b17
  article-title: Evolution strategy, in computational intelligence: Imitating life
  publication-title: Computational Intelligence Imitating Life
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: b54
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
– start-page: 4661
  year: 2007
  end-page: 4667
  ident: b24
  article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
  publication-title: 2007 IEEE Congress on Evolutionary Computation
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b21
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
– year: 1983
  ident: b66
  article-title: Horse behavior
  publication-title: The Behavioral Traits and Adaptations of Domestic and Wild Horses, Including Ponies
– year: 2003
  ident: b41
  article-title: A New Intelligent Optimization-Artificial Fish Swarm Algorithm
– start-page: 1
  year: 1994
  end-page: 16
  ident: b18
  publication-title: Formal Memetic Algorithms
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b60
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– start-page: 341
  year: 2010
  end-page: 359
  ident: b73
  article-title: Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems
– year: 1992
  ident: b16
  article-title: Genetic Programming: On the Programming of Computers By Means of Natural Selection
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b27
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– start-page: 668
  year: 1995
  end-page: 671
  ident: b4
  article-title: An evolutionary and cooperative agents model for optimization
  publication-title: Proceedings of 1995 IEEE International Conference on Evolutionary Computation
– start-page: 131
  year: 1994
  end-page: 139
  ident: b19
  article-title: An introduction to cultural algorithms
  publication-title: Proceedings of the Third Annual Conference on Evolutionary Programming
– volume: 17
  start-page: 14
  year: 2014
  end-page: 24
  ident: b55
  article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks
  publication-title: Swarm Evol. Comput.
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: b52
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– year: 2005
  ident: b42
  article-title: An Idea Based on Honey Bee Swarm for Numerical Optimization
– volume: 29
  start-page: 2407
  year: 2017
  end-page: 2418
  ident: b65
  article-title: Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2011
  ident: b70
  article-title: A comprehensive summary of the scientific literature on horse assisted education in Germany
– year: 2012
  ident: b11
  article-title: Bacterial Colony Optimization, Vol. 2012
– volume: 55
  start-page: 2369
  year: 2012
  end-page: 2389
  ident: b51
  article-title: Lion pride optimizer: An optimization algorithm inspired by lion pride behavior
  publication-title: Sci. China Inf. Sci.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b14
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b62
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– year: 2005
  ident: b43
  article-title: Termite: A swarm intelligent routing algorithm for mobile wireless ad-hoc networks
– start-page: 124
  year: 2009
  end-page: 128
  ident: b46
  article-title: A dolphin partner optimization
  publication-title: Intelligent Systems, 2009. GCIS’09. WRI Global Congress On
– volume: 40
  start-page: 256
  year: 2014
  end-page: 272
  ident: b26
  article-title: An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation
  publication-title: Appl. Intell.
– start-page: 264
  year: 2006
  end-page: 273
  ident: b29
  article-title: Small-world optimization algorithm for function optimization
  publication-title: International Conference on Natural Computation
– volume: 11
  start-page: 431
  year: 2008
  end-page: 439
  ident: b69
  article-title: Horse sense: Social status of horses (Equus Caballus) affects their likelihood of copying other horses’ behavior
  publication-title: Anim. Cogn.
– year: 2010
  ident: b47
  article-title: Firefly algorithm, stochastic test functions and design optimisation
– year: 2012
  ident: b36
  article-title: Curved space optimization: A random search based on general relativity theory
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b56
  article-title: The Ant Lion optimizer
  publication-title: Adv. Eng. Softw.
– volume: 24
  start-page: 551
  year: 2017
  ident: b40
  article-title: A new meta-heuristic algorithm: Vibrating particles system
  publication-title: Sci. Iran. Trans. A Civ. Eng.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b20
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b32
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci.
– start-page: 65
  year: 2010
  end-page: 74
  ident: b48
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)
– volume: 1
  start-page: 190
  year: 1989
  end-page: 206
  ident: b15
  article-title: Tabu search—Part I
  publication-title: ORSA J. Comput.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b58
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b39
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
– volume: 13
  start-page: 247
  year: 2000
  end-page: 258
  ident: b22
  article-title: A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines
  publication-title: Appl. Intell.
– volume: 112
  start-page: 223
  year: 1990
  end-page: 229
  ident: b6
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: J. Mech. Des.
– volume: 14
  start-page: 381
  issue: 3
  year: 2010
  ident: 10.1016/j.knosys.2020.106711_b34
  article-title: Chemical-reaction-inspired metaheuristic for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033580
– year: 2005
  ident: 10.1016/j.knosys.2020.106711_b42
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.knosys.2020.106711_b20
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– start-page: 131
  year: 1994
  ident: 10.1016/j.knosys.2020.106711_b19
  article-title: An introduction to cultural algorithms
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.knosys.2020.106711_b61
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– year: 2009
  ident: 10.1016/j.knosys.2020.106711_b12
– volume: 112
  start-page: 223
  issue: 2
  year: 1990
  ident: 10.1016/j.knosys.2020.106711_b6
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2912596
– start-page: 65
  year: 2010
  ident: 10.1016/j.knosys.2020.106711_b48
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 24
  start-page: 551
  issue: 2
  year: 2017
  ident: 10.1016/j.knosys.2020.106711_b40
  article-title: A new meta-heuristic algorithm: Vibrating particles system
  publication-title: Sci. Iran. Trans. A Civ. Eng.
– year: 2011
  ident: 10.1016/j.knosys.2020.106711_b70
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.knosys.2020.106711_b27
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– year: 2003
  ident: 10.1016/j.knosys.2020.106711_b41
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.knosys.2020.106711_b62
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– year: 1992
  ident: 10.1016/j.knosys.2020.106711_b16
– year: 2007
  ident: 10.1016/j.knosys.2020.106711_b9
– volume: 17
  start-page: 14
  year: 2014
  ident: 10.1016/j.knosys.2020.106711_b55
  article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.02.002
– volume: 34
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2020.106711_b28
  article-title: Multi-level cross entropy optimizer (MCEO): An evolutionary optimization algorithm for engineering problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0569-z
– year: 1994
  ident: 10.1016/j.knosys.2020.106711_b17
  article-title: Evolution strategy, in computational intelligence: Imitating life
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.knosys.2020.106711_b8
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– volume: 222
  start-page: 175
  year: 2013
  ident: 10.1016/j.knosys.2020.106711_b35
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.08.023
– volume: 27
  start-page: 308
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2020.106711_b64
  article-title: A generalized hopfield network for nonsmooth constrained convex optimization: Lie derivative approach
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2496658
– volume: 40
  start-page: 256
  issue: 2
  year: 2014
  ident: 10.1016/j.knosys.2020.106711_b26
  article-title: An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-013-0458-0
– volume: 38
  start-page: 129
  issue: 2
  year: 2006
  ident: 10.1016/j.knosys.2020.106711_b44
  article-title: Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150500384759
– year: 2010
  ident: 10.1016/j.knosys.2020.106711_b47
– volume: 1
  start-page: 190
  issue: 3
  year: 1989
  ident: 10.1016/j.knosys.2020.106711_b15
  article-title: Tabu search—Part I
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.1.3.190
– start-page: 553
  year: 2010
  ident: 10.1016/j.knosys.2020.106711_b7
  article-title: Termite colony optimization: A novel approach for optimizing continuous problems
– start-page: 341
  year: 2010
  ident: 10.1016/j.knosys.2020.106711_b73
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 10.1016/j.knosys.2020.106711_b52
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 13
  start-page: 247
  issue: 3
  year: 2000
  ident: 10.1016/j.knosys.2020.106711_b22
  article-title: A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines
  publication-title: Appl. Intell.
  doi: 10.1023/A:1026568011013
– year: 2013
  ident: 10.1016/j.knosys.2020.106711_b72
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.knosys.2020.106711_b21
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 11
  start-page: 177
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2020.106711_b63
  article-title: Flying squirrel optimizer (FSO): A novel SI-based optimization algorithm for engineering problems
  publication-title: Iran. J. Optim.
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.knosys.2020.106711_b14
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.knosys.2020.106711_b32
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.knosys.2020.106711_b60
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 167
  start-page: 69
  year: 2016
  ident: 10.1016/j.knosys.2020.106711_b37
  article-title: Water evaporation optimization: A novel physically inspired optimization algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.01.008
– volume: 21
  start-page: 1583
  issue: 9
  year: 1985
  ident: 10.1016/j.knosys.2020.106711_b5
  article-title: A study of mathematical programming methods for structural optimization. Part I: Theory
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620210904
– volume: 33
  start-page: 71
  issue: 1
  year: 2017
  ident: 10.1016/j.knosys.2020.106711_b38
  article-title: Engineering optimization based on ideal gas molecular movement algorithm
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-016-0457-y
– volume: 11
  start-page: 431
  issue: 3
  year: 2008
  ident: 10.1016/j.knosys.2020.106711_b69
  article-title: Horse sense: Social status of horses (Equus Caballus) affects their likelihood of copying other horses’ behavior
  publication-title: Anim. Cogn.
  doi: 10.1007/s10071-007-0133-0
– year: 2003
  ident: 10.1016/j.knosys.2020.106711_b23
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2020.106711_b39
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– year: 1983
  ident: 10.1016/j.knosys.2020.106711_b66
  article-title: Horse behavior
– start-page: 1
  year: 1994
  ident: 10.1016/j.knosys.2020.106711_b18
– start-page: 39
  year: 1995
  ident: 10.1016/j.knosys.2020.106711_b10
  article-title: A new optimizer using particle swarm theory
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.knosys.2020.106711_b58
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– start-page: 162
  year: 2007
  ident: 10.1016/j.knosys.2020.106711_b45
  article-title: Monkey search: A novel metaheuristic search for global optimization
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.knosys.2020.106711_b25
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– start-page: 668
  year: 1995
  ident: 10.1016/j.knosys.2020.106711_b4
  article-title: An evolutionary and cooperative agents model for optimization
– start-page: 425
  year: 2007
  ident: 10.1016/j.knosys.2020.106711_b30
  article-title: Central force optimization: A new metaheuristic with applications in applied electromagnetics
– volume: 213
  start-page: 267
  issue: 3–4
  year: 2010
  ident: 10.1016/j.knosys.2020.106711_b33
  article-title: A novel heuristic optimization method: Charged system search
  publication-title: Acta Mech.
  doi: 10.1007/s00707-009-0270-4
– year: 2010
  ident: 10.1016/j.knosys.2020.106711_b71
– year: 2005
  ident: 10.1016/j.knosys.2020.106711_b43
– start-page: 264
  year: 2006
  ident: 10.1016/j.knosys.2020.106711_b29
  article-title: Small-world optimization algorithm for function optimization
– year: 2004
  ident: 10.1016/j.knosys.2020.106711_b2
– volume: 37
  start-page: 1196
  issue: 10
  year: 2013
  ident: 10.1016/j.knosys.2020.106711_b49
  article-title: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: Bird mating optimizer
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.2915
– start-page: 124
  year: 2009
  ident: 10.1016/j.knosys.2020.106711_b46
  article-title: A dolphin partner optimization
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.knosys.2020.106711_b53
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– year: 1992
  ident: 10.1016/j.knosys.2020.106711_b13
– start-page: 4661
  year: 2007
  ident: 10.1016/j.knosys.2020.106711_b24
  article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
– year: 2003
  ident: 10.1016/j.knosys.2020.106711_b67
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.knosys.2020.106711_b56
  article-title: The Ant Lion optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– start-page: 5
  year: 2005
  ident: 10.1016/j.knosys.2020.106711_b68
  article-title: Domestication and early history of the horse
– volume: 26
  start-page: 69
  year: 2012
  ident: 10.1016/j.knosys.2020.106711_b50
  article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.07.001
– year: 2012
  ident: 10.1016/j.knosys.2020.106711_b36
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 10.1016/j.knosys.2020.106711_b1
  article-title: Genetic algorithms and machine learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022602019183
– volume: 29
  start-page: 2407
  issue: 6
  year: 2017
  ident: 10.1016/j.knosys.2020.106711_b65
  article-title: Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2691760
– year: 2012
  ident: 10.1016/j.knosys.2020.106711_b11
– start-page: 2659
  year: 2008
  ident: 10.1016/j.knosys.2020.106711_b31
  article-title: Magnetic optimization algorithms a new synthesis
– volume: 55
  start-page: 2369
  issue: 10
  year: 2012
  ident: 10.1016/j.knosys.2020.106711_b51
  article-title: Lion pride optimizer: An optimization algorithm inspired by lion pride behavior
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-012-4548-0
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 10.1016/j.knosys.2020.106711_b57
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.knosys.2020.106711_b59
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 186
  start-page: 311
  issue: 2–4
  year: 2000
  ident: 10.1016/j.knosys.2020.106711_b3
  article-title: An efficient constraint handling method for genetic algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2020.106711_b54
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
SSID ssj0002218
Score 2.6790202
Snippet This paper proposes a new meta-heuristic algorithm inspired by horses’ herding behavior for high-dimensional optimization problems. This method, called the...
This paper proposes a new meta-heuristic algorithm inspired by horses' herding behavior for high-dimensional optimization problems. This method, called the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106711
SubjectTerms Algorithms
Behavior
Behavior problems
Complexity
Defense mechanisms
Global optimization
Grazing
Heuristic
Heuristic methods
High dimension
Horses
Horse’s life
Imitation
Meta-heuristic
Optimization
Optimization algorithms
Pastoralism
Sensitivity analysis
Sociability
Swarm intelligence
Trigonometric functions
Wolves
Title Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems
URI https://dx.doi.org/10.1016/j.knosys.2020.106711
https://www.proquest.com/docview/2502228201
Volume 213
WOSCitedRecordID wos000614642900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQy4ELb0ShIB-4rYwSx4ljbitUKI-uEBS0t8hOvGxKm1TJgsr-emZiJ92HUAGJS7SyN3bWMxl_861nhpBnYZ6G2soZQx4fHZSIqZQrZtPEaM1NYjrC7ct7OZmk06n64DndtisnIKsqvbhQ5_9V1NAGwsbQ2b8Q9zAoNMBnEDpcQexw_SPBH9YN5hG2TTGqwR6c-UDLkT79WjflYu6Y-ZHL6MnKCv9qB9Q5dHcHDzGLMSsw87_L2rE-lK9C064i23c9OcdwYyx8iugBsR-VuploC2N0cBk89GLQtWW5_Ol42NfoaZ81djlsFh91O3eVtY_qeevj1jxLwUM82OziNB11thU-4znIgMnAZ5y1zgKnEiC_CNSqieYuXnXL3Dvm4eT5t6qGXwXePsfGRHr7vZ5I-xNOh7NxzNEjME_7LpexAlu4O35zMH077OCcd7zw8Hh9yGV3LnB7rt9Bmo3NvUMsx7fJTe9q0LFTkTvkmq3uklt9GQ_qrfo9UnYaQ1Fj6KqY6aASL-iYbujLZScFfaGb-rI-UK8v98nnVwfHLw-Zr8DB8igSCxbH1kgTmQhQshZxYQW0BEYDrNHFTCg-s1oUhdAqtEkUGAX-N7zkyAHkXOZh9IDsVHVlHxIqdcgTO1OGF0ZIKbUE25GHcZrMhBE63CNRv4hZ7tPTY5WU06w_h3iSuaXPcOkzt_R7hA13nbv0LFd8X_byyTzEdNAxA5W64s79XpyZf9uhP0a-BEH0o38e-DG5cfnC7JOdRfPdPiHX8x-Lsm2eetX8BYqPsfQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Horse+herd+optimization+algorithm%3A+A+nature-inspired+algorithm+for+high-dimensional+optimization+problems&rft.jtitle=Knowledge-based+systems&rft.au=MiarNaeimi%2C+Farid&rft.au=Azizyan%2C+Gholamreza&rft.au=Rashki%2C+Mohsen&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=213&rft_id=info:doi/10.1016%2Fj.knosys.2020.106711&rft.externalDocID=S0950705120308406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon